
行政院國家科學委員會專題研究計畫成果報告

※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ 建置一 EJB Structure ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：V個別型計畫 □整合型計畫

計畫編號：NSC 89 –2213 – E – 009 – 178

執行期間： 89 年 8 月 1 日至 90 年 7 月 31 日

計畫主持人：王豐堅

共同主持人：

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程系

中 華 民 國 90 年 12 月 31 日

行政院國家科學委員會專題研究計畫成果報告
計畫編號：NSC 89 –2213 – E – 009 – 178

執行期限：89 年 8 月 1 日至 90 年 7 月 31 日
主持人：王豐堅 國立交通大學資訊工程系

計畫參與人員：楊基載等研究生
-. 摘 要
Enterprise JavaBeans（EJB）架構是被設
計用來利用現存在伺服器端的原件組裝
成一套具有擴充性、安全性、靈活性、
分散式和輕薄短小的應用程式。支援
transaction 功能是 EJB 架構的特徵之
一。本研究實作一個建構在 EJB 架構的
Transaction 系統。這個 Transaction 系統
允許程式開發者利用多個 enterprise
beans 在一個 transaction 中同時對多個
資料庫作存取。甚至，這些資料庫可能
位在不同的伺服器裡 。 除 了管 理
transaction 外，這個 Transaction 系統還
能自動根據 enterprise beans 的特性來執
行 transaction 動作，包括開啟、完成和
回返一個 transaction。因此，程式開發
者便不需要在程式中明確的區分出
transaction 的 範 圍 ， 而 且 enterprise
beans 的撰寫也變成更加簡單。

關鍵字: 企業 Java Bean, 伺服器,交易系
統,資料庫,分散式系統.

Abstract

 The Enterprise JavaBeans (EJB) [1]
architecture is designed to enable building
one scalable, secure, flexible, and
distributed chin-client applications as
reusable and server-side components
[2][13]. The EJB architecture was
proposed to support for transactions. The
research [3] implemented a transaction
system of EJB architecture, which allows
application developers to invoke enterprise
beans to update data in multiple databases
in a single transaction. These databases
can be distributed in different servers [4].
In addition to manage the transactions, the
transaction system could automatically
demarcate a transaction on behalf of the
enterprise bean, including begin, commit,
and rollback it. Hence, the application
developer need not explicitly specify

transaction demarcation code and the
enterprise beans are simpler to develop.

Keywords: EJB, Internet, Client-server,
Database, distributed systems, transaction

1. Introduction of EJB
 Recently, the development of software
design has a great variation. The demands
for the software design have tended to
provide the capabilities of distributed,
thin-client, multi-tier, scalability, reusable
and so on. Based on these advancements,
in March 1998, Sun Microsystem Inc.
proposed the specification of Enterprise
JavaBeans (EJB for short)[1], which
satisfies all these demands. The EJB
technology expects to provide an
environment for developers to produce
scalable server-based applications using
existing components without worrying
about the complexity of multi-threaded,
transactional and distributed process
programming.

 The EJB architecture defines a model to
simplify the development of distributed
enterprise applications, which develops
and deploys the reusable components via
the network. These components are called
enterprise beans. The developers only
present the invocation of the enterprise
beans and need not care the low-level
transaction, state management, multi-
threading and other complex low-level
APIs when developing applications. These
complex actions of management will be
handled by the EJB architecture
automatically. In other words, the
developer only concerns about the
presentation logic － “thin client”. Usually,
a thin-client application is easier to be
managed than traditional client/server
applications, and both scalability and
performance will increase.

 “Write Once, Run Anywhere” (WORA)
[9] [10] is one of the primary tenets of
Java technology. The EJB architecture
also follows the philosophy of WORA.
Once an enterprise bean is developed, it
then can be deployed on multiple
platforms without recompilation or
modification. In this case, the EJB
architecture not only reaches the goal of
reuse in object level but also enables
portability. Besides, although the EJB
architecture is designed with JAVA base,
it could be compatible with many
applications, such as existing server
platform, non-JAVA programming
language applications, other JAVA
language API and CORBA protocol. [6]
[12]

 In the EJB architecture, there supports
high scalability by using the multi-tier
[7][8], distributed application architecture.
A multi-tier application is an application
that has been partitioned into multiple
application components. Multi-tier
applications provide a number of
significant advantages [13] over traditional
client/server architectures, including
improvements in scalability, performance,
reliability, manageability, reusability, and
flexibility.

 The EJB architecture is a new and strong
infrastructure. [14] It not only connects
and manages a wide array database,
mainframe applications and customized
software solutions; but also provides high
availability to handle enterprise-scale
computing. The EJB architecture is also a
technology for rapid application
development, and existing IT investments
integration and protection.

2. Transactions in the EJB
Architecture

 In a client/server system, a process might
be divided into several tasks which
execute in various sites. During the
execution, the working system must
guarantee either all these tasks complete,
or none of them do at all. These tasks may
be treated as in a transaction that owns
four properties, including atomicity,
consistency, isolation and durability [11].

A transaction system [10] can guarantee
the success of the activities in each
execution sequence within a distributed
environment. The transaction system is an
essential component of the EJB
architecture and supports flat transactions
of two-phase commit protocol.

2.1 The Java Transaction API

 In the EJB architecture, the JAVA
Transaction API (JTA) [10] is a
specification of the interfaces between a
transaction manager and the EJB
Container, enterprise beans and Java client
program. JTA provides a programming
interface to start transactions, join existing
transactions, commit transactions and
rollback transactions. The EJB architecture
allows both the Bean Providers and the
application developers in EJB Client to
use the javax.transaction.UserTransaction
interface of JTA to control transaction
boundaries programmatically. JTA is
implemented in EJB Container which
provides the
javax.transaction.UserTransaction
interface for the enterprise beans and EJB
Client, and the
javax.transaction.TransactionManager
interface to control transaction boundaries
on behalf of the EJB Client being managed.

2.2 Transaction approaches of
EJB Architecture

 The EJB architecture defines three
approaches [5] to demarcate transaction
boundaries. The first one is a client-
managed transaction demarcation, where a
client makes explicit calls to begin or
commit such a transaction. The other two
are bean-managed and container-managed
transaction demarcation. An enterprise
bean can make a call to begin or commit a
bean-managed transaction. The EJB
Container automatically begins or
commits a container-managed transaction
which is declared by an enterprise bean.

Client-managed transaction
 In the EJB architecture, the application
developer uses the
javax.transaction.UserTransaction
interface defined in JTA to demarcate

transaction boundaries. The developer
could firstly obtain the
javax.transaction.UserTransaction
interface via JNDI (JAVA Naming and
Directory Interface). Then, he/she can
demarcate the transaction with begin() and
commit() method provided by the
javax.transaction.UserTransaction
interface.

Bean-managed transaction
 The enterprise bean can demarcate a
transaction programmed by the Bean
Provider. The enterprise bean uses the
getUserTransaction() method from the
EJBContext to obtain the
javax.transaction.UserTransaction
interface, which is then used to demarcate
a transaction. After getting the transaction
status, the enterprise bean can execute the
business methods in a transaction between
UserTransaction.begin() and
UserTransacton.commit(). Also, it can roll
back a transaction using rollback() method.
 Besides coding enterprise beans with
bean-managed transaction demarcation,
the Bean Provider must also set the
attribute “transaction-type element” with
“Bean” in the deployment descriptor file.
The attribute with “Bean” specifies that
the enterprise bean must be executed with
bean-managed transaction demarcation in
the EJB Container.

Container-managed transaction
 The development of enterprise beans
with container-managed transaction
demarcation can be simplified because the
developers do not have to explicitly code
the transaction’s boundaries. When a
business method of the enterprise bean is
invoked, the EJB Container interposes the
method invocation and gains the
permission to control the transaction
demarcation based on the transaction
attribute of the business method.
 In the deployment descriptor, each
business method has its correspondent
transaction attribute, which specifies how
the EJB Container should demarcate the
transaction. In the EJB architecture, six
values for the transaction attribute are
defined: NoSupported, Required, Supports,
RequiredNew, Mandatory and Never.

 The Bean Provider is responsible to set
up the deployment descriptor file as follow:
For each session bean, Bean Provider must
declare the “transaction-type element” as
either “Bean” or “Container” and set the
value of transaction attribute of each
business method. For each entity bean,
Bean Provider must set the value of
transaction attribute of each business
method but never set the transaction-type
because all entity beans have to use
container-managed transaction
demarcation.

3.Design of Transaction System

3.1 The System Model

 Our transaction system is designed and
implemented to own the transaction
capabilities of the EJB architecture. The
transaction system helps EJB Container to
select a transaction action when a business
method is invoked. The transaction system
provides JTA for the EJB applications and
the EJB Container to demarcate the
transaction. Also, the transaction system
manages the transactions based on 2-phase
commit protocol. Our transaction system
architecture, shown in Figure 1, contains
three primary components, including
Transaction Code Generator (TCGen),
Java Transaction API (JTA) and a
Transaction Manager.
 In Figure 1, TCGen component, a sub
component on the Deployer, generates
transaction codes to help the EJB
Container to select the transaction action.
The implementation of JTA provides the
EJB applications and EJB Container a
programming interface to demarcate a
transaction, eg: start, join, commit and roll
back transactions. The Transaction
Manager component is used to manage all
transactions.

3.2 Design of Transaction Code
Generator

When a business method is invoked, the
EJB Container selects the transaction
action for the method according to the
transaction attribute, transaction-type and
status of client. The EJB Container can
also decide to commit, hold or rollback the

transaction when the business method
completes. Hence, there exists a pair of
transaction controls in the front and end of
the business method correspondingly.

In our design, the transaction
controls are coded as two TCGen methods
named PreInvoke() and PostInvoke(). The

Figure 1 The system architecture of transaction system

PreInvoke() method selects the
transaction action. The PostInvoke()
method is used to commit the transaction
started in PreInvoke(). These two TCGen
methods are coded in the class of
javax.ejb.EJBObject interface; it is
inherited by the class of the enterprise
bean’s Remote interface. When Deployer
generates the class of enterprise bean’s
Remote interface, it asks TCGen object to
add a pair of TCGen methods to each
business method. Within the class, the
TCGen inserts method invocation of
PreInvoke() in the front of a business
method and PostInvoke() at the end.

4. Conclusion and Future Work

In the short report, a transaction system of
the EJB architecture, including TCGen,
JTA and Transaction Manager, is designed
and implemented. The transaction system
allows three different transaction
approaches defined in EJB architecture to
demarcate a transaction in the EJB
Container. Especially, the transaction
system could help EJB Container to select
the transaction action when a business
method is invoked. Hence, the application
logic requires no transaction codes and the
enterprise beans are simpler to write.

The EJB architecture only supports
2-phase commit protocol for flat
transactions. However, the 2-phase
commit protocol has an uncertainty period
because a processor must detect a stable

predicate in order to commit or abort after
voting “Ready”. To avoid the problem, the
transaction system may be rebuilt based on
3-phase commit protocol or better one.
Besides, nested transactions are not
allowed within the business methods. The
transaction system also enhances to take
advantage of nested transaction, if these
vendors provide support for nested
transactions in the future.
In the EJB architecture, it is allowed that a
business method to perform other
enterprise beans which reside in other EJB
Container. Hence, the distributed
transactions among many EJB Containers
are a future topic.

References
[1] Sun Microsystems, “Enterprise

JavaBeans 1.0 Specification”, in
http://java.sun.com/cgi-
bin/download3.cgi

[2] Boher. K., Johnson V., Nilsson A.
And Rubin B., “Business process
components for distributed object
applications”, Communications of
the ACM,Vol. 41, No. 6 (June 1998),
Pages 43-48

[3] Hapner M. and Finkelstein S.,
“Enterprise JavaBeans Technology:
Developing and Deploying Business
Applications as Components”, Java
ONE conference, 1998. Available in
http://java.sun.com/javaone/javaone9
8/sessions/T401/

[4] Matena V. and Finkelstein S., “How
to Build Enterprise JavaBeans
Server Software“, Java ONE
conference, 1998. Avaiable in
http://java.sun.com/javaone/javaone9
8/ sessions/T403/index.html

[5] Roth B., “Enterprise JavaBeans
Technology: Tools that Enable
Enterprise JavaBeans Technology”,
Java ONE conference, 1998.
Available in
http://java.sun.com/javaone/
javaone98/sessions/T402/index.html.

[6] Ed Roman and Rickard Oberg, “The
Technical Benefits of EJB and J2EE
Technologies over COM+ and
Windows DNA”, December 1999, in
http://java.sun.com/products/ejb/pdf/j
2ee_dnabwp.pdf

[7] Sun Microsystems, “Simplified
Guide to the Java 2 Platform
Enterprise Edition”, 1999, pp. 1-1－
1-3

[8] Secant Technologies, Inc. “Secant
Extreme Enterprise Server for EJB”,
in
http://www.secant.com/docs/EJBpap
er/ejbpaper.1.html

[9] Sun Microsystems, “Java

Transaction API Specification 1.0.1”,
http://java.sun.com/cgi-
bin/download3.cgi

[10] Sun Microsystems, “Java
Transaction Service”, in
http://java.sun.com/products/jts/inde
x.html

[11] Mike Porter and Martin Van Vliet,
“Expand your server-side toolkit
with EJB”,
http://www.sunworld.com/swol-04-
1999/swol-04-itarchitect.html

[12] Dr. Andreas Vogel and Chief
Scientist, “Building Enterprise
Applications for the Net with EJB,
CORBA, and XML”, in
http://www.inprise.com/appserver/pa
pers/ejb/part2.html

[13] Sun Microsystems, “Java 2 Platform
Enterprise Edition”, in
http://java.sun.com/j2ee/index.html

[14] Sun Microsystems, “Java Naming
and Directory Interface Application
Programming Interface”, in
http://java.sun.com/j2se/1.3/docs/gui
de/jndi/spec/jndi

	page1
	page2
	page3
	page4
	page5
	page6

