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Abstract 

We present here a study of the wave propagation in a two-dimensionally (2D) periodic structure.  
The Floquet-type solutions are constructed with the results shown in the form of dispersion curves for 
an unbound medium, while the scattering of a plane wave by a 2D periodic structure of a finite 
thickness is analyzed as a multilayer boundary-value problem to verify the dispersion characteristics.  
Specific examples are given to show quantitatively the stopband behaviors; in particular, a composite 
structure with two different lattice patterns in cascade is shown to achieve the omni-directional 
behavior of stopband. 

1. Introduction 

The development of artificial materials by constructing lattice structures has gained considerable 
attention in recent years; in particular, the stop-band phenomenon associated with the lattice structures 
has found many applications.  For example, a 2D periodic array of dielectric rods in a uniform 
surrounding has been shown to exhibit many interesting phenomena, such as spontaneous emission 
and localization of electromagnetic energy.  Such periodic arrays of dielectric materials were 
employed as a novel waveguide to mold the flow of electromagnetic energy [1].  The basic concept 
of this class of applications can be traced back to the early work of Larsen and Oliner [2] who had 
used one-dimensionally (1D) periodic dielectric slabs to form waveguide walls that are operated in 
their stop-band or below-cutoff condition.  Recently, 2D periodic layers in conjunction with planar 
structures have been investigated for both optical and microwave applications; one example is a high 
impedance surface that will not support a surface wave in any direction.  The purpose of this paper is 
to provide a theoretical basis for the analysis of 2D periodic structures, so that benchmark results can 
be established for verifying those obtained from experiments, or obtained by simple, approximate 
analysis. 

2. Description of this problem 

Figure 1 shows a stack of N identical periodic layers of infinite extent on the horizontal plane, which 
are stacked with equal spacing between two neighboring ones.  Each periodic layer is composed of 
an infinite number of rectangular dielectric rods of infinite length.  When the number of the periodic 
layers in the stack is increased indefinitely, the structure can be viewed as an unbounded 2D periodic 
medium.  Therefore, we may infer the propagation characteristics of the 2D periodic medium by the 
scattering characteristics of a stack of sufficiently large number of 1D periodic layers.  With the 
coordinate system attached, the dielectric rods in each layer has the width a1 and the distance between 
two neighboring rods is a2, so that the period of the layer is a = a1 + a2.  For simplicity, a1/a will be 
referred to as the aspect ratio of the 1D periodic layer.  The thickness of the 1D periodic layers is b1 
and the separation between two neighboring ones is b2.  In general, we assume that between two 
neighboring layers, there is a position shift of the distance s in lateral direction, so that we may 
investigate the effect of a large class of array patterns on the propagation characteristics of a 2D 
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periodic medium by adjusting the parameter s in our analysis.  For example, we have a square array 
pattern for s = 0 and a triangular array pattern for s = 0.5a.  It is noted that for an arbitrary value of s, 
b = b1 + b2 is not necessary the period of the structure in the y-direction; actually, the structure has a 
period (s2 + b2) 1/2 along the direction at the angle θ = sin-1(s/b) from the y-axis.  Even though, the 
ratio b1/ b will be referred to as the aspect ratio in the y-direction. 

3. Mathematical Analysis 

Referring to Figure 1, the 2D periodic structure consists of N 1D periodic layers, and scattering of 
plane waves by such a structure can be easily analyzed as a rigorous multilayer boundary-value 
problem, by which the dispersion characteristics of the unbound 2D periodic medium can be inferred 
the reflection and transmission characteristics in the limit of a large number of 1D periodic layers, N 
>> 1.  The formulation of such a type of boundary-value problems can be carried out for any value 
of s and it is convenient for the analysis of the effect of array pattern on the propagation 
characteristics of the 2D periodic medium.  For simplicity, this will be referred to as the scattering 
approach. 

On the other hand, the dielectric constant of a 2D periodic medium can be represented by a double 
Fourier series, and so are the electromagnetic fields, known as the Floquet-type solutions.  The 
Maxwell equations will then yield a set of homogeneous linear equations that provides a rigorous 
basis for the analysis of wave propagation in the 2D periodic medium.  The condition for the 
existence of nontrivial solutions of the homogeneous linear equations leads to the vanishing of the 
coefficient matrix and this defines the dispersion relation of the medium.  For simplicity, this will be 
referred to as the Floquet approach. 

We have examined a number of 2D periodic structures with different structure parameters and 
different array patterns by both approaches, as illustrated below. 

4. Numerical Results and Discussions 

Fig. 2 shows the dispersion characteristics of a structure with the structural and geometrical 
parameters given in the inset.  Here, the dashed lines represent the unperturbed dispersion curves that 
are plotted for the case of kx = 0.  By the Floquet approach, the dispersion curves of a TE-wave are 
calculated with the results shown in blue for the real part of kya/2π and in red for the imaginary part, 
respectively, as a function of koa/2π.  Evidently, we have three types of stop band, as marked by A, B 
and C.  The stop-band A is due to the interactions between the two space harmonics labeled by the 
indices (m = 0, n = 0) and (m = 0, n = -1).  The stop-bands B and C can be similarly identified with 
an interaction between other two space harmonics.  The relative widths among the three types of stop 
bands may be explained in terms of the order of interacting harmonics. 

Fig. 3 shows the transmission efficiency of a 2D periodic structure with 10, 20 and 30 layers, 
respectively.  The structure is illuminated by a TE plane wave at the normal incidence.  As expected, 
there exist three stopbands, as also marked by A, B and C.  Evidently, as the number of 1D periodic 
layers is increased, the transmittance is reduced, so that the stopbands approach those of the infinite 
medium. 

Figure 4 shows the variation of reflection efficiency versus incident angle for three different 2D 
periodic structures.  The relative dielectric constant of the dielectric rods is 11.4 for all three cases.  
The short dash line in blue color is for the case of 16 1D periodic layers with the triangular lattice 
pattern and the aspect ratios: a1/a=0.4, b1/b=0.2.  The long dash line in red color is for the case of 16 
1D periodic layers with the rectangular pattern and the aspect ratio: a1/a=0.6, b1/b=0.2.  The black 
line with triangle symbol attached is the case for the composite structure that consists of the above 
two 2D periodic structures in cascade.  It is noted that the triangular pattern yields the total reflection 
except for the angles around 8o and 62o, whereas the rectangular one has the total reflection around 
these two angles.  Thus, the two structures can compensate each other, so that the composite 
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structure exhibits perfectly total reflection at any incident angle. 

5. Conclusions 

We have employed the two different approaches to the problem of wave propagation in a 2D periodic 
medium.  Extensive numerical results have been obtained to examine the stopband behaviors of 
various structures with different array patterns; in particular, it is shown that a composite structure 
consisting of two 2D periodic layers of different array patterns can produce the total reflection at any 
incident angle. 
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Figure 1: Geometric configuration of  2D periodic array

εs

εa

εs A B C
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

a/ λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
an

sm
is

si
on

 E
ff

ic
ie

nc
y

10 layers
20 layers
30 layers

a=b
a1/a=b1/b=0.5
ε1=4.0  ε2=1.0
Normal Incidence

Figure 3:  Transmission ef f iciency versus wavelength
of a stack of 1D periodic layers
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Figure 2:  Dispersion relation for the 2D periodic medium;
                 Compute ky for a given kx=0

a

b

x-axis

y-axis

A

B

C

  
 
 
 

0 10 20 30 40 50 60 70 80 90

Incident Angle (degree)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

R
ef

le
ct

an
ce

0 10 20 30 40 50 60 70 80 90

------- a1/a = 0.4, b1/b = 0.2, s = 0.5a, 16 1D periodic layers
------- a1/a = 0.6, b1/b = 0.2, s = 0, 16 1D periodic layers
------- composite structures (32 1D periodic layers)

Figure 4: Variation of ref lectance versus incident angle
           for various types of lattice pattern  


