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一、中文摘要

本研究報告提出一高效能演算法則，用於估
測腦電波訊號之本質維度，以量化其整體複雜度。
除了針對多通道腦電波之分析外，本質維度亦可用
於影像材質紋理的分析與描述。我們已研發出幾種
不同方法，以適用於多通道腦電波和影像資料的複
雜度分析。研究結果顯示，本方法在大幅減少運算
複雜度情況下，亦得以獲得可靠之維度估測。

關鍵詞：腦電波、非線性動態、維度分析、本質維
度、複雜度指標、紋理影像。

Abstract
In this research report, we present an efficient 

method and algorithm for estimating the intrinsic 
dimension for quantifying the global waveform 
complexity in EEG (electroencephalograph). In 
addition to the multi-channel EEG analysis, the 
intrinsic dimension may be feasible for texture 
description in image processing. We have 
developed different methodologies for analyzing 
both the multi-channel EEG and the image data. 
The results of this research work demonstrate that 
the computational complexity is highly reduced 
without sacrificing the reliability of dimensional 
estimation.

Keywords: Electroencephalograph (EEG), nonlinear 
dynamics, dimensional analysis, intrinsic 
dimension, complexity index, texture 
image.

二、緣由與目的

The multi-channel EEG signal is 
characterized by its spatial and temporal features. In 
the past two decades, the advance in nonlinear 
dynamics enabled researchers to interpret the brain 
waves from an alternative viewpoint. Dimensional 
analysis provides a way to quantify the global 
waveform complexity of the multi-channel EEG 
data. A number of methods have been proposed to 
estimate the EEG dimension. They include the 
correlation dimension, fractal dimension, 
information dimension, etc.

Nonetheless, tools from nonlinear dynamical 

theory used for EEG analysis, such as the dimensional 
computation and Lyapunov exponent estimation, 
mostly suffer from the problems of computational 
inefficiency and bias from implementing parameters 
(Lo and Principe, 1989). Thus they are not feasible for 
long-term monitoring or practical use. Since 
evaluating the correlation dimension involves slope 
computation using linear regression, an appropriate 
linear scaling region needs to be determined first. The 
estimation procedure is an indirect approach. Thus it is 
not feasible for the long-term, multi-channel EEG 
analysis.

The topological or intrinsic dimensionality of a 
point set was introduced to characterize the classifiers 
in the field of pattern recognition (Fukunaga and Olsen, 
1971; Pettis et al., 1979; Verveer and Duin, 1995; 
Bruske and Sommer, 1998). The fundamental idea of 
its application to EEG analysis is that the intrinsic 
dimensionality in some sense reflects variation of data 
structure in a data set. Accordingly, we adapt the 
technique for the multi-channel EEG analysis to 
explore the spatial-temporal characteristics in EEG. 
To improve the computational efficiency, methods for 
determining the intrinsic dimension were mostly based 
on the local approaches, that is, quantifying the local 
features in small regions.

When applying to the long-term biomedical 
signals, computational efficiency and processing 
effectiveness are of important consideration. Thus the 
authors develop a direct-computation algorithm, based 
on the KNN approach, to analyze the multi-channel 
EEG. The algorithm avoids the problem of 
sophisticated computation strategy usually involved in 
indirect approach like the correlation dimension 
estimation. The mathematical basis is similar to that 
given in (Fukunaga and Flick, 1984). The derivation 
and implementation procedures are somewhat different. 
The computed intrinsic dimension reflects the global 
complexity of the spatio-temporal feature. It is 
accordingly named as the “complexity index(δ)”.

三、結果與討論

As previously demonstrated (Lo and Principe, 
1989), the EEG trajectory forms a strange attractor 

(Hentschel and Procaccia, 1983). Let X={ }N
ii 1=X  be 
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the points on the EEG trajectory, where Xi is an 
n-dimensional point constructed from the n-channel 
EEG signals. For instance, Xi = (F3(i), Fz(i), F4(i)) 
represents a point on the 3-dimensional space, whose 
coordinates (degrees of freedom) are brain electrical 
potentials recorded from sites F3, Fz, and F4, 
respectively. Derivation of the equation for computing 
the complexity index was illustrated in details in (Lo 
and Chung, 2000). In summary, for each point in the 
set X (e.g., Xi), we first compute the K- and 
(K+1)-nearest neighbor (KNN and (K+1)NN) 
distances, dKNN and d(K+1)NN. It follows that
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which provides the way to evaluate the complexity 
index.

One advantage of the method is its easy 
implementation of the algorithm by following the 
above equation. The algorithm first determines a 
2-dimensional N×N array D with its elements dij, i, 
j=1, … , N representing the inter-point distances. Then 
elements in each row are sorted according to their 
magnitudes. The resulting N×N array D′=[d′ij] i, 
j=1, … , N has its elements in each row arranged from 
the smallest (j=1) to the largest (j=N) number. Thus 
the Kth element of the ith row of D′ is the di,KNN. (i.e., 
di,KNN= d′iK) The algorithm actually compute the 
E{dKNN} by averaging all the elements in the Kth 
column of D′. Likewise, the E{d(K+1)NN} can be 
computed by averaging all the elements in the (K+1)th 
column of D′. The complexity index δ is then 
computed by using eq.(1). Details of efficient 
implementation of the algorithm were reported in (Lo 
and Chung, 2000).

The estimated δ depends on value of K and 
length of the evolving trajectory. Note that the δ
versus K curves fluctuate. Thus the authors average the 
δ’s over a moderate range of values of K to obtain the 
final estimate. Table 1 lists the estimated average δ for 
the model-generated trajectories. The average δ is 
denoted by δ . As listed in Table 1, the values of K
used to obtain δ  range from 30 to 60. Table 1 also 
lists the correlation dimension estimated for each 
model system (Grassberger and Procaccia, 1983). The 
average complexity index δ  well approximates the 
correlation dimension. Evaluating the correlation 
dimension involves slope computation by linear 
regression. The result highly depends on the scaling 
range selected for slope computation. This is the major 
advantage of the proposed algorithm over the 
correlation dimension method.

Since the computational time required for δ
evaluation highly depends on the evolving length N
(number of n-dimensional data points), it is a practical 
consideration to choose the minimum value of N that 
ensures an adequate coverage of the attractor 
dynamics. In our study, pronounced saturation of the 

curves is observed for N≥2500. Using an N smaller 
than 1000 results in a severe underestimation of the 
complexity index. We also observed that the range of 
values of K showed little effect on δ  when N was 
properly selected (N≥2500). Deviation is within 3% 
(δ =2.01-2.06, compared with 2.06 listed in Table 1). 
This fact demonstrates that δ  computation is rather 
insensitive to a wide range of K. It then allows us to 
confidently select the range of values of K when 
evaluating the E{dKNN} in eq.(1). 

In this research work, we also established a 
guideline of selecting implementing parameters for 
multi-channel EEG analysis. A number of EEG 
segments under different CNS (central nervous system) 
dynamics have been investigated. Here we present the 
results of analyzing EEG data of an epilepsy syndrome 
called “Benign Partial Epilepsy of Childhood”. A 
25-channel electrode array with a common linked-ear 
reference was applied in the recording: {F3, Cz, F4, 
P3, P4, F7, F8, T5, T6, Fp1, Fp2, O1, O2, Fz, Pz, C3, 
C4, T3, T4} (north hemisphere) and {IO1, IO2, CB1, 
CB2, MS1, MS2} (south hemisphere). The signals 
were digitized by a rate of 200 Hz. We define the state 
space dimension n as the number of channels. The 
channel combination indicates the composition of 
recording sites used in the analysis. It is associated 
with the set of state variables describing the brain 
dynamics.

A 5-channel protocol, involving electrode sites 
Cz, F3, F4, P3, and P4, is used. In our study of the 
implementing parameter, we found that the estimated δ
(EEG1: 4.64±0.09, EEG2: 4.57±0.08, EEG3: 
4.73±0.09) was fairly consistent in the range of K≥25. 
For a small K, poor statistics (due to the small number 
of n-dimensional points involved) lead to an unreliable 
estimate. Yet, in consideration of computational 
efficiency, a small K is preferred. 

When viewing the δ measure as a relative 
indicator of the global complexity of EEG waveform 
patterns, development of the implementing algorithm 
need not aim at derivation of absolute values. Thus the 
evolving length N can be much smaller than that 
required to obtain a convergent estimate, only that it 
provides an invariant feature descriptor when applied 
to the long-term EEG monitoring. Figure 1 illustrates 
the situation. The three curves represent the running 
measures of δ , over a 150-second EEG record, using 
N = 1000 (solid), 1500 (dashed), and 2000 (dotted). In 
all three cases the moving size is 100 points (0.5 
seconds) and the K ranges from 25 to 35. The 
horizontal axis indicates the beginning time of each 
running window. The diamonds symbolize the 
occurrence of focal-sharp-wave events. The three 
curves basically follow the same up-and-down course. 
However, we may clearly recognize that increasing the 
signal duration N results in (time) advance and 
(magnitude) ascent of the running δ  curve. The 
phenomena can be explained as follows. The 
background EEG has a complexity index between 4.0 
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and 4.5, which is reduced to 3.0~3.5 when 
focal-sharp-wave transient occurs. This analysis 
demonstrates one of the applications of δ
computation to EEG signal. That is, the running δ
curve may be used to detect the occurrence of 
particular events in the EEG monitoring. 

Investigation of the effect of state-space 
dimension (n) is a complicated task since it involves 
not only the values of n but the composition of 
electrodes. It is known that, for a deterministic signal, 
the estimated fractional dimension does not increase 
with the space dimension (Lo and Principe, 1989). 
From our study in the past year (Figure 2), we 
concluded that the set of 13 electrode sites, sparsely 
distributed over the north-hemispherical (scalp) region, 
involve sufficient information for quantifying the EEG 
spatial complexity at this physiological state (Benign 
Partial Epilepsy syndrome).

In this preliminary study, we have introduced the 
method of estimating intrinsic dimensionality into 
multi-channel EEG analysis. The work is not aimed at 
obtaining the absolute value of intrinsic dimensionality, 
considering the practical use in EEG analysis. Since 
dimensionality in a sense characterizes the global 
waveform complexity, we name it the “complexity 
index (δ)”. Evaluation of complexity index is 
conceptually comprehensible and easily implemented. 
We have demonstrated the effect of implementing 
parameters on δ computation for both model systems 
and multi-channel EEG. Though selection of 
implementing parameters affects the computed value 
of δ , the running feature of δ  appears to be fairly 
insensitive to a wide range of values of K and N. 
Considering the effect of space dimensions n (number 
of electrodes), the running δ  curve fluctuates in a 
coherent manner for n≥5. Analyzing the 5-dimensional 
(5-channel) EEG trajectory simply requires as few as 
1000 data points (5 seconds) for obtaining invariant 
running δ  characteristic. It then resolves the 
problem of poor temporal resolution and 
computational inefficiency often encountered in 
dimensional analysis. According to the analysis of four 
different electrode arrays, the background EEG has an 
estimated δ  in the range of 4.0 ≤ δ ≤ 4.5, which 
drops to 3.0 ≤ δ ≤ 3.5 at the occurrence of the events 
(focal-sharp-wave activities). The preliminary results 
presented in this paper demonstrate that this method 
has the potential value to quantification of EEG spatial 
correlation and identification of EEG pattern 
transition.

In image analysis, complexity index can be 
applied to the texture images for characterizing the 
structural complexity. Consider the texture images 
shown in Figure 3. The estimated complexity indexes 
are 5.99 (D28), 6.64 (D29), 5.38 (D65), and 5.73 
(D55), respectively. Apparently, better structural 
regularity results in lower value of complexity index.

Table 1  Average complexity index estimated for 
five model systems

Complexity

Index δ N / ∆t range of 
K

Correlatio
n

Dimension
N / ∆t

Rabinovich-
Fabrikant 
model

2.22 8,000 / 
0.05 30 – 60 2.19 15,000 / 

0.25

Lorenz 
model 2.06 8,000 / 

0.05 30 – 60 2.05 15,000 / 
0.25

Rossler 
model 1.86 8,000 / 

0.05 30 – 60 ***
Zaslavskii 
map 1.74 15,000 30 – 60 ~1.50 25,000

Hénon map 1.25 15,000 30 – 60 1.25 15,000

Figure 1  The running δ  for a 150-sec EEG record, 
using 3 window sizes (N=1000, 1500, 2000).

Figure 2  The running δ  curves for different 
numbers of electrodes (dimensions, n).
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Figure 3  Texture images.

四、計畫成果自評

Results of this research study have been 
published in two papers. The paper published in 
Biometrical Journal (Lo and Chung, 2000) reported 
the strategies and considerations of determining the 
implementing parameters. The second one published 
in IEEE Transactions on Biomedical Engineering (Lo 
and Chung, 2001) presented an efficient algorithm for 
computing the complexity index. This research project 
has been conducted well in agreement with the 
proposal. In addition, the efficient algorithm will be 
applied to our future research in the CNS dynamics 
under meditation.
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