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一、中文摘要

吾人利用蒙地卡羅方法發展出電子束石版術之模
擬程式，其中電子和核子間的彈性碰撞係用拉塞福
公式決定，而其能量損失則用貝茲公式計算。我們
可穫得在光阻及基材中電子軌跡的三維空間分佈、
能量沉積的分佈，藉以了解電子束石版術的漸近效
應。為了獲得適當的精確度，曝照欄框的蒙地卡羅
模擬通常需採樣大量的入射點和電子數，因而耗費
冗長的計算時間。為了避免此一缺失，本程式乃採
取電子雲策略及迴旋積分方法來縮短模擬時間。

關鍵詞: 蒙地卡羅模擬、電子束石版術、彈性碰撞、
電子雲、迴旋積分方法

Abstract:
    
 A Monte Carlo simulation program for the electron-beam 
lithography has been developed. The screened Rutherford 
equation for the differential scattering cross section and 
the Bethe equation for the energy loss between elastic 
scatterings are used. Three dimensional electron 
trajectories in the resist and substrate have been followed. 
The lateral spreading range and longitudinal penetration 
depth of energy deposition have been obtained. An 
“electron cloud” scheme has been adopted in this program 
to reduce the simulated particles and computational time. 
A convolution method has been devised to extend the 
simulated energy deposition distribution.

Keyworks: Monte Carlo simulation, E-Beam lithography, 
elastic scattering, electron cloud, convolution method.

二、緣由與目的

電子工業已是台灣最主要的高科技產業，其中又以
半導體工業為主。半導體工業發展的最重要驅動力量
在於石版術的驚人進步，它將積體電路設計規則的尺
度以指數的速率縮小：由 1970 年的 10 微米(µm)降至
2000 年的 180 奈米(nm)。電子束石版術為超大規模集
積(VLSI)電路光罩製作的主要方法，石版術的重要性
可由半導體工廠中光罩及相關的照相蝕刻等設備之投
資往往佔產品百分之四十的成本看出。

在半導體元件的大量生產方面，光學石版術一直都
擔任重要的角色，亦確屬微電子工業的生機根源。然

而，這些元件的設計規則在進入 180 奈米的門檻以
後，光學石版術的解析能力卻面臨到光學繞射的物理
極限，即使是採用 KrF 激二體(excimer)雷射(248 奈
米)石版術及光學石版術解析度增強技術(RET)亦有其
圖案安排上的限制。因此，電子束石版術很有希望取
代光學石版術的地位，由於它具有較高的解析度、較
深的焦距深度和無光罩的操作等潛能。

電子束石版術的終極解析度並非由電子光學系統
之解析度所限，它能夠趨近於0.1 奈米，而是由阻
劑的解析度和隨後的製作程序所限，其重要的限制
是阻劑中的電子散射。順向散射是電子在貫穿阻劑
時的小角度非彈性散射，它具有較窄的分佈。背向
散射是大角度彈性散射，主要發生在阻劑底下的基
片，電子從基片背向散射進入阻劑中，產生一種背
景模糊的影像，降低了明確的對比，而其終極影響
是臨近效應。在電子束石版術中，圖案裡任何一點
的曝照都會被緊臨該點的欄框之曝照所影響。為了
減小其效應，亟需發展精巧的計算方法以資調整各
種形狀的曝照劑量，其中應以蒙地卡羅模擬計算為
最佳選擇。

電子束多層多元素標靶中的滲透和散射，實際上
唯有求助於蒙地卡羅方法才能精確地計算出電子束
的曝照分佈以及背向散射電子的能量和角向分佈。
這種方法的優點是可以將各種物理程序直接包括在
內，並處理各種複雜的幾何形狀。其缺點則為需要
耗費大量的計算時間，因為各種分佈的任何參數之
相對誤差約略地比例於入射電子數目的平方根之倒
數。然而，現今計算機的運算速度日益增快，入射
電子數目已可大量的增加，以獲得任意的精確度。

電子束石版術的蒙地卡羅模擬研究雖然在國外
已有二十多年的歷史，但是在國內還沒有人從事這
方面的研究，只有本計劃主持人做過類似的離子植
入蒙地卡羅模擬。本專題研究就是沿用以往的經
驗，將離子改為電子並代換以適當的碰撞機制。

三、物理模式

Elastic scattering between incident electron and 
nucleus of target atom is based on Rutherford equation
for the differential scattering cross section [1]:
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where θ  is the scattering angle, Z is the atomic number 
of the target atoms, e  is the electric charge of an 
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electron, 0ε  is the permittivity of free space, E  is the 
electron energy and µ  represents an effective screening 
parameter of the electronic cloud on the nuclear charge. 
The parameter µ  is given by [2]:
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where h  is the reduced Planck constant, 0a  is the Bohr 
radius of the hydrogen atom, p  is the momentum of 
the incident electron.

The total elastic cross section σ  can be obtained by 
integrating equation (1)  as
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The energy loss model of our simulator is basically 
the Bethe equation [3]:
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where N  is the number density, 1658.1=γ  and J
represents the mean excitation energy in the solid. 
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In this way the trajectory of each electron can be 
pursuit down to 50eV instead of the commonly used 
cut-off energy 500eV. 

In case of compound materials, the weight individual 
contributions of the atoms have to be used [5]:
For high electron energy,
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For low electron energy,
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where Ni is the number of atoms of the thi  species
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and ∑
j

jj Am sums up to be the molecular weight.

四、蒙地卡羅方法

Both elastic and inelastic scattering events occur 
according to given probabilities and statistical 
information is extracted about microscopic variables of 
interest. Due to the statistical nature of the simulated 
process, a quite large number of electron trajectories are 
required in order to obtain sufficient accuracy in the 
results.

A random number 1R , uniformly distributed between 
0 and 1, is first invoked for deciding the free path length 

s∆  traveled between two subsequent collisions [6], [7].
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where iσ  is the total elastic cross section relative to the 

atom of the thi  species.
A second random number 2R  determines the atom 

species involved in the collision. Taking into account 
that the probability iP  of scattering from an atom of the 

thi  species is proportional to iiN σ  and 1=∑i iP , 

we have
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Thus, the interval [0, 1] is divided in segments of length 

iP . The type of atom acting as scattering center is given 

by the value of 2R .

The azimuthal angle is ranging between 0 and π2  in 
equal probability and is given by the random number 

3R ,

32 Rπφ =                             (14)
The probability of scattering angle, which range is 

equal probability between 0 and π
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where 4R  is also [0,1]

五、結果與討論

Figure 1 shows the scattering trajectories of 100 
simulated electrons with incident energies of 20keV in a 
target of PMMA (0.5μm) / SiO2 (0.5μm) / Si (5μm).
Some electrons travel a long distance with a small 
energy loss. The back scattering electrons from Si 
substrate into resist will expose the resist, which we 
don’t want to. This effect is call proximity effect. 

Figure 2 plots the electron scattering range as a 



3

function of target density for two different incident 
energies. Note that the data points in Figure 2 are the 
simulated results for PMMA (ρ=0.94 g/㎝3), Si (ρ
=2.328 g/㎝3), GaAs (ρ=5.32 g/㎝3), and Au (ρ=19.3 
g/㎝3), while the solid and dashed curves are empirically 
fitted to the following relation.

92.0694.152.11),( −= ρρ ii EERange         (16)
This equation is good enough to predict the range of 
electrons incident to different target materials with 
different incident energies. The electron ranges are 
almost inversely proportional to the target density.

Figure 3 shows the energy distribution along depth z. 
Peak energy intensity is near the interface of resist and 
substrate. Most of electrons are collision near the 
interface of resist and substrate, so they have greater 
probability to go back to resist.

Figure 4 shows the effect of incident electron energy 
on the width and intensity of energy deposition density. 
As the energy of incident beam increases, the 
backscattered exposure spreads more and more. 
According to above reason this is very difficult to trade 
off the resolution and proximity. Higher energy is good 
for resolution, but is bad for proximity effect. 

For energy deposition in lateral spreading, the range 
is defined as the standard deviation. Figure 5 shows the 
energy deposition range as a function of incident energy. 
The backward scattering energy range in the resist is 
almost proportion to incident energy. Electrons 
penetrate the resist layer of 500nm and enter into Si 
substrate when their energies are over 5keV. The 
forward scattering energy range is saturated at the value 
corresponding to the incident energy of 5keV.

Qualitatively, skewness measures the asymmetry of 
the distribution and kurtosis measures how flat the top 
of a distribution. Figure 6 shows the skewness and 
kurtosis for energy deposition distribution along y-axis 
in resist by backward scattering. It is well known that 
Gaussian distributions have a skewness of 0 and a 
kurtosis of 3. From the results of Figure 6 we can 
assume that the energy deposition density distributions 
within the resist by backward scattering behave as 
Gaussian distributions.

In discrete from, the convolution integer may be 
written as a convolution sum
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where [ ]nf  is the arbitrary input, [ ]nh  is the impulse 

response and [ ]ng  is called the convolution sum. In 
two-dimension, the convolution integral and 
convolution sum, (17) can be extended as
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Figure 7 shows the results of 2D energy deposition 
along lateral direction y within the photo resist for 
pattern width of 1000nm using convolution method.

六、結論

The Monte Carlo simulation programs developed 
in this work are very useful to the electron-beam 
lithography. We can follow the electron trajectories in 
resist and substrate. An empirical result of the spreading 
range as a function incident energy and target material 
density is very important to process design. The lateral 
spreading of energy deposition is the main limitation of 
electron-beam lithography. Spreading range is small for 
lower incident energy, but electrons may not penetrate 
resist at this energy. The convolution integral is very 
powerful to extend the energy distribution. 
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Figure 1. Electron scattering trajectories with incident 
energy 20keV in a target of PMMA (0.5μm) / SiO2 (0.5
μm ) / Si (5μm).
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Figure 2. Range as a function of target density for two 
different incident energies

Figure 3. The forward scattering energy deposition at 
depth Z for resist thickness 500nm coating on Si 
substrate.

Figure 4. Energy deposition density for back scattering

Figure 5. Energy deposition range as a function of 
incident energy in the resist

Figure 6. The skewness and kurtosis of energy 
distribution in the resist along y-axis by backward 
scattering

Figure 7. 2D Energy deposition profile used convolution
method for pattern width1000nm.
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