Rz N C o o

g3
SOOTHE S AR RS Y

R§

w2

PR AL

2
ST A R PR
NSC 89-2215-E-009-120

BT ESFFL
BB PRPIREF Y 7L -—3 3
2_F R BB

MBI EG 1 p2Y0&THE 3P
AL T MPABERER LA FTAPLE
- F[ITP it efficiently. Thus, we will concentrate on our
eI 10115 5T research work on the important classes of 1Ps
. [”i%:'f! iﬁﬁﬁ e 'zﬁf‘iﬁi& such as embedded processors, DSP, and
ik %HE KEFT R ! j‘ﬁ i system buses. For each class of IP designs, we

ﬁﬁ [BT A ;[’e_,i;ﬁ i R
*“ﬂﬂ%ﬁﬁﬁﬁ[w ﬁ§@|p
I b R PP R g e B
AR P AIFSES o 25 [P ol B 35k Fuﬁﬁ
%TW%@WP@@TW$%%%ﬁ’%

INEN AN ﬁ’ﬁﬁ%’pﬂlﬂzﬂ; e eIy 1P &
Gl ek wﬁ@ﬁ%ﬁﬁwf

SREREE 5P~ TRV 1P EE - 25
fr 74T TR SRR Gt 1,35

i TEH | Tﬂ*“mirf— Iﬁ?ﬁrﬂ” RN
I ‘& (P R =5 A J’ﬁmuﬂf

%ll—?ﬁ/th— [[Ef_l’:qﬁﬁlﬁg) ,—f-Eﬁiﬁ{éﬁ I_{ﬁ[%’lﬂj
PF%W$%&Jﬁvw’wﬁ@@r~ﬂ*
}%Kﬁ‘]‘ff’:f %”ﬁﬁ'*liﬁﬁ i RTL [Egt])~
it Tqﬁﬁﬁ“%ﬁﬂifﬁjﬁg IS RTL
F%“FE“”V < Mﬁ“FEWEWfLﬁ'P’”f ’ ﬁjxﬁﬁ'ﬁi
7 RTL g il et — 354 o

G ARG - TR R
i (RURRCE IR - FREEEE TR -
CERR

Abstract

In this project, we propose to investigate the
algorithms for solving functional verification
problems, to build a suitable verification
system for SOC designs, and to verify severa
important IP blocks and the system bus in a
SOC design to illustrate the usefulness and
efficiency of our verification system. We
believe that different class of IPs needs
different verification techniques and
approaches to perform the verification tasks

will investigate the verification problem,
propose verification techniques and then
apply these techniques to verify area design.
We aso integrate all of our research work
together into a system framework. After
solving the verification problems of important
IP designs, we will further investigate the
sequential equivalence- checking problem of
the RTL level design against the system level
design to ensure the RTL design match the
system level design. This will ensure the
consistence between the RTL design and its
system level design.

Keywords: System-on-a-chip (SOC),
Formal Verification, Functional Verification,
IP, Processor, DSP, Bus Protocol, Testing,
Simulation.

RS JUEI AN

Hardware designs have reached a
mammoth scale today, with over ten million
transistors integrated on a single chip. This
breakthrough in technology has, in fact,
reached the point, where it is hard to design a
complete system from scratch. Industry has
aready started designing acircuit from alarge
repertoire of Intellectual Property (IP)
Components or IP Cores sold by many
vendors. System-on-chip designs usualy
involve the integration of heterogeneous
components on a standard bus as shown in
Figure 1. Designers often do not have
complete knowledge of the implementation
detalls of each component. For example,

vendors may want to protect their IP Cores by
only providing interface specifications.
Consequently, the validation of such designs
is becoming more and more challenging. In
this project, we propose to investigate
methodologies and algorithms for formally

verifying [P Core-based, system-on-chip
designs.
Processor Memory DMA
IP Core IP Core core
3 K i Bus
< 3 3 t >
DSP Special Bridge
IP Core Core
i Bus
< i i >
Input Output

IP Core IP Core

Figure 1 A typical SOC design.

Figure 1 shows a typical IP Core based
system using a collection of various IP cores,
with interconnecting buses running among
them. Since the cores may be obtained from
different vendors, there is a need for standard
buses to connect them. We also envision some
kind of interface logic to connect IP Cores to
the standard buses. In some cases |P Cores are
designed to be compliant to a standard bus
protocol and can be connected directly to the
bus without glue. Bridges are used to extend
such systems in a hierarchical fashion by
connecting buses.

IP Cores are often pre-validated. This
increases the confidence of system designer in
third party IP Cores. The validation of IP
Coresmust be part of the IP Core design itself.
So in this scenario, where we have a)
pre-verified IP Cores with certain guarantees
and confidence, b) a standard bus protocol,
and c) IP Core specific glue to connect cores
to the bus, we can decompose the task of
verifying system-on-chip designs into three
parts as follows:

1. Verify the interconnecting buses and bus
bridges;

2. Verify the IP Core specific glue logic;

3. Given the verification guarantees of
interconnecting buses and IP Cores, verify the

complete system.

Since the bus protocol is standard, it
needs to be verified once and for all. Glue
logic is IP Core specific. If we have a
collection of protocols for IP Cores, then we
can design an abstraction of the glue between
the standard bus and each 1P Core protocol.
This abstract model is designed once. Then,
we intend to check if the actua glue
implementation refines the abstract model of
the glue [7]. Thus, we have reduced the
complexity of verifying the glue to checking
refinement. When this is completed for all 1P
Cores and their glues, we can proceed to the
third step.

Experiencein industry with IP Core based
ASIC designs shows that most of the bugs are
found in the bus or glue logic. To our
knowledge, there is still no agreement on a
standard bus protocol for system-on-chip
designs. However, the PCI Local Bus protocol
[12, 13, 14] is widely accepted by many
microprocessor based systems (eg. Pentium
and Alpha) and IP Core companies. Therefore,
we focus in this paper on verifying
system-on-chip designs using the PCI Local
Bus. This will provide insight into questions
like, what basic functionality is required of the
buses, what kind of standard interfaces are
needed for IP Core based designs, and how
glue logic may be designed and verified for
heterogeneous IP Cores. We have formally
verified the correctness of the PCl bus
protocol using symbolic model checking [5].

In many cases, bus protocols can be
verified with current for-mal verification
techniques as demonstrated by [4] and [6]. We
concentrate more on the functional properties
of the PCI loca bus and bridges rather than
performance issues. A formal treatment of
PCI bus performance is given by Campos, et
a. in [4]. In a recent paper [11], theorem
proving techniques have been used to validate
a proposed solution for a bug in the PCI bus
protocol, but this approach requires
considerable expertise in modeling the bus
and is not easily automated.

S P S

The increasing complexity and circuit
size of designs have made function
verification task as one of bottlenecksin VLS
design cycle. In recent conferences, many
panelists claimed that functional verification
takes about 60%-70% of design cycle.

The tasks of functional verification
include detecting errorsin designs and finding
the causes of the errors (debugging process).
To detect errors in designs, verification
engineers and designers may generate test
vectors manually, write test benches using
tools, and write properties. Currently, formal
verification tools checks whether the design
satisfies their properties. If not, a set of
counter-examples (" error traces') can be
generated to debug the design.

Usually, forma verification tools can
generate good error traces to make the
debugging process easier. Test vectors and
test benches are mainly used in simulators and
emulators to detect errorsin designs. If errors
are found, error traces are written out for
debugging process. In general, these error
traces produced by random/ pseudo-random
test benches contain very long cycles and
many redundant states. It is very difficult for
users to debug using these traces and to take
long simulation time to verify the bug fixes.
Thus, we areinspired to devel op the technique
to compact eror trace generated by
random/pseudo-random test benches.

The main reason for compacting error
traces generated by pseudo random
simulations is that they may contains very
long cycles and many redundant states. In the
debugging process, users need to find the
causes of bugs from the information in the
error trace. Thus, The longer cycles of
simulation trace are, the more time users
spend to debug. Moreover, after finding the
causes of bugs and fixing them, users perform

the same simulation run to verify the bug fixes.

Then, users put the simulation run into the
daily regression suites to prevent the same
bugs happen again. Therefore, shorter error
traces not only reduce the simulation time
required to verify bug fixes, but aso reduce
the simulation time for daily regression.

A digita circuit can be formulated as a
finite state machine (FSM) and the circuit
behavior can be viewed as the sequences of
state traversal. The error trace contains al
information of a sequence of state traversal
from an initial state to an error state. The
problem of compacting the error trace can be
defined as follows: Given a digital circuit
design and its simulation error trace
information containing theinitial state and the
error state, the problem is to find other error
trace as shorter as possible.

Our approach to solve compacting the
error trace is based on the following three
techniques. First, an efficient technique is
used to eliminate the redundant states and to
generate the unique states of the error trace.
Then, the connected graph of these unique
statesis generated by computing the reachable
states by one cycle for each unique state. The
Dijkstra's shortest path algorithmis applied on
the connected graph to find out the shortest
error trace. Finaly, the corresponding
input/output test patterns are automatically
generated for the new error trace. This
algorithm is named as SET1. In experiments,
we found out that not all of the unique states
are needed to compute their reachable next
states. Thus, algorithm SET2, modified from
SET1, only computes the reachable states by
one cycle for those unique states, when they
are needed in Dijkstras shortest path
algorithm to find the shortest error trace.

L A

We have implemented our SET1 and
SET2 agorithms in C++ language with the
CUDD (Colorado University Decision
Diagram) package. The experiments were
performed on a 1.4 GHz AMD Athlon
machine with 2GB main memory.

Circuit | CPU Time (sec) | Mem (MB)
-Trace#t| SET1 SET2 | Speedu|SET1| SET2
p
B4-1 | 2847.40| 183.58 15.5 12.28| 11.79
B4-2 | 4882.02] 933.54 52| 17.47] 16.65
B4-3 | 6864.21| 1005.14 6.8| 24.11| 22.92
B4-4 | 8180.27| 221.32| 37.0] 27.88] 26.37
B4-5 | 8937.08] 558.03 16.0] 29.12| 27.56

[B11-2 | 27243 15358 1.8/ 92.18] 51.39
Table 1. Theresults of SET1 and SET2.

Table 1 shows the CPU time and memory
usage of SET1 and SET2 algorithms for cases
in circuit “b4" and case b11-2", which
requires longer CPU timesto find the shortest
error trace. SET2 found the same length of
shortest error trace as SET1 did. In generd,
SET?2 used less memory usage to achieve the
same quality as SET1 did, while SET2
improve the CPU time dramatically for cases
in "b4". The CPU time improvement is
contributed by that the number of states to
compute the next states in SET2 is reduced
from the number of unique states to the
number states with length not greater than the
length of the shortest error trace. For instance,
in case b4-4", SET1 compute the reachable
next states for 9380 states, SET2 only
compute the reachable next states for states
with length less than 167 from initial state.
Thus, SET2 has 37 times speedup than SET1
for this case.

We have published three papers based on
this research work:

1. Jiunn-Chern Chen, Yirng-An Chen, "Equivalence
Checking of Integer Multipliers’, in Proceedings
of ASP-DAC'01, 2001.

2. Chien-Pang Lu, Wen-Chien Liu, Yirng-An Chen,
“High Probability High Density Finite State
Traversal”, in proceeding of IEEE/ ACM 10th
International Workshop on Logic & Synthesis,
2001.

3. Yirng-An Chen, Fang-Sung Chen, “Algorithmsfor
Compacting Error Traces”, to be appeared in
Proceedings of ASP-DAC'03, 2003

T YR
[1]. A. Aharon, D. Goodman, M. Levinger, Y
Lichtenstein, Y. Malka, C. Metzger, M. Moalco, G.
Shurek, “Test Program Generation for Functional
Verification of PowerPC Processors in IBM” In
proceeding of ACM/IEEE Design Automation
Conference 1995

[2] S. Berezin, A. Biere, E. Clarke, and Y. Zhu.
“Combining symbolic model checking with
uninterpreted functions”, In Proceeding of the
Conference of Formal Methods in Computer Aided
Design, Nov., 1998

[3] V. Bertacco, M. Damiani, S. Quer, “ Cycle-based
symbolic simulation of gate-level synchronous circuits”,
In Proceeding of the 36th Design Automation

Conference, June, 1999

[4] BROCK, B., KAUFMANN, M., AND MOORE, J.
S. “ACL2 theorems about commercial
microprocessors.” In Proceedings of the Forma
Methods on Computer-Aided Design (November 1996),
pp. 275-293.

[5] S. Campos, E. Clarke, W. Marrero, M. Minea.
“Verifying the performance of the PCI Local Bus using
Symbolic Techniques”, IEEE Intl. Conf. in Comp.
Design, Oct. 1995.

[6] R. Chandramouli and S. Pateras, Testing Systemson
a Chip," IEEE Spectrum, pp. 42-47, Nov. 1996.

[7] P. Chauhan, E. Clarke, Y. Lu, D. Wang “Verifying
IP-Core based System-On-Chip Designs’, |IEEE Intl.
Conf. in Comp. Design, Oct. 1999

[8] CLARKE, E. M., GERMAN, S. M., AND ZHAO,
X. Verifying the SRT division using theorem proving
techniques. In Computer-Aided Verification, CAV —96,
Springer-Verlag, pp. 111-122.

[9] CLARKE, E.M., AND ZHAO, X. Anaytica: A
theorem prover for Mathematica. In The Journa of
Mathematica (1993).

[10] L. Fournier, A. Koyfman, M. Levinger,
“Developing an architecture validation suite —
Application to the PowerPC architecture”, In
Proceeding of the 33rd Design Automation Conference,
June, 1999.

[11] R. Hosabettu, M. Sirvas, and G. Gopal akrishnan,
“Decomposing the proof of correctness of pipelined
microprocessors”, In Proceeding of the Computer
Aided Verification Conference, June, 1998

[12] H. Iwashita, S. Kowatari, T. Nakata, F. Hirose
“Automatic Test Program Generation for Pipelined
Processors”, In Proceedings of the Internationa
Conference on Computer Aided Design, November
1994

[13] M. Kantrowitz and L.M. Noack, “ I’m Done
Simulating: Now What? Verification Coverage
Analysis and Correctness Checking of the DECchip
21164 Alpha Microprocessor”, In Proceeding of the
33rd Design Automation Conference, June, 1996.

[14] MCMILLAN, K. L. Symbolic Model Checking.
Kluwer Academic Publishers, 1993.

[15] K. McMillan, “ Verification of an implementation
of Tomasulo’s agorithm by compositional model
checking”, In Proceeding of the Computer Aided
Verification Conference, June, 1998

[16] MCSORLEY, O. L. High-Speed arithmetic in
binary computers. In Proceedings of IRE (1961), pp.
67-91.

[171 A. Mokkedem, R. Hosabettu, and G.
Gopaakrishnan. “Formalization and Proof of a
Solution to the PClI 2.1 Bus Transaction Ordering
Problem”, In Proceeding of the Conferenceof Formal
Methods in Computer Aided Design, Nov., 1998

[18] J. Sawada, W. A. Hunt., “Processor verification
with precise exceptions and speculative execution”, In
Proceeding of the Computer Aided Verification
Conference, June, 1998

[19] J. U. Skakkebak, R. B. Jones, D. L. Dill, “Formal
verification of out-of-order execution using incremental
flushing”, In Proceeding of the Computer Aided
Verification Conference, June, 1998

[20] M. Veev, R. E. Bryant, “ Exploiting positive
equality and partial non-consistency in the formal
verification of pipelined microprocessors”, In
Proceeding of the 36th Design Automation Conference,
June, 1999.

[21] “VSI Alliance”, Architecture Document, version
1.0, 1997

