The Study of Hopfield Neural Net for Seismic Horizon Picking
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Abstract

The Hopfield neural net is used to
solve the problem of seismic horizon
picking. The input seismogram passes
through preprocessing steps and becomes
the seismic peak data. The preprocessing
steps  include envelope  processing,
thresholding, peak  detection, and
compression in time direction. One peak
represents one seismic wavelet.  Each
preprocessed data item corresponds to one
neuron in the Hopfield net.  The constraint
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conditions for detecting seismic horizons
are used to construct the Lyapunov energy
function. The connection weights between
neurons are extracted from this energy
function. From the equation of motion,
the next state value of each neuron can be
caculated. Changing the vaue of a
neuron decreases the energy. The system
becomes stable when the value of each
neuron is no longer changed. One horizon
is extracted by using the algorithm at one
survey. The extracted horizon is removed
from the original seismic data and the next
horizon is extracted. @ The process is
repeated until no more horizons can be
extracted. In our experiments on the
bright spot peak data, the extracted horizons
match those obtained by visual inspection.

Keywords. Hopfield neura net, Lyapunov
function, seismic horizon picking.

Hopfield proposed his model of neural
networks (Hopfield, 1982, 1984, 1987).
Severa interesting applications adopted the
Hopfield model to associative memory,
pattern  recognition, and optimization
problems (Hopfield and Tank, 1985, 1986;
Tank and Hopfield, 1986, 1987). Lippman
(1987), Pao (1989), Zurada (1992), and
Haykin (1999) analyzed analog and discrete
types of the Hopfield model. Huang et al.
(1989) applied the Hopfield model to the
detection of bright spot pattern in seismic
oil exploration. Here the Hopfield model



is used to solve the problem of seismic
horizon.
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Figure 1. Hopfield neural network.
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Figure 2. (a) Bright spot seismogram.
(b) Envelope. (c) Thresholding, peaking,
and vertical compression.

Figure 1 shows the Hopfield neura
model. Figures 2 displays the simulated
seismogram of a bright spot, its envelope,
and the preprocessed peak seismic data. A
preprocessed seismic section is the input to
the Hopfield model. Each pixd in the
seismic section is the neuron location of the
Hopfield model. The position at row x and
column i of the seismic data represents the
exact location of the neuron. Two indices
x and i are used in the representation of the
location of the neuron v,, in two

dimensional  space. The connection
weight between two neurons is represented
by Tx,iiy;-

The five constraint conditions of a
seismic horizon are defined first.  The total
Lyapunov energy function is constructed for
each constraint condition. Next, the
connection weights between neurons can be
extracted from the total Lyapunov energy
function. Then using the motion equation
of the Hopfield model, the value of neurons
at 1 can be changed to O if the neuron (peak)
does not satisfy the conditions of the
horizon. But if the value of neurons
(nonpeak) is O, then the process is skipped.
Finally the peaks satisfying the conditions
of the horizon can be linked as one horizon.



The standard form of the system Lyapunov
energy function is defined as follows.
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The weighting coefficients 7, ,.,, can be
extracted from the energy function.

One example of constraint condition is
shown in Figure 3. If v, ; isapesk and

two other neighboring peaks are in a
straight line, then the energy is decreased.
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Figure 3. 3rd constraint for detection of
local horizon pattern. Energy is decreased.
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where ¢ and ¢, are positive constants.
Thetotal energy function is given by:
E=p+etetEtE 2
Tx,i:y; Canbeextracted from E.

An agorithm using a Hopfield net for
seismic horizon picking is proposed. The
equation of motion is as follows.

Change the value of the neuron v, ;.
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(b) Experiments:

In our experiments, a Hopfield neural
net is applied to a 10x10 preprocessed peak
data of the bright spot pattern given in
Figure 4(a). There are 100 neurons and
10,000 connection weights T, ;.,; in the

Hopfield model. The constants a=5.0,
b,=b,=c,=c,=d,=d,=1.0, and e =0.0 are
chosen. Figure 4(b) is the first extracted
horizon after 10 complete surveys. Figure
4(c) is the second extracted horizon after 20
complete surveys. Figure 4(d) is the third
extracted horizon after 28 complete surveys.
Figure 4(e) is the fourth extracted horizon
after 32 complete surveys. The extracted
horizons match the results obtained by

visual inspection.
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Figure 4. Extracted seismic horizons.

“X” represents peak.



)

The constraintson £,, £, and g, ae
the conditions for the detection of horizon.
The constraints on £ and £ achieve
one horizon at one survey and exclude the
other candidates.

The weighting coefficients 1, ;.,; are

not fixed; rather, they are changed
whenever the neurons are changed. This
Is quite different from agorithm of the
conventional Hopfield net. The value 1 or
0 of the constants g, b,, b,, c,,c,,d,, d,,
and e indicates the inclusion or exclusion of
the constraint conditions.
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