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Abstract

The Even Swap method, originally outlined by Benjamin Franklin 230 years ago, is a rational way of finding the best alternative
by evenly swapping decision criteria. This study develops a Decision Ball model to assist a decision maker in ranking alternatives
and visualizing decision process based on the Even Swap concept. By viewing the moving trajectories of alternatives on spheres, a
decision maker can specify trade-offs among criteria via the Even Swap process thus ranking alternatives more consistently.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In a multi-criteria decision making process, the more
the decision criteria, the more the difficulties the
decision maker (DM) has to face. Therefore, assistance
in making reliable trade-offs among criteria thus ranking
alternatives consistently is a critical issue in manage-
ment research.

More than 230 years ago, Benjamin Franklin
outlined the concept of Even Swaps in a letter (see
Appendix A) about choosing between two alternatives.
Franklin's fundamental idea is that if every alternative
for a given criterion is rated equally, then the criterion
can be ignored in making decision. Following this idea,
Hammond, Keeney and Raiffa developed a mechanism
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for Even Swaps to provide a useful way for making
trade-offs with a range of criteria across a range of
alternatives [14]. “Even” implies equivalence and
“Swap” represents exchange. An even swap increases
the value of one criterion while decreasing the value of
another criterion by an equivalent amount. By iteratively
crossing out equally rated criteria to reduce the number
of criteria, the best option can be determined.

The Even Swap method is an algorithm for multi-
criteria decision making under certainty. Each alter-
native has a scaled ranking of a number of criteria, some
positive and the remainder negative. The DM is asked to
make a number of indifferent judgments between the
original alternative and the modified alternative. These
adjustments are made to equalize all alternatives with
respect to one of the criteria, thus rendering it irrele-
vant in the comparison. By successively applying this
principle, as suggested by Benjamin Franklin, and
recognizing when one alternative is dominated by
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another, alternatives can be ruled out until only one
remains.

The Even Swap approach is a rational and practical
way for finding the most preferred alternative. How-
ever, current Even Swap methods have the following
inadequacies:

(i) Only the most preferred alternative is found. In an
actual decision environment, the DM may also
want to know the second or the third preferred
alternatives.

(ii) Some trade-offs of criteria values, as specified by
the DM, may not be consistent with each other.
Current methods have no mechanism to check the
consistency of these trade-offs.

(iii) The similarities among alternatives are not taken
into account. Actually, the DM does not only want
to know what the best option is but also the
differences (or similarities) among alternatives.

The two main reasons for the above inadequacies in
the current Even Swap methods are: First, they do not
have a way to display differences (or similarities) among
alternatives according to the trade-off values specified
by the DM. Such a display can help the DM to see the
differences among alternatives with different trade-off
values. Second, they may not rank alternatives con-
sistently according to even swaps made by the DM.

This study therefore develops a visualization model,
the so called Decision Ball model, to assist a decision
maker in ranking alternatives and visualizing decision
process based on the Even Swap concept. By displaying
all alternatives on spheres, the DM can see the differences
among alternatives, can calculate the effects of different
trade-off values, and can examine the moving trajectories
of alternatives to check the consistency of even swaps.
Thus, the DM can rank alternatives by viewing the ad-
justment outcomes displayed on the spheres.

Several graphic techniques have been developed to
support decision-making process: for instance, deduction
Fig. 1. Advantages of a sphere model (a) Display line segments on a 2-D plan
the same plane.
graphs to treat decision problems associated with
expanding competence sets [19], a hyperbolic tree and a
hierarchical list to visualize criminal relationships [23],
and Gower Plots to detect inconsistencies in a decision
maker's preferences and rank alternatives [11,12]. All
these methods, however, used a 2-dimensional plane geo-
metry to illustratemultidimensional data. A 2-dimensional
planemodel cannot depict three points that do not obey the
triangular inequality (i.e. the total length of any two edges
must be larger than the length of the third edge) neither can
it display four points that are not on the same plane. For
instance, as illustrated in Fig. 1, consider three points,
A, B, C, where the distance between AB, BC, and AC
are 3, 1, and 6, respectively, as shown in Fig. 1(b). It is
impossible to show their relationships by three line
segments on a 2-dimensional plane, as shown in Fig. 1
(a). If there are four points,A,B, C andD,which are not on
the same plane, as shown in Fig. 1(c), it is impossible to
present these four points on a 2-dimensional plane too.

Multidimensional scaling (MDS) [3,9] and a self-
organizing map (SOM) [17] are commonly used tech-
niques to map the similarities between points in a high
dimensional space into a lower dimensional space
(usually Euclidean). For instance, a visualization model,
based on a scaling technique known as Sammon map
[22], was proposed to visualize adjacency data [7]; a SOM
network was extended to classify decision groups [16];
the fisheye views and fractal views were used to support
the visualization of a category map based on SOM [24].
However, there are two restrictions in current multi-
dimensional scaling and SOMmodels limiting their use in
visualizing Even Swap process. First, they do not show
inconsistencies in even swaps. Inconsistencies in prefer-
ences are common phenomena in decision-making. If
these inconsistencies are significant, the reliability of
decision-making might be reduced. Second, neither
method displays the priorities of alternatives, which are
essential for decision-making.

This study develops a Decision Ball model, based on
the concept of multidimensional scaling techniques, to
e (b) Display curves on a sphere (c) Display four points that are not on
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visualize Even Swap process on a sphere. A sphere model
can display more information than a 2-dimensional plane
model, and is easier to read than a 3-dimensional cube
model. By mapping the alternatives into the points on the
surface of a hemisphere, the Even Swap process is
illustrated as moving trajectories among related points.
The DM can examine these trajectories of points to obtain
the information listed below:

(i) Dissimilarities between alternatives. The longer
the distance between alternatives on a sphere, the
larger the dissimilarity between them.

(ii) The superiority (or dominance) of some alter-
natives over others by checking their longitude.
Alternatives, which are located on the same
longitude, exhibit clear dominance in relation to
each other.

(iii) The consistency of even swaps by checking the
latitude of alternatives after each even swap. The
even swap, which causes the largest latitudinal
shift of a given alternative, is themost inconsistent.

The proposed approach can be extensively applied in
many fields. Possible applications are the selection of
promotion plans in Marketing, investment decisions
regarding financial products in Finance, evaluation of
suppliers in Supply Chain Management, choice of col-
leges in Personal Decisions …etc.

This paper is organized as follows: Section 2 briefly
reviews the conventional Even Swap method. Section 3
develops a Decision Ball model based on the Even Swap
concept to rank and display alternatives forming the
main theoretical part of this paper. Therefore, readers
only interested in the application of proposed method
can skip Section 3. Section 4 uses an example to de-
monstrate the whole decision process.Mathematical proofs
of propositions and theorems are provided in the
Appendices. A prototype Even Swap Decision Ball system
has also been developed in this study, accessible from
http://140.113.72.1/~hlli01/index.htm to illustrate the use-
fulness of the proposed method.

2. Review of the conventional Even Swap method

Consider a set of alternatives A={A1, A2, …, An} for
solving a decision problem, where the decision maker
selects m criteria to fulfill, denoted as c1, …, cm.
Suppose the decision problem is a discrete problem, in
which no combination of alternatives can be selected.
The conventional Even Swap method [13,14] begins by
creating a consequence table specified by the DM. Such
a table contains the consequences that the alternatives
have for the given criteria. The DM can find the best
alternative based on the following three steps.

Step 1. Eliminating dominated alternatives. The Even
Swap method intends to eliminate as many alter-
natives as possible. Since the fewer the alternatives,
the fewer the trade-offs the DM has to make. Ai is
said to dominate Aj if alternative Ai is better than Aj

in some criteria and no worse than Aj in all other
criteria. All dominated alternatives are eliminated
first.
Step 2. Choosing a target criterion. After eliminating
dominated alternatives, the Even Swap method
suggests that the DM chooses a target criterion
whose values for all alternatives can be adjusted to be
the same.
Step 3. Making even swaps. The DM chooses another
criterion that can compensate for the changes in the
target criterion. Then the DM assesses what changes
in this criterion will compensate for the needed
change in the target criterion. Finally, the even swaps
are made and the target criterion is cancelled out.

Steps 1 through Step 3 are applied iteratively until the
best alternative is found. Here, an example is given to
illustrate the steps of the conventional Even Swap
method.

Example 1. This example comes from Harvard Busi-
ness Review [14] which describes a business problem:
which office to rent. The DM has five major decision
criteria to fulfill (Table 1): (c1) sufficient space, (c2)
good access to his clients, (c3) good office services, (c4)
a short commuting time from home to office, and (c5)
low cost. Office size is measured in square feet. The
percentage of clients within an hour's drive from the
office is used to measure the access to clients. A simple
three-letter scale is used to describe the office services
provided: “A” indicates full service; “B” means partial
service; and “C” implies no service available. The
commuting time is the average time in minutes needed
to travel to work during rush hour, and cost is measured
by monthly rent. Five alternative locations from A1

through A5 are considered. The two rightmost columns
of Table 1 are the upper and lower bounds of each
criterion, as illustrated in the next Section.

Using the Even Swap method, the problem can be
solved as follows:

Iteration 1 bStep 1N The DM can eliminates A5

immediately because A2 dominates A5. The remain-
ing alternatives are A1, A2, A3 and A4. bStep 2N The



Table 1
The consequence table of Example 1 (A2≻A5)
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DM chooses “commuting time” for target criterion.
bStep 3N He decides to increase it from 20 to 25 for
A3 and to decrease it from 45 to 25 for A1 so that the
commuting time of all four alternatives would be
equivalent. He uses 8 percentage points increase in
customer access for A3 and 150 increases in monthly
cost for A1 to compensate for the changes in com-
muting time for A3 and A1, respectively (Table 2(a)).
Iteration 2 bStep 1N The DM can eliminate A1

because A4 dominates A1. The remaining alternatives
are A2, A3 and A4. bStep 2N The DM chooses “office
services” as a target criterion. bStep 3NHe equates an
le 2
nventional even swap process of Example 1
increase in service level from C to B for A3 with a
$100 increase in monthly costs, and equates a
decrease in service level from A to B for A4 with a
$100 decrease per month (Table 2(b)). Clearly, both
“time” and “services” criteria are the same for all
alternatives and can be eliminated.
Iteration 3 bStep 1N There is no dominated alternative.
bStep 2N “Office size” is chosen as target criterion.
bStep 3N The DM equates an increase in office size
from 500 to 700 for A3 with a $50 increase in monthly
costs, and equates a decrease in office size from 950 to
700 for A4 with a $300 decrease per month (Table 2(c)).
Iteration 4 bStep 1N Alternative A3 is eliminated
because A4 dominates A3. Only alternatives A2 and
A4 are remaining now (Table 2(d)). bStep 2N The
DM chooses “customer access” as a target criterion.
bStep 3N He makes an even swap between customer
access and monthly cost by increasing 5 percentage
points access forA2 with an increase of $100 per month.
Iteration 5 bStep 1N Alternative A2 is eliminated
because A4 dominates A2. Since there is only one
alternative remaining, the process can be terminated.
Alternative A4 is the best option.

The Even Swapmethod provides a rational process for
reaching the best option in making a decision. However,
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The preprocessed consequence table of Example 1
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there still are some inadequacies. Take Example 1 for
instance, illustrated as follows:

(i) As illustrated in Table 2, A4 is the most preferred
alternative. However, it is difficult to say which
one of A1, A2, A3 or A5 is second and which is
third.

(ii) The dissimilarities among alternatives are difficult
to determine. For example, as illustrated in
Table 1, the DM finds it difficult to tell which are
the dissimilarities among A1, A2, A3, A4 and A5.

(iii) Current Even Swap methods lack a mechanism
for showing up serious inconsistencies in Even
Swaps. (The detailed illustrations will be dis-
cussed in Section 3).

This study extends the concept of Even Swaps and
proposes a model to assist the DM to rank alternatives,
illustrate differences among alternatives, and check the
inconsistencies of preferences.

3. The proposed decision ball model based on the
even swap process

Consider a decision with a set of alternatives A={A1,
A2, …, An}. The decision maker has m main decision
criteria to fulfill, expressed as c1, …, cm. Denote ci,k as
the kth raw criterion value of alternative Ai, expressed as
Ai=Ai(ci,1, …, ci,k, …, ci,m). Denote P

ck and Pck as the
lower and upper bounds of the raw criterion value of ck
respectively. The value of

P
ck and

Pck can be either given
by the decision maker directly or calculated by the
minimum and maximum raw criterion value of ck. In
Example 1, the value of

P
ck and Pck are assumed to be

specified by the decision maker, as listed in the two
rightmost columns of Table 1.

Here a sphere model based on the Even Swap process
to rank n alternatives is proposed. An important
assumption is that the proposed approach is dealing
with objectives which can compensate for each other. In
addition, the data types are restricted to continuous or
ordinal data in this study. First, the following preproces-
sing should be performed.

3.1. Data preprocessing

(i) Data transformation. All ordinal data has to be
transformed into numerical data in advance. There
are several methods to deal with such transforma-
tion, such as monotonic transformation [15]. Since
data transformation is not addressed by this study,
it is assumed ordinal data can be mapped directly
into numerical data by the DM, for simplicity (This
transformation has not to be linear).

(ii) All criterion values, cost and benefit, are trans-
formed to a scale of 1 to 10 based on min–max
normalization.

(iii) Criteria values representing costs, which the DM
prefers to be as small as possible, are transformed
by subtracting from 11.

The symbols ci,k and Ci,k are used for the kth cri-
terion value of alternative Ai before and after preproces-
sing to distinguish between the raw and preprocessed
criterion value. Denote

P
Ck and

P
Ck as the lower and

upper bounds of preprocessed criterion value Ck, where

P
Ck ¼ 1 and

P
Ck ¼ 10. The preprocessed consequence

table of Example 1 is listed in Table 3. Take a benefit
criterion value C1,1 and a cost criterion value C1,5

as examples, C1;1 ¼ 9T c1;1 � P
c1

�
Þ= Pc1 � P

c1
� �

þ 1 ¼
9T 800� 500ð Þ= 1200� 500ð Þ þ 1 ¼ 4:86 and C1;5 ¼
11� 9T c1;5 � P

c5
� �

=
n

Pc5 � P
c5

� �
þ 1g ¼ 3:70.

In order to rank alternatives, one kind of score
function has to be chosen before developing the
ranking model. There are two main types of score
functions: additive and multiplicative score functions.
Instead of using an additive function, the score func-
tion of Ai is assumed to be in a multiplicative, non-
linear Cobb-Douglas [6] form with constant return to
scale in this study because it is a well established and
commonly used form, and also a kind of power func-
tion. Based on the concept of Brugha [4,5] and Barzilai
[1,2], relative measured weights and scores should
be synthesized using a power function. In addition, a
multiplicative score function is good at reflecting a
reasonable marginal rate of substitution. Denote wk as
the weight of criterion k. In order to reduce the com-
plexity of the score function, all weights are assumed to
be positive.



Fig. 2. Ideal point P⁎⁎ and the worst point P⁎⁎.

359H.-L. Li, L.-C. Ma / Decision Support Systems 45 (2008) 354–367
The score function of Ai is expressed below

Si wð Þ ¼ w0C
w1
i;1C

w2
i;2 N Cwm

i;m ; ð1Þ
where w0, w1, …, wm≥0 and

Pm
k¼1

wk ¼ 1.

It is assumed that the values of the weights wk are
implicitly in the DM's mind, but he can express them by
even swaps.

For the purpose of comparison, two reference alterna-
tives are defined: an ideal alternative A44 ¼ A44

P
C1;ð

P
C2; N ;

P
CmÞ and a worst alternative A4 ¼ A4ðC1P

;C2P
;

N ;CmP
Þ. Both alternatives may not be included in the

original alternative setA. Let the score of A⁎⁎ be 10. Then,
w0=1 and S⁎=1.

In order to distinguish between alternatives, the
weighted difference δi,j (w) between alternative Ai and
Aj is defined as

di;j wð Þ ¼ Max Ci;1;Cj;1

� �
Min Ci;1;Cj;1

� �
" #w1

� N � Max Ci;m;Cj;m

� �
Min Ci;m;Cj;m

� �
" #wm

;

ð2Þ
where w0, w1, …, wm≥0 and

Pm
k¼1

wk ¼ 1. Since Max(Ci,k,

Cj,k)≤10 and Min(Ci,k, Cj,k)≥1 for all k, 1≤δi,j(w)≤10
and δi,j (w)=δj,i(w).

The idea of Expression (2) comes from the definition of
an additive dissimilarity function, which is commonly

defined as di;j wð Þ ¼ Pm
k¼1

wk jCi;k � Cj;k j ¼
Pm
k¼1

wk Maxðð
Ci;k ;Cj;k

� �� Min Ci;k ;Cj;k

� �Þ with Pm
k¼1

wk ¼ 1, where Ci,k

and Cj,k are the kth normalized criterion values of alter-
native i and j. The multiplicative dissimilarity function
can then be constructed in a similar way as di; j wð Þ ¼
jm

k¼1
Max Ci;k ;Cj;kð Þ
Min Ci;k ;Cj;kð Þ

� �wk

with
Pm
k¼1

wk ¼ 1. Because all cri-

teria values in multiplicative form have been nor-
malized to a [1,10] scale during the preprocessing stage,
1≤δi,j (w)≤10 and δi,j (w)=δj,i (w). For instance, the
scores of alternatives with consequences (1, 1) and (2, 2)
are 1 and 2, respectively. Based on the multiplicative
concept, the score of the later alternative is 2 times that of
the former one. From Expression (2), the dissimilarity
between these two alternatives is 2. Comparing with the
alternatives with consequences (9, 9) and (10, 10), the
scores of these two alternatives are 9 and 10, respectively,
where the second score is 1.1 times of the first one. From
Expression (2), the dissimilarity between these two
alternatives is 1.1.

Here Ai and Aj are mapped into the two points Pi and
Pj (denoted as the mapping points) on the surface of a
hemisphere, such that the arc length connecting these
two points expresses dissimilarity between Ai and Aj.
Since it is easier to compute the Euclidean distance than
to compute the arc length, it is essential to have the
following proposition:

Proposition 1. Let Pi and Pj be two points on the surface
of a sphere centered at point O(0, 0, 0) with radius r.
Denote θi,j as the angle PiOPj, and denote

w
PiPj as the

shortest arc length along the great circle that passes
through the two points. It is true that arc length

w
PiPj is

monotonically related to the Euclidean distance
P
PiPj.

The proof of this proposition is given in Appendix B.
Referring to the non-metric multidimensional scaling

method [9], it is more convenient to use the Euclidean
distance

P
PiPj rather than the arc length to approximate

dissimilarities. Both approximation methods make very
little difference to the resulting configuration [8]. There-
fore, Euclidean distances are used in this paper for
convenience.

Based on A⁎⁎, A⁎ and Proposition 1, a hemisphere is
generated. It is centered at (0, 0, 0) with radius 10. P⁎⁎

(the mapping point of A⁎⁎) is located at the north pole of
this hemisphere with (x⁎⁎, y⁎⁎, z⁎⁎)= (0, 10, 0), while P⁎

(the mapping point of A⁎) is located at the equator with
x⁎, y⁎, z⁎=(x⁎, 0, z⁎) where x⁎

2 + z⁎
2 =102, as depicted in

Fig. 2. It is clear that the distance between P⁎⁎(0, 10, 0)
and O(0,0,0) is 10, and the distance between P⁎⁎(0, 10,
0) and P⁎(x⁎, 0, z⁎) is 10

ffiffiffi
2

p
. The Euclidean distance

between Pi and Pj, denoted as di,j, is used to represent
the logarithm of dissimilarity between Ai and Aj (i.e.
ln(δi,j)): the larger the difference, the longer the distance.
Furthermore, the alternative with a higher score is de-
signed to be closer to the north pole so that alternatives are
located on the concentric circles in the order of score from
top view.

The relationship between Si and di,⁎⁎ is defined as

di;44 ¼ 10
ffiffiffi
2

p
1� ln Sið Þ

ln 10ð Þ
� �

; ð3Þ

where if Si=1 then di,⁎⁎=10
ffiffiffi
2

p
and if Si=10 then

di,⁎⁎=0.
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To map each Ai to a point Pi(xi, yi, zi) on the surface
of a hemisphere, the following conditions should be
satisfied:

ðiÞ di;44 ¼ 10
ffiffiffi
2

p
1� ln Sið Þ

ln 10ð Þ
� �

;

ðiiÞ x2i þ y2i þ z2i ¼ 100;

ðiiiÞ x2i þ yi � 10ð Þ2þz2i ¼ d2i;44:

The following proposition is deduced.

Proposition 2. The relationship between yi and Si is
expressed as

yi ¼ 10� 10 1� ln Sið Þ
ln 10ð Þ

� �2

: ð4Þ

The proof of Proposition 2 is given in Appendix C.
By mapping all Ai into the points on a sphere, rela-
tionships among alternatives can be examined. These
relationships are discussed below.

Consider the following propositions:

Proposition 3. On a hemisphere, suppose there are
two alternatives Ai and Aj with SiNSj. P⁎⁎, Pi and Pj are
on the same longitude if and only if ln(δi,j )= ln(δj,⁎⁎)−
ln(δi,⁎⁎).

The proof of this proposition is given in Appendix D.
Given an alternative set A=(A1, A2,…, An) and a

weight vector w, a corresponding Decision Ball of A
and w is denoted as DB(w, I)={(xi, yi, zi)| i∊I={1,2,…,
n}}, where (xi, yi, zi) is the coordinate of alternative Ai

on the Decision Ball and yi≥0.

Proposition 4. Consider a DB(w, I) with two alter-
natives Ai and Aj only, i.e., I={i, j}. If Ai≻Aj, then Pi

and Pj are on the same longitude.

The proof of this proposition is given in Appendix E.

Proposition 5. For aDB(w, I) for I={i, j}. If Si(w)NSj(w)
and Pi and Pj are on the same longitude, then Ai≻Aj.

The proof of this proposition is given in Appendix F.
The following theorem is then deduced:

Theorem 1. For a DB(w, I), I={i, j}, given Ai and Aj

where Si (w)NSj (w), if and only if Ai≻Aj, then Pi and Pj

are on the same longitude of the ball connecting P⁎⁎, Pi

and Pj.

Denote DS(p)={Ai1, Ai2,…, Aip} as a dominant set
composed of p alternatives with dominant relationships
Ai1≻Ai2≻…≻Aip.
Proposition 6. Consider a dominant set DS(k)={Ai1,
Ai2,…, Aik}. Let DB(w, I), I={1, 2, …, k} be the
corresponding Decision Ball for the alternatives A1, A2,
…, Ak, where A1≻A2≻…≻Ak. Connecting the mapping
points P⁎⁎, P1, P2, …, Pk forms a longitude on the
surface of this Decision Ball. That implies axi+czi=0
for i=1, 2, …, k, where a and c are constants.

The proof of Proposition 6 is given in Appendix G.
A Decision Ball DB(w, I)={(xi, yi, zi)| i∊I={1,2,…,

n}} is obtained by solving the model below.

Model 1. (A Decision Ball model with MDS concept)

Min
xi; yi;zif g

Obj ¼
Xn
i¼1

Xn
jNi

d̂i; j �di; j
� �2

s:t: d̂i; j V d̂p;q �e; 8di; jb dp;q; 1V i; j; p; q V n; ð5Þ
d2i; j ¼ xi � xj

� �2þ yi � yj
� �2þ zi � zj

� �2
; 8i; j; ð6Þ

yi ¼ 10� 10 1� ln Sið Þ
ln 10ð Þ

� �2

; 8i; ð7Þ

x2i þ y2i þ z2i ¼ 100;8i; ð8Þ
xizj ¼ xjzi; 8AidAj; ð9Þ
�10 V xi V 10; 0 V yi V 10; � 10 V zi V 10; 8i; ð10Þ
ε is a tolerable error.

The objective of Model 1 is to minimize the sum of
squared differences between di,j and di,j

ˆ . Eq. (5) is the
monotonic transformation from ln(δi,j) to di,j

ˆ based on
the concept of non-metric MDS [9,18]: the higher the
dissimilarity, the longer the distance. Because 1≤δi,j≤
10 for all i, j, δi,jbδp,q implies ln(δi,j)b ln(δp,q) for all i,
j, p, q. That is, if δi,jbδp,q, di,j

ˆ is smaller than dp,q
ˆ ;

therefore, the distance between Ai and Aj is shorter than
the distance between Ap and Aq. The ε in Eq. (5) is a
computational precision which can be normally set as
10−6. Eq. (7) is from Proposition 2. All alternatives are
graphed on the surface of the ball described by Eq. (8).
Eq. (9) is obtained from Proposition 6. In Eq. (10), all
alternatives are located on the upper hemisphere.

The number of variables used in Model 1 is n(n−1)+
3n, where 3n is the number of decision variables used
for xi, yi, zi and n(n−1) is the number of variables used
for di,j and di,j

ˆ . The maximal number of constraints used
in Model 1 is n(n−1)+6n in which Eqs. (5) and (6)
account for n(n−1) constraints and Eqs. (7)–(10)
contain no more than 6n constraints. Model 1 is a
non-linear model, which can be solved by some
commercialized optimization software, such as Global
Solver of Lingo 9.0 [20], to obtain an optimum solution.



Fig. 3. Moving trajectory of concurrent points.
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Let Ai′ be the alternative converted from Ai by the
DM through making even swaps. Ai and Ai′ are called
concurrent alternatives. Pi and Pi′, which are mapping
points of Ai and Ai′, are called concurrent points.

Remark 1. Given two alternatives Ai and Aj, suppose
the DM can stably make even swaps based on the score
function in (1 ), then Pj can be converted into another
concurrent point Pj′ such that P⁎, Pi and Pj′ are on the
same longitude.

Fig. 3 is used to interpret Remark 1. Here Si≥Sj but
Ai does not dominate Aj. Via Even Swap process, Aj is
converted to Aj′ where Ai≻Aj′. From Theorem 1, Pj is
moved to a concurrent point Pj′ where P⁎, Pi and Pj′ are
on the same longitude. Ai is said to be consistently even
swapped into Ai′ if

jSi�S Vi j
Si

Ve, where ε is a tolerable error.

Theorem 2. Given Ai with its concurrent alternative Ai′,
and Pi with its concurrent point Pi′, Ai is consistently even
swapped into Ai′ if and only if Pi and Pi′ are on the same
latitude.

The proof of this theorem is given in Appendix H.
Current Even Swap methods lack a mechanism to

advise the DM when there are serious inconsistencies
among even swaps. For instance, as illustrated in Table 2(a)
and (d), based on the score function in Eq. (1), the weights
of criteria can be calculated as follows (all criterion values
have been transformed in the data preprocessing stage as
listed in Table 3):

(i) For A1 in Table 2(a) (mapped to A1 column of
Table 3), 3:25

w4�3:7w5
6:25w4�1w5 ¼ 1; then w4

w5
¼ 2:

(ii) For A3 in Table 2(a) (mapped to A3 column of
Table 3), 7:3w2�7w4

8:02w2�6:25w4 ¼ 1; then w2
w4

¼ 1:2:
(iii) For A2 in Table 2(d) (mapped to A2 column of

Table 3), 8:2w2�6:4w5
8:65w2�3:6w5 ¼ 1; then w2

w5
¼ 10:76:
From (i) and (ii), w2
w5

¼ 2:4, which is quiet different
from the result in (iii). These inconsistencies among
even swaps, based on the same Cobb–Douglas score
function, are not checked by the conventional Even
Swap methods.

This study proposes Theorem 2 to check the con-
sistency of Even Swap process made by the DM. For
instance, as illustrated in Fig. 3, Pj is consistently even
swapped into Pj′, however, Pj″ is not even swapped from
Pj consistently. The more inconsistent a swap the DM has
made, the bigger differences in score before and after even
swap. That is, the difference between coordinate yj and yj′
is bigger.

Both Theorem 1 and Theorem 2 are utilized in this
study to develop an algorithm to visualize the Even
Swap process via a Decision Ball. By examining the
moving trajectories of related points on a Decision Ball,
the DM can rank the alternatives more consistently.
4. Decision process

This section uses the previous example (Example 1) to illustrate the process of ranking the alternatives using the
proposed method. First, the DM sets initial weights for each criterion. If the DM cannot specify initial weights, equal
weights are assumed at the beginning. These weights are iteratively adjusted when new preference information from
the DM is acquired. The DM is assisted by a decision support system (DSS) composed of data, models and graphic
interfaces. The process is summarized as follows:

Step 1 (Initialization). The DSS asks the DM to input a consequence table, to select criteria with cost features, to
quantify the non-numerical criteria, and to specify the initial weights w(J ) for J=0. J is used to record the
number of iterations, and J=0 indicates initial settings. A dominant set is initialized as DS(J )=ϕ, for J=0.

Step 2 (Displaying an initial Decision Ball). Set J=0. Based on w(J), the DSS computes Si(w) and δi,j(w)
in Eqs. (1) and (2), respectively. A Decision Ball DB(w, I) is displayed to the DM after solving
Model 1.
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Step 3 (Choosing the next alternative for even swap). The alternative Ai∉DS(J) with the highest score is chosen as the
next swap alternative by the DSS. The process stops if all alternatives are in DS(J) or the DM ceases to make
further even swaps.

Step 4 (Making even swaps). The DM makes even swaps between Ai and alternatives in DS(J). Ai is changed to a
concurrent alternative Ai′ such that Ai′ dominates or is dominated by an alternative in DS(J).

Step 5 (Updating weights and displaying a resulting sphere). For each even swap, the system computes the related
weights by solving the following linear program:

Model 2. (Updating weights)

Min
wp;wqf g

a

s:t: jwp ln Ci;p

� �� ln CVi;p
� �� �þ wq ln Ci;q

� �� ln CVi;q
� �� �jVa; for an even swap Cp;Cq

� �
inAi;

Xm
k¼1

wk ¼ 1;

wkz0; 8k:

ð11Þ

The weights of unadjusted criteria are kept the same as those in the previous step.
Variables Ci,k and Ci,k′ are the value of criterion k of Ai before and after the even swap respectively. The
resulting sphere based on the new weights is displayed. Then J is incremented, i.e. J=J+1.

Step 6 (Updating the dominant set). Ai is added into DS(J). Reiterate Steps 3–6.

Take Example 1 to illustrate the whole decision process. It is important to note that the decision maker still deals with
raw criterion values. After the decision maker inputs these values, the system automatically transforms the raw criterion
values into preprocessed criterion values. In addition, the even swaps made here are different from those made in the
original example described in Section 2 because all dominated alternatives are eliminated in the original example;
however, the proposed approach tries to rank all alternatives so that all alternatives have to be kept and compared.

Iteration 1. At Step 1, the DM inputs his consequence table, upper and lower bound values of each criterion (Table 1),
where c4, c5 are criteria with a cost feature. Suppose the DM inputs the initial weightsw(1)=(w1,w2,w3,w4,w5)=(0.2,
0.2, 0.2, 0.2, 0.2). The DSS asks the DM to answer some questions.

bDSSN Consider the qualitative criterion c3. Please quantify the values of service level A, B and C.
bDMN 4, 2, 1. (The preprocessed values are 10, 4, 1, respectively, using min–max normalization).
Fig. 4. Iteration 1: initial sphere.



Fig. 5. Iteration 2 (a) Adjusting A2 with respecting to A4 (b) Resulting sphere.
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Fig. 6. Iteration 3 (a) Adjusting A1 with respecting to A2 (b) Resulting sphere.
The transformed consequence table after preprocessing is listed in Table 3. At Step 2, based on the initial weights,
the dissimilarities between alternatives and scores of alternatives are calculated. An initial sphere (Fig. 4) is
displayed to the DM. Here A4 has the highest score. DS(1)={A4}.
Iteration 2. A2 is chosen as the swapped alternative with A4 since A2 is the next best alternative.

bDSSN Examining the table values in Fig. 5(a). Choose a target criterion of A2 from {c1, c2, c3, c5}, and adjust
its value. The adjusted value should be the same as the target criterion of A4.

bDMN c5 and 1900.
In the same way, the DM makes a 150 increase in c1 to compensate for the increase of c5 from 1700 to 1900 (A2 is
changed to a concurrent point A2′ , and A4≻A2′). Model 2 is then formulated as the following program:

Min
w1;w5f g

a

s:t: jw1 ln 3:57ð Þ � ln 5:5ð Þð Þ þ w5 ln 6:4ð Þ � ln 2:8ð Þð ÞjV a;

w2 ¼ w3 ¼ w4 ¼ 0:2;
X5
k¼1

wk ¼ 1; wkz0; 8k ¼ 1; N ; 5:

Solving the above program yields w(2)= (0.26, 0.2, 0.2, 0.2, 0.14). The resulting sphere is shown in Fig. 5(b). At
Step 6, the DSS sets DS(2)={A4, A2′}.



Fig. 7. Iteration 4 (a) Adjusting A5 with respecting to A1 (b) Resulting sphere.
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Iteration 3. Alternative A1 is chosen as the swap alternative. Suppose the DM equates a decrease in c3 from A to B
with a 25 increase in c2, and equates an increase in c5 from 1850 to 1900 with a 50 increase in c1. The corresponding
changes are depicted in Fig. 6(a) and (b). DS(3)={A4, A2′ , A1′}. The top three options have been found. The DM can
then choose to terminate or continue to the next iteration.
Iteration 4. A5 is chosen as a swap alternative. Suppose the DM equates an increase in c3 from C to B with a 200
increase in c5, and equates an increase in c4 from 30 to 45 with a 100 increase in c1, as listed in Fig. 7(a). Fig. 7(b)
shows the resulting sphere.
Iteration 5. Suppose the DM wants to continue the process. A3 is chosen as a swap alternative. Suppose
the consequence table and corresponding Decision Ball after even swaps are as shown in Fig. 8(a) and (b), where
DS(5)={A4, A2′, A1′, A5′, A3′}. The process is then terminated.

The consistencies among even swaps can be checked by the moving trajectory of concurrent points. The even swap,
which causes the largest latitudinal shift of a given alternative, is the most inconsistent. For instance, the moving
trajectory of A3 is shown in Fig. 9, where 3

J stands for concurrent point P3 after the Jth iteration. The most inconsistent
even swaps the DM has made are at Iteration 2 and 5 because 32 and 35 are furthest away from the latitude formed by all
3J based on Theorem 2. Here the scores of points 31 32, 33, 34 and 35 are 3.48, 3.01, 3.49, 3.40 and 4.00, respectively.
The DM can revise these inconsistencies by re-iterating the even swap process at Iteration 2 or 5. For instance, if the
DM chooses to re-iterate the even swap process at Iteration 2 (as listed in Fig. 5a) and equates an increase in c5 from
Fig. 8. Iteration 5 (a) Adjusting A3 with respecting to A5 (b) Resulting sphere.



Fig. 9. The moving trajectories of A3 after even swaps.
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1700 to 1900 for A2 with a 250 increase in c1, the score of 3
2 is changed from 3.01 to 3.25. It is worth noticing that

since the sphere can be rotated to present different views, the relative longitude positions of concurrent points might be
different from those in Figs. 4–8. In addition, the position of the concurrent point in the first iteration can be ignored
because the initial weights may be given arbitrarily.

This problem was solved by Global Solver of Lingo 9.0 [20] on a Pentium 4 personal computer. The running time
was less than five seconds for each iteration.
5. Concluding remarks

The Even Swap is a rational and straightforward
method which provides a mechanism for making trades
so that a DM can make the best choice. Based on the
concept of Even Swaps, this study proposes a graphic
method to help the DM rank and visualize alternatives
Rather than revealing the best option only in a conven-
tional Even Swap method, the proposed approach can
fully rank all alternatives. In addition, the DM can find the
similarities among alternatives, can iteratively adjus
preferences, and see the corresponding changes on the
Decision Ball.

The proposed approach meets most of the require-
ments of a useful decision model, known as decision
calculus [21]. First, it is simple because it is easy for a
DM to understand. Second, it is robust because the
method is logically correct for finding a rational solution
Third, it is easy to control, adapt, and complete. Finally
since the DM can adjust inputs and visualize outputs via
the Decision Balls, the proposed approach facilitates
convenient communication between the DM and the
DSS.

One restriction of this approach is the running time
that may considerably increase when the number of
alternatives becomes large because the time complexity
of Model 1 is n2. In future study, how to linearize this
non-linear model to deal with large size problems can be
addressed. Nevertheless, because the Even Swap
method is good for small size problems or the fina
stage of decisions, the proposed approach is especially
help in the case of alternatives fewer than 10.

Appendix A. A letter from Benjamin Franklin to
Joseph Priestly

In the affair of somuch importance to you, wherein you
ask my advice, I cannot, for want of sufficient premises
advise you what to determine, but if you please I will tel
you how. When those difficult cases occur, they are
difficult, chiefly because while we have them under
consideration, all the reasons pro and con are not presen
to the mind at the same time; but sometimes one se
present themselves, and at other times another, the firs
being out of sight. Hence the various purposes or
inclinations that alternatively prevail, and the uncertainty
that perplexes us. To get over this, my way is to divide hal
a sheet of paper by a line into two columns; writing over
the one Pro, and over the other Con. Then, during three or
four days consideration, I put down under the differen
heads short hints of the different motives, that at differen
times occur to me, for or against the measure. When I
have thus got them all together in one view, I endeavor to
estimate their respective weights; and where I find two
one on each side, that seem equal, I strike them both out. I
I find a reason pro equal to some two reasons con, I strike
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out the three. If I judge some two reasons con, equal
to three reasons pro, I strike out the five; and thus
proceeding I find at length where the balance lies; and if,
after a day or two of further consideration, nothing new
that is of importance occurs on either side, I come to a
determination accordingly. And, though the weight of the
reasons cannot be taken with the precision of algebraic
quantities, yet when each is thus considered, separately
and comparatively, and the whole lies before me, I think I
can judge better, and am less liable to make a rash step,
and in fact I have found great advantage from this kind of
equation, and what might be called moral or prudential
algebra. Wishing sincerely that you may determine for the
best, I am ever, my dear friend, yours most affectionately.
(London, Sept 19, l772)

From: “Letter to Joseph Priestly”, Benjamin Franklin
Sampler [10].

Appendix B

Proof of Proposition 1.
P
PiPj ¼ 2r sin hi;j

2 ;
w
PiPj ¼ rhi;j ¼

2r sin�1
P
PiPj

2r
. Since 0 V

P
PiPj V 2r, we have 0 V

P
PiPj

2r
V 1.

That is, 0 V sin�1
P
PiPj

2r
V p

2 [15]. Because sin
�1

P
PiPj

2r is mono-

tonically related to
P
PiPj

2r
while 0 V

P
PiPj

2r
V1;

w
PiPj, is mono-

tonically related toPPiPj . □
Appendix C

Proof of Proposition 2. The variable di,⁎⁎ represents
the Euclidean distance between Ai located at (xi, yi, zi)
and A⁎⁎ located at the north pole (0, 10, 0).

d2i;44 ¼ xi � 0ð Þ2þ yi � 10ð Þ2þ zi � 0ð Þ2
¼ x2i þ y2i þ z2i
� �� 20yi þ 100

¼ 102 � 20yi þ 100 ¼ 200� 20yi:

From Eq. (3), d2i;44 ¼ 200 1� ln Sið Þ
ln 10ð Þ

� �2
¼ 200� 20yi,

we can obtain yi ¼ 10� 10 1� ln Sið Þ
ln 10ð Þ

� �2
. That is, if

Si=1 then yi=0, and if Si=10 then yi=10. □

Appendix D

Proof of Proposition 3. If P⁎⁎, Pi and Pj are on the

same longitude with SiNSj, then
w
PiPj ¼ w

P44Pj � w
P44Pi.

That is, the value of
w
P44Pi þwPiPj �wP44Pj is minimal for

known Si and Sj. By referring to Proposition 1, the value
of d⁎⁎,i (w)+di,j (w)−d⁎⁎, j (w) is minimal. Since di,j is
used to represent ln(δi,j), it implies ln(δi,⁎⁎)+ ln(δi,j)−
ln(δ⁎⁎,j) is minimal.

ln di;44
� �þ ln di;j

� �� ln d44;j
� �
¼
Xm
k¼1

wk ln Ckð Þ � ln Ci;k

� �� �þXm
k¼1

wkð ln Max Ci;k ;Cj;k

� �� �
� ln Min Ci;k ;Cj;k

� �� �Þ �Xm
k¼1

wk ln
P
Ckð Þ � ln Cj;k

� �� �

¼
Xm
k¼1

wk ln Max Ci;k ;Cj;k

� �� �� ln Ci;k

� �� �
þ
Xm
k¼1

wk ln Cj;k

� �� ln Min Ci;k ;Cj;k

� �� �� �
:

Since 1≤ci,k≤10 for all i, the minimum value of ln(δi,⁎⁎)+
ln(δi,j)− ln(δ⁎⁎,j) is 0. That implies ln(δi,j)= ln(δj,⁎⁎)−
ln(δi,⁎⁎). On the other hand, if ln(δi,j)= ln(δj,⁎⁎)− ln(δi,⁎⁎), it
implies d⁎⁎,i(w)+di,j(w)−d⁎⁎, j(w) is minimal, which
means P⁎⁎, Pi and Pj are located on the same arc along
the great circle. That is, P⁎⁎, Pi and Pj are on the same
longitude. □

Appendix E

Proof of Proposition 4. Ai≻Aj implies Ci,k≥Cj,k, for
all k. From Eq. (3),

ln di;j
� �
¼

Xm
k¼1

wk ln Max Ci;k ;Cj;k

� �� �� �� ln Min Ci;k ;Cj;k

� �� � !

¼
Xm
k¼1

wk ln Ci;k

� �� ln Cj;k

� �� �

¼
Xm
k¼1

wk lnð10ð Þ � ln Cj;k

� �� �� ln 10ð Þ � ln Ci;k

� �� �Þ
¼ ln dj;44

� �� ln di;44
� �

:

From Proposition 3, P⁎⁎, Pi and Pj are on the same
longitude.

Appendix F

Proof of Proposition 5. Since Si(w)NSj(w) and Pi, Pj

are on the same longitude, ln(δi,i)=ln(δj,⁎⁎)− ln(δi,⁎⁎).

ln dj;44
� �� ln di;44

� �¼Pm
k¼1

wk ln 10ð Þ � ln Cj; k

� ��ln�
10ð Þ þ

ln Ci; k

� �Þ ¼ Pm
k¼1

wk ln Ci; k

� �� ln Cj; k

� �� � ¼ ln di; j
� � ¼Pm

k¼1
wk ln Max Ci;k ;Cj;k

� �� �� ln Min Ci;k ;Cj;k

� �� �� �
; which

implies Ci,k≥Cj,k for all k. That is Ai≻Aj.

Appendix G

Proof of Proposition 6. The proof is similar to Pro-
positions 4 and 5. In addition, all points mapped at the
same longitude of a sphere must be located at the same
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cutting plane of a sphere, i.e. axi+byi+czi+d=0, where
a, b, c and d are constants. Because the cutting plane
has to pass through the origin (0, 0, 0) and the north pole
(0, 10, 0), b=d=0. That is, all points located at the same
longitude of a sphere must satisfy equality axi +czi=0.

Appendix H

Proof of Theorem 2. (i) If Ai is consistently even
swapped into Ai′, then Si=Si′, which means yi= yi′
(Proposition 2). Therefore, Pi and Pi′ are on the same
latitude. (ii) If Pi and Pi′ are on the same latitude, then
yi=yi′ which implies Si=Si′. Ai′ therefore is consistently
even swapped from Ai.
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