
行政院國家科學委員會專題研究計畫成果報告

※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ 建立一個在網際網路上執行的分散式計算平台 ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：V個別型計畫 □整合型計畫

計畫編號：NSC 89 –2213 – E – 009 – 138

執行期間： 89 年 8 月 1 日至 90 年 7 月 31 日

計畫主持人：王豐堅

共同主持人：

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程系

中 華 民 國 90 年 12 月 31 日

行政院國家科學委員會專題研究計畫成果報告
計畫編號：NSC 89 –2213 – E – 009 – 138

執行期限：89 年 8 月 1 日至 90 年 7 月 31 日
主持人：王豐堅 國立交通大學資訊工程系

計畫參與人員：陳明豐等研究生
-. 摘 要
代理程式(agent programming)模式在過去幾
年來日益發達，在網路上移動的代理程式
一般稱為移動型代理執行緒(mobile agent)，
它與單點上的智慧型代理執行緒(intelligent
agents)及程式導向的代理執行緒(program-
oriented agents)有可能成為未來程式撰寫與
執行的主流。主要原因是它攜帶部分程
式，具主動性質，可在網際網路上自行達
成單一或多項目標。本期的工作主要是設
計製作一個允許移動行代理執行緒交互溝
通的平台。
關鍵字: 代理執行緒, 移動型代理執行緒, 交
互溝通的平台。

關鍵字: 企業 Java Bean, 伺服器,交易系
統,資料庫,分散式系統.

Abstract
Mobile agent paradigm is getting popular
in the past few years. Agent programs
communicate with each other or local user
to accomplish its goal. Mobile
agent(program)s roam in the network, and,
there needs a mechanism to maintain the
location of mobile agents in inter-network.
It is difficult to find a target agent. Besides,
Intelligent agent(program)s can learn
continuously to modify its intension
(behavior) based on the belief and desire.
Our work describes a new design and the
implementation of communication system
for our mobile agent system in order for
agents to collaborate with each other more
effectively. Our communication system
includes both a new name service system
and a new message delivery based on
standard naming/communication
mechanisms. The name service system
works with location tracking, while the
message delivery system handles message
deliveries.

Keywords: agent programs, mobile agents,
communication service system, naming

1. Introduction
Recently, browsing information on

World Wide Web is the most popular
global service. Internet has more and more
software applications to generate and
transfer huge amounts of information.
Mobile agent is a new paradigm proposed
to reduce the programming efforts and
network traffic. Mobile agents are
programs, which can migrate among
machines in a heterogeneous network;
they can communicate between and
cooperate for each other no matter whether
they are inside a machine or not. Due to
migration, an agent can access resource at
another host like doing those locally in
order to reduce the network bandwidth.
Mobile agent models changes
programming from the rigid client-server
model to a more flexible peer-to-peer
model, where programs communicate as
peers in the same site, depending on their
current needs.
Mobility and communication are
important factors in cooperation of agents.
The platform of mobile agents needs an
efficient and reliable communication
system. Such a communication system is
usually based on a good procedure for
locating agents roaming the network and a
reliable message delivery mechanism. In
general, both mechanisms are complicated
because agents can move anytime. For
example, the target agent might move to
another host after the sending agent gets
its location datum. Since the location
datum is not correct now and the delivery
mechanism needs additional efforts to
deliver the message.
In the study, we designed a new
communication system in our agent
system platform, where the message
delivery system is divided into two parts: a
location system associated with the
naming scheme and a message delivery
system.

2. Related Works
In order to let code be executed on

heterogeneous machines, there are many
languages used for implementing agent
system before Java was shown in the
world [1]. For example, Agent Tcl [3] and
Ara (Agent for remote access) [4] are
based on the Tool Command Language,
and Telescript [5] is from General Magic
[10] Inc. JAVA is a better choice of
language for agent systems, because it has
some features not found in other language
for mobile agent systems. With object

serialization in Java, objects can be easily
“serialized” and sent over the network or
written to disk for persistent storage.
There are many commercial Java-based
agent systems: IBM Aglets [6],
Objectspace voyager3.1 [7], Mitsubishi’s
Concordia [8], … , etc. Existing location
tracking system can be divided into two
parts for discussion: a naming scheme and
a location tracking system.
Existing naming schemes can be classified
as in (table.1).

Scheme Example Transparency Independence Used by
Agent-site+
name

Current.host/MyAgent No No Voyager,
AgentTcl

Agent-site+id Current.host/9999 No No Aglets, concordia
Name+Home-
site

Myagent@Home.site No Yes Our system

Table 1. Naming Scheme
A naming scheme is location

transparent [12] if the agent name does not
contain any site-specific information. For
example, a name comprising the site to
which the agent belongs plus an agent
identifier (e.g.
dssl.csie.nctu.edu.tw/MyAgent) is not
location-transparent. On the other hand, an
agent named according to its functions may
be location transparent. Example is the
name MySearchAgent. A naming scheme is
location independent if an agent name can
be used to reach the target agent, no matter
where it is, and the name is not changed
after being created. Note that “location-
transparent” does not mean that an agent
name cannot contain location-specific
information.
Location-dependent naming schemes may
allow simpler implementation of name
service systems than location-independent
ones. Platforms like Agent Tcl, Aglets and
Tacoma use location dependent technique to
name agents. In these systems a mobile
agent is named based on hostname or port
number. The name service is resolved using
DNS. When an agent migrates, its name
would change. For example, in Aglets, if the
agent named ssss.csie.nctu.edu.tw/hello
moves to another location
dddd.csie.nctu.edu.tw, its name will change
to dddd.csie.nctu.edu.tw/hello. However,
the location-dependent naming schemes
make the implementation of agent tracking
cumbersome. On the other hand, a location-

independent naming scheme requires a
name service system to map the symbolic
name to the agent’s current location.
A good location tracking system may help
deliver messages quickly and reliably in
mobile agent systems. There are several
solutions offered today. A simpler solution
is to use a unique name server to keep track
of all agents [6][15] instead. Cuurent
Solutions have their drawbacks
correspondingly. [6] [8] [15] [16]
3. Our Platform for Agents
The current version of our mobile agent
system contains four main components:
Agent, Place, Security Manager, and Agent
System Management Server.
An agent in our platform, a basic component
in the application system, is a JAVA thread
in a place at a time. An agent consists of
code and variable states, and auxiliary data
as in Table 1. The states describe the agent’s
requirements. The dynamic state of an agent
includes both site transfer information and
state execution condition. For a move, the
agent transfers itself to a new node and
continues its execution at some state. If
there is a need to restart an agent at a
particular execution point, it is done similar
to the methodology in Aglets. All agent
classes could inherit the basic Agent class,
which provides elementary methods or
functions for a mobile agent. The attribute
agentname for an agent is a unique name
controlled by name server that identifies a
particular agent object.

Figure 1 Our platform of mobile agents

State Static Attribute
Dynamic state
Agent message queue

Code Internal code
Agent methods

Auxiliary Data host-dependent executables
Table 2 overview of agent object

There are several other mobility patterns
discussed in the literature, for example,
itinerary, Start-shaped, and Branching [11]
etc. Our system contains two basic patterns,
sequential and parallel migrations, to derive
others [11].

l Sequential Migration:
Here an itinerary object maintains a list of
destinations, including the next the agent
will move to, defines a routing scheme, and
handles special cases such as what to do if a
destination place does not exist.
Objectifying the itinerary allows
programmer to save and reuse it later. It is
similar to use bookmarks.

l Parallel Migration:
The Master -Slave Pattern [2] allows an
agent to spawn several slave agents, which
move to the places of different locations for
execution in parallel. A slave agent is
delegated a task by the master agent. After
finishing its task, the slave returns to the
place created to report the results to the
master agent.
The detailed mechanism of implementing a
mobile agent in JAVA is skipped here.
For Internet programming, a region [9] is
newly defined for a set of places and agents

of the same agent authority. Each region has
one log server to record all behaviors of
agents inside, and several register servers
(called Place Agent Registry, PAR), each
covers several places, to provide
information about service agents as in
Aglets, voyager, … etc. The log server
stores the behaviors in the database using
JDBC. Each log entry of the database
contains the place location, date, time, and
the action of an agent. A PAR is queried by
the agents in the same region for finding the
agents for communication. A region also
contains a Region Name Registry Server
(RNR) as a backup server for its PARs.The
relationships among places, PAR, Logserver,
Region, and RNR are shown in Figures 3
and 4.
4 The Design of a Modified
Communication System for Agents
As discussed in Section 2, a name service
system provides naming scheme and
location tracking services. The design of our
modified communication system contains
three parts: naming scheme, location
tracking and message delivery. The naming
scheme guarantees that an agent has a
unique name. The major service of location

P la c e P la c e

M e s s a g e
M a n a g e r A g e n t

M e s s a g e
M a n a g e r

S e c u r i ty
M a n a g e r

S e c u r i ty
M a n a g e r

T ra n s p o r t (J a v a R M I)

A g e n t
M a n a g e r

A g e n t
M a n a g e r

Figure 2 Master-Slave Interactive Diagram

Figure 3 Agent server system view

Figure 4 PAR and RNR relationship

M a s t e r
A g e n t

< < c r e a t e > >

s p l i t T a s k (x)

S l a v e
A g e n t

d e l e g a t e S u b T a s k

m o v e (d s t)

d o T a s k

r e t u r n R e s u l t

c o m b i n e R e s u l t

m o v e (h o m e)

R eg io n

P lac e

P A R egis try

LogS erve r

AAA

DDD EEE FFF
GGG

Place1 Place5 Place6Place2 Place7

A2A1 A2

: Region Name Registry : Place Agent Registry

: Place : Agent : Region

tracking is to find out where an agent is
currently. The message delivery mechanism
then passes the message to the target agent.
4.1 Our Naming scheme

Our naming scheme contains three
characteristics:
1. It allows users to name objects easily.
2. It maps the user-defined name of an

agent to the birthplace so that users
can find the location of an agent
correctly based on the agent name.

3. The name of an agent is not changed
after the agent is born.

In our naming scheme, we define the
naming format as the following:
Localname@PlaceName.regionName:port
For example, myHello@Place1.AAA:9999
PlaceName.regionName is the name of an
agent’s birthplace and Localname is the
name of an agent defined by the generator
or programmer. A Localname cannot be
used for naming if the name is defined for
another agent born at the same place and
still alive. The port stands for the entrance
of every place at the machine. The string
expressing the characteristics can be used
for agent’s Localname for better readability.
To avoid name duplication for agents, the
system is defined two parts. First, DNS
(Domain Name System) [14] guarantees
that the name (place name.region name) for
each place has a unique name. In an intranet
environment, a private IP could not have a
public domain name at DNS. A RNR server
is used to guarantee the uniquesness of
region name. Second, each agent has one
name only. The birthplace PAR of an agent
guarantees the use of Localname when an
agent is generated.
4.2 The Mechanism to Track an Agent

The management of agents’ location
information in our system could be
described in three separate phases:
registration (deregistration), migration and
getLocation. When an agent is generated,
the agent is registered with the agentname in
the name service system automatically.
When the agent terminates, it reports to the
name service system to clean the
registration. When an agent moves, the
agent’s information in the name service
system would be updated for request.
As discussed in Section 3, a PAR in a region
stores and manages the location information

of agents created in the region. Inside a
PAR, an entry of the agent table contains
five attributes: agentname, valid bit, current
location, message queue, logic clock.
Attribute agentname is the main key in a
PAR; each agentname is unique in a PAR.
Attribute valid bit is used to indicate
whether the agent is moving out now. If
valid bit is false, the agent is moving and
current location is incorrect. The PAR
would not reply the location for any agent
entry whose valid bit is false. Attribute
Current location stores the place where the
agent stays currently. The current location
is (correct and) replied, if valid bit is true. It
would be updated once the agent moves
successfully. Attribute Message queue
stores the agent’s input messages that
arrived at the current location after the
agent left. Attribute Logic clock is an integer
value used to sequence input messages of an
agent. The logic clock variable of an agent
entry is increased one by the PAR, each
time the clock is queried. The default value
is 0.
When an agent is created, the home PAR is
informed the information of agentname and
current location for registration in the region.
The home PAR then checks whether the
agentname exists in this region. If no, the
PAR adds an entry to store the agentname
and location for registration. Otherwise, the
registration fails and the system or user
gives another name to register again. In case
the registration fails too many times, the
home PAR would offer an unregistered
agentname for successful registration.
Notice that the agent name cannot change in
an agent’s life. The home PAR deletes an
agent entry and asks the RNR server to
delete the entry when it receives the
termination request. In case there is a
message in the entry, it sends a
“MessageExisting” message back to the
agent additionally,
A successful move for an agent can be
divided into five steps in Figure 8. Firstly,
an agent notifies its home PAR that it wants
to move out. The home PAR changes the
valid bit in the agent entry to false. This is a
synchronous step. Secondly, the agent puts
the address of destination place into the
cache of current place. Thirdly, the code of
its code and state is moved to the destination
place. Fourthly, if the agent is accepted

(activated) by the destination place, i.e., it
first asks the home PAR to update the
current location, and change the valid bit to
true in the agent entry. Then, it asks the
home PAR to move out the message(s)
stored in the message queue to its SYN

message queue. If the move does not
succeed, it informs the home PAR to cancel
the movement but get the stored message(s)
still. Then, it deletes the information in the
cache in Step 2. Fifthly, the move method
returns “OK” if accepted, or “Fail”

otherwise.

Place A

PAR

Place B

Agent

1.
 N

ot
ify

3. Migration

4.Update,Get message
cache 2.

4. Delete Information

Figure 5 Successful agent migration phase
The location information request in our
system is simple. Our naming scheme
allows an agent to get the name of the home
PAR of another agent (by the latter’s
agentname). Thus, an agent can get the
current location of another one by asking
the latter’s home PAR. If the valid bit is true,
the reply contains the location address.
Otherwise, the reply is
“ AgentMigrating“ by default. In case the
agent does not exist, the reply is “The agent
does not exist”.
4.3 Message delivery mechanism

In an agent system, a receiving agent
might move during the processing of
message delivery. It makes message
delivering more complicated than
conventional distributed system. Based on
our tracking system, the activities of
message delivery are divided into
synchronous, asynchronous and one-way,
where each message is considered from
sending agent, receiving agent, and delivery
process correspondingly:
l Synchronous messages
For a receiving agent,

If there is no message, it keeps waiting
until such a message arrives. Here, an agent
is like a server in the client-server model. If
there is a message in its SYN message

queue, it processes the message. The queue
guarantees first-in-first-use principle.
For a sending agent, when the message
delivering completes, the delivering can
either be done or fails (as described in step
1.b). In other word, the agent gets an “O.K.”
or “fail” message and goes to next step.
 The delivery of a synchronous message
can be described as follows:
1) The sending agent requests the current
location of the target agent from the target
agent’s home PAR.

a) If the target agent does not exist or has
been killed, the PAR returns a failure
message.
b) If the target agent is at the migration
stage, the sending agent would get a
“AgentMigrating” message. Here, the
sending agent will start a new request in a
fixed time interval continuously until the
sending agent gets the location or the time
interval present for failure.

2) If the sending agent got the address, the
message is sent out to the target agent
directly. When the message arrives the place
of the target agent,

a)If the target agent moved already, the
message is sent to the home PAR of
the agent.

b) Otherwise, the message would be

sent to the target agent.
(1) The message is the one the target

agent is waiting for. The agent is
then activated to start its
execution.

(2) Otherwise, the message is put at
the end of the SYN message
queue of the target agent.

l Asynchronous Messages
For a receiving agent,

If there is a message in its ASYN
message queue, it processes the message.
The step then returns an ‘O.K.’ message.
Otherwise, the step returns a ‘no message’.
No matter what the step returns, the agent
goes to next step after the return.
For a sending agent,

Message sending can be treated Step 1.a
and 1.b in the delivery process.

The delivery of an asynchronous message
can be described as follows:
1. The sending agent requests the current

location of the target agent from the target
agent’s home PAR.
(a) If the target agent does not exist or

has been killed, the PAR returns a
failure message.

(b) If the target agent is at the migration

stage, the sending agent would get a
“AgentMigrating” message. The
sending agent now starts requesting a
location until the PAR returns a
failure message (in a fixed time
interval).

2. When arriving message is the place of the
target agent,
(a) If the target agent exists in the current

place, the message is sent to its ASYN
message queue.

(b) In case the agent moved and the
information of its new place exists in
the current place, the message is
forwarded to the new place. If the
information does not exist, the current
place can be treated as the original
sending agent and goes to step 1. Note
that the current place is also in charge
of forwarding the failure message
back to the original sending agent.

l One-Way Messages
A one-way message is asynchronous and
does not block the current execution of the
sending agent. The sending agent will not
retain a handle for this message, and the
receiving agent will never have to reply to
the sending agent.

S e n d i n g A g e n t

N o

A g e n t
e x e c u t in g
m e s s a g e

A s y n - M e s s a g e

S y n

A s y n M e s s (N o
In fo r m a t io n)

A s y n M e s s

A g e n t p u t in to
q u e u e

S u c c e e d

G e tL o c a t io n

T r a n s p o r t

P la c e

P A R

Y e s

D e s t P la c e

D is p a tc h
(s e n d to a g e n t)

D e s t A g e n tp la c e

F a il

e r r o r

P u tM e s s a g e
to P A R

F o r w a r d in g

I s W r o n g

G e tM e s s a g e

Figure 6 Message Delivery Flowchart

In distributed systems, network transporting
has some special phenomena. Theoretically,
the clock cannot be synchronized for all
places in a distributed system, in other
words, it is impossible to find out the order
of all messages. Practically, a message sent
earlier than another one may not arrive at
the destination earlier because of network
traffic. On the other hand, a server may have
more than one entry points. The message
arriving earlier may not be guaranteed for
service earlier. Logic clock mechanisms
provides O(n2) solutions to causal order.[13]
To solve the problem, our system provides a
simple mechanism to help decide the
execution order of arriving synchronous
messages only. A PAR’s message queue is
used to store the message(s) which arrives at
the destination place after the target agent
left out in Figure 7. Each agent is defined a
logic clock for the synchronous message in
its home PAR. For the delivery of
synchronous messages, when a sending
agent asks the target agent’s home PAR the
latter’s current location for a synchronous
message, the agent also gets a timestamp
from the PAR. On the other hand, the PAR
increases logic clock variable by one at the
same time.
In message handling aspect, an agent is
defined a synchronous message queue and is
also associated with a timestamp queue
where each element indicates whether the
corresponding message is “executed”,
“arrived but not executed”, or “not arrived
yet”. The queues are implemented with
arrays and two indices. The first index
points to the oldest message that is not
arrived and served. The second index points

to the biggest timestamp to show the latest
message being received. When processing a
message, the agent searches the timestamp
queue to find the oldest message for the
corresponding entry. The search starts from
the first index and completes at the second
index. If there is no message, the agent
waits in a fixed time interval, gets the
message(s) from its home PAR, and then
starts next searching. If such a message
exists, the agent modifies the corresponding
element in timestamp queue as “executed”
and processes the message. If the first index
equals second, no message needs to be
served and the agent repeats above (wait,
get, start) activities till a candidate message
arrives.
When the agent receives the messages, it
also lets the second index be modified to get
the newest timestamp and updates the
elements added in timestamp queue if a
timestamp of the message is bigger than the
second index. Here, if an element whose
message exists already, the element is not
changed. If an element whose message is
received now, the element is set “arrived but
no executed”. If an element whose message
is not in, the element is set “not arrived”.
Our method has some defects. For example,
an agent might crash when it waits for the
candidate message that is lost. An agent
asking earlier than another one may not get
a smaller timestamp than another one
because of network traffic. In case the target
agent doesn’t move, the sending agents get
the same location and timestamps from the
home PAR. It wastes the PAR’s time
execution and network traffic.

5. Conclusion and future work
The report presents the design of a communication platform for mobile agents and a system
has been implemented in our lab. It supports the agent location tracking and offers a more
reliable and efficient mechanism for delivering messages to mobile agents than previous
versions [16][17].

There is a defect for synchronous message passing in the system: the message queue in a
PAR. When a message reaches the destination place, the target agent may leave already, and
thus the message is sent to the agent’s home PAR. In case that the target agent does not move,
it will not ask the home PAR and thus the message will stay in the home PAR too. This may
not be efficient because the target agent might not move for a long.

One solution to this problem is to design a mechanism that allows a PAR to check
whether its registered agent stays at the same location for a fixed time. The PAR sends the
messages to the agent if the answer is “the same place”. Another solution to this problem is to
let the agent gets the message from the home PAR when it finds out some message not
received for handing. Both mechanisms introduce additional problems for the system still and
no discuss further.

PAR Place 1 Place 2 Place 3

 Agent1 Migrate

Get Agent1 Location

Return Location

Send Msg 1 to Agent1

Get Agent1 Location

Return Location
Send Msg 2 to

Agent1

Modify agent1 location

get msg from queue

put Msg1 at PAR

?

?

Figure 7 Situation of Message Arriving
Reference

[1]”Software Agents: A review”, Shaw
Green, Leon Hurt etc.
[2] Programming and Deploying Java
Mobile Agents with Aglets, Danny B.
Lange
 and Mitsuru Oshima
[3] Agent Tcl was developed by Robert S.
Gray and colleagues at the Dartmouth
 College Computer Science Department .
[4] Ara is a project within the Distributed
Systems Group in the Computer Science
 Department of the University of
Kaiserslautern, Germany.
 http://www.uni-kl.de/AG-
Nehmer/Projekte/Ara/index_e.html
[5] James E. White; Telescript technology:
The foundation for the electronic
 market place; General Magic White Paper.
[6] IBM Aglets,
http://www.trl.ibm.co.jp/aglets
[7] Voyager 3.1,
http://www.objectspace.com
[8] Concordia,
http://www.meitca.com/HSL/Projects/Conc
ordia
[9] MASIF-The OMG Mobile Agent
System Interoperability Facility; Mobile

Agents–Second International Workshop,
MA’98 (Stuttgart, Germany, September
1998); Published as Kurt Rothermel and
Fritz Hohl, editors, Lecture Notes in
Computer Science, 1477. Springer,
September 1998.
[10]Mobile Agents White Paper, General

Magic,
http://www.genmagic.com/technology/te
chwhitepaper.html/

[11] Agent system Development Method
Based on Agent Pattern; Yasuyuki Tahara,
Akihiko Ohsuga and Shinichi Honiden; 21st

International Conference on Software
Enigeering, 16-22 May 1999.
[12] Distributed Systems: concepts and
Design; George Coulouris, Jean Dollimore,
and Tim Kindberg; second edition 1994
[13] Distributed Operation Systems &
Algorithms; Randy Chow and Theodore
Johnson at university of Florida; publisher
Addison Wesley 1997
[14] HOSTNAME Server; Tech. Report
RFC 953; ftp://nic.ddn.mil/user/pub/RFC
[15] Mobile Objects and Agents (MOA);
Dejan S., William LaForge and Deepika
Chauhan; The Open Group Research
Institute

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10

