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Abstract

In this research report, we present an efficient
method and algorithm for estimating the intrinsic
dimension for quantifying the global waveform
complexity in EEG (electroencephal ograph). In
addition to the multi-channel EEG analysis, the
intrinsic dimension may be feasible for texture
description in image processing. We have
developed different methodol ogies for analyzing
both the multi-channel EEG and the image data.
The results of this research work demonstrate that
the computational complexity is highly reduced
without sacrificing the reliability of dimensional
estimation.

K eywords:. Electroencephal ograph (EEG), nonlinear
dynamics, dimensional analysis, intrinsic
dimension, complexity index, texture
image.

The multi-channel EEG signal is
characterized by its spatial and temporal features. In
the past two decades, the advance in nonlinear
dynamics enabled researchers to interpret the brain
waves from an alternative viewpoint. Dimensional
analysis provides away to quantify the global
waveform complexity of the multi-channel EEG
data. A number of methods have been proposed to
estimate the EEG dimension. They include the
correlation dimension, fractal dimension,
information dimension, etc.

Nonetheless, tools from nonlinear dynamical
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theory used for EEG analysis, such as the dimensional
computation and Lyapunov exponent estimation,
mostly suffer from the problems of computational
inefficiency and bias from implementing parameters
(Lo and Principe, 1989). Thus they are not feasible for
long-term monitoring or practical use. Since
evaluating the correlation dimension involves slope
computation using linear regression, an appropriate
linear scaling region needs to be determined first. The
estimation procedure is an indirect approach. Thusitis
not feasible for the long-term, multi-channel EEG
analysis.

The topological or intrinsic dimensionality of a
point set was introduced to characterize the classifiers
in the field of pattern recognition (Fukunaga and Olsen,
1971; Pettis et a., 1979; Verveer and Duin, 1995;
Bruske and Sommer, 1998). The fundamental idea of
its application to EEG analysis is that the intrinsic
dimensionality in some sense reflects variation of data
structure in a data set. Accordingly, we adapt the
technique for the multi-channel EEG analysis to
explore the spatial-temporal characteristics in EEG.
To improve the computational efficiency, methods for
determining the intrinsic dimension were mostly based
on the local approaches, that is, quantifying the local
featuresin small regions.

When applying to the long-term biomedical
signals, computational efficiency and processing
effectiveness are of important consideration. Thus the
authors devel op a direct-computation algorithm, based
on the KNN approach, to analyze the multi-channel
EEG. The algorithm avoids the problem of
sophisticated computation strategy usually involved in
indirect approach like the correlation dimension
estimation. The mathematical basisis similar to that
given in (Fukunagaand Flick, 1984). The derivation
and implementation procedures are somewhat different.
The computed intrinsic dimension reflects the global
complexity of the spatio-temporal feature. It is
accordingly named as the “complexity index(d)”.

As previously demonstrated (Lo and Principe,

1989), the EEG trgjectory forms a strange attractor

(Hentschel and Procaccia, 1983). Let X={X ,},’Zl be



the points on the EEG trgjectory, where X;isan
n-dimensional point constructed from the r-channel
EEG signals. For instance, X; = (F3(J), Fz(/), FA(/))
represents a point on the 3-dimensional space, whose
coordinates (degrees of freedom) are brain electrical
potentials recorded from sites F3, Fz, and F4,
respectively. Derivation of the equation for computing
the complexity index wasillustrated in detailsin (Lo
and Chung, 2000). In summary, for each point in the
set X (e.g., X)), we first compute the K- and
(K+1)-nearest neighbor (KNN and (K+1)NN)
distances, diqn and gix:1ynw- 1t follows that
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which provides the way to evaluate the complexity
index.

One advantage of the method isits easy
implementation of the algorithm by following the
above equation. The algorithm first determines a
2-dimensional N' Narray D with its elements dj;, /,
J=1, ..., Nrepresenting the inter-point distances. Then
elementsin each row are sorted according to their
magnitudes. Theresulting N' Narray D¢=[d¢] i,

/=1, ..., Nhasits elementsin each row arranged from
the smallest (j=1) to the largest (j/=N) number. Thus
the Kth element of the /ith row of D¢isthe dj k. (i-€.,
a, inn= d¢) The algorithm actually compute the

K din} by averaging all the elementsin the Kth
column of D¢ Likewise, the H gix:1nn} can be
computed by averaging all the elementsin the (K+1)th
column of D¢ The complexity index disthen
computed by using eq.(1). Details of efficient
implementation of the algorithm were reported in (Lo
and Chung, 2000).

The estimated d depends on value of K and
length of the evolving trajectory. Note that the d
versus K curves fluctuate. Thus the authors average the
d’s over amoderate range of values of K'to obtain the
final estimate. Table 1 lists the estimated average dfor
the model-generated trajectories. The average dis
denoted by d . Aslisted in Table 1, the values of K

used to obtain d range from 30 to 60. Table 1 also
lists the correlation dimension estimated for each
model system (Grassberger and Procaccia, 1983). The
average complexity index d well approximates the
correlation dimension. Evaluating the correlation
dimension involves slope computation by linear
regression. The result highly depends on the scaling
range selected for slope computation. Thisis the major
advantage of the proposed algorithm over the
correlation dimension method.

Since the computational time required for d
evaluation highly depends on the evolving length N
(number of r-dimensional data points), it isa practical
consideration to choose the minimum value of Nthat
ensures an adequate coverage of the attractor
dynamics. In our study, pronounced saturation of the

curvesisobserved for A 2500. Using an Nsmaller
than 1000 resultsin a severe underestimation of the
complexity index. We also observed that the range of
values of K showed little effecton d when Nwas
properly selected (A8 2500). Deviation is within 3%
(d =2.01-2.06, compared with 2.06 listed in Table 1).

This fact demonstratesthat @ computation is rather
insensitive to awide range of K. It then allows usto
confidently select the range of values of K'when
evaluating the £ dinn} ineg.(1).

In this research work, we also established a
guideline of selecting implementing parameters for
multi-channel EEG analysis. A number of EEG
segments under different CNS (central nervous system)
dynamics have been investigated. Here we present the
results of analyzing EEG data of an epilepsy syndrome
called “Benign Partial Epilepsy of Childhood”. A
25-channel electrode array with a common linked-ear
reference was applied in the recording: { F3, Cz, F4,
P3, P4, F7, F8, T5, T6, Fpl, Fp2, 01, O2, Fz, Pz, C3,
C4, T3, T4} (north hemisphere) and {101, 102, CB1,
CB2, MS1, MS2} (south hemisphere). The signals
were digitized by arate of 200 Hz. We define the state
space dimension n as the number of channels. The
channel combination indicates the composition of
recording sites used in the analysis. It is associated
with the set of state variables describing the brain
dynamics.

A 5-channel protocol, involving electrode sites
Cz, F3, F4, P3, and P4, is used. In our study of the
implementing parameter, we found that the estimated d
(EEG1: 4.64+0.09, EEG2: 4.57+0.08, EEG3:
4.73+0.09) was fairly consistent in the range of K3 25.
For asmall K, poor statistics (due to the small number
of n-dimensiona pointsinvolved) lead to an unreliable
estimate. Y et, in consideration of computational
efficiency, asmall Kis preferred.

When viewing the d measure as arelative
indicator of the global complexity of EEG waveform
patterns, development of the implementing algorithm
need not aim at derivation of absolute values. Thus the
evolving length N can be much smaller than that
required to obtain a convergent estimate, only that it
provides an invariant feature descriptor when applied
to the long-term EEG monitoring. Figure 1 illustrates
the situation. The three curves represent the running
measures of d , over a 150-second EEG record, using
N= 1000 (solid), 1500 (dashed), and 2000 (dotted). In
all three cases the moving size is 100 points (0.5
seconds) and the K ranges from 25 to 35. The
horizontal axis indicates the beginning time of each
running window. The diamonds symbolize the
occurrence of focal-sharp-wave events. The three
curves basically follow the same up-and-down course.
However, we may clearly recognize that increasing the
signal duration Nresultsin (time) advance and
(magnitude) ascent of therunning d curve. The
phenomena can be explained as follows. The
background EEG has a complexity index between 4.0



and 4.5, which is reduced to 3.0~3.5 when
focal-sharp-wave transient occurs. Thisanalysis
demonstrates one of the applicationsof d

computation to EEG signal. That is, the running d
curve may be used to detect the occurrence of
particular eventsin the EEG monitoring.

Investigation of the effect of state-space
dimension (n) isacomplicated task since it involves
not only the values of n but the composition of
electrodes. It is known that, for a deterministic signal,
the estimated fractional dimension does not increase
with the space dimension (Lo and Principe, 1989).
From our study in the past year (Figure 2), we
concluded that the set of 13 electrode sites, sparsely
distributed over the north-hemispherical (scalp) region,
involve sufficient information for quantifying the EEG
spatial complexity at this physiological state (Benign
Partial Epilepsy syndrome).

In this preliminary study, we have introduced the
method of estimating intrinsic dimensionality into
multi-channel EEG analysis. The work is not aimed at
obtaining the absolute value of intrinsic dimensionality,
considering the practical use in EEG analysis. Since
dimensionality in a sense characterizes the global
waveform complexity, we name it the “complexity
index (d)". Evaluation of complexity index is
conceptually comprehensible and easily implemented.
We have demonstrated the effect of implementing
parameters on d computation for both model systems
and multi-channel EEG. Though selection of
implementing parameters affects the computed value
of d, the running feature of d appears to be fairly
insensitive to a wide range of values of K and N.
Considering the effect of space dimensions n (number
of electrodes), the running d curve fluctuates in a
coherent manner for r? 5. Analyzing the 5-dimensional
(5-channel) EEG tragjectory simply requires as few as
1000 data points (5 seconds) for obtaining invariant
running d characteristic. It then resolves the
problem of poor tempora resolution and
computational inefficiency often encountered in
dimensional analysis. According to the analysis of four
different electrode arrays, the background EEG has an
estimated d in the range of 4.0 £d £ 4.5, which

dropsto 3.0 £d £ 3.5 at the occurrence of the events
(focal-sharp-wave activities). The preliminary results
presented in this paper demonstrate that this method
has the potential value to quantification of EEG spatial
correlation and identification of EEG pattern
transition.

In image analysis, complexity index can be
applied to the texture images for characterizing the
structural complexity. Consider the texture images
shown in Figure 3. The estimated complexity indexes
are5.99 (D28), 6.64 (D29), 5.38 (D65), and 5.73
(D55), respectively. Apparently, better structural
regularity resultsin lower value of complexity index.

Tablel Average complexity index estimated for
five modd systems
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Figurel Therunning d for a150-sec EEG record,
using 3 window sizes (A=1000, 1500, 2000).
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Figure2 Therunning d curvesfor different
numbers of electrodes (dimensions, r).
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Figure3 Textureimages.

Results of this research study have been
published in two papers. The paper published in
Biometrical Journal (Lo and Chung, 2000) reported
the strategies and considerations of determining the
implementing parameters. The second one published
in /EEE Transactions on Biomedical Engineering (Lo
and Chung, 2001) presented an efficient algorithm for
computing the complexity index. This research project
has been conducted well in agreement with the
proposal. In addition, the efficient algorithm will be
applied to our future research in the CNS dynamics
under meditation.
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