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一、中文摘要 

在這個計畫中，我們提出去發展解決
功能驗證問題的演算法，以此來建立一個
適當的驗證系統以作系統晶片設計驗證之
用，並用它來驗證系統晶片中幾個重要 IP
單元及系統匯流排以說明所發展之驗證系
統的用處和效率。我們相信要有效率的驗
證不同階層的 IP 需要不同的驗證方法，所
以我們會將研究集中在幾個重要的 IP 類
別，如內建處理器、數位信號處理器及系
統匯流排。對每一種類別的 IP 設計，我們
會探討個別的驗證問題及提出驗證方法，
最後應用這些方法對一個設計實例來作驗
證。我們也會將我們個別的研究整合在一
起成為一個系統架構，在解決幾個重要的
IP 設計的驗證工作之後，我們要更進一步
探討循序電路相等性檢查在 RTL 階層以及
在系統階層上的問題，以確定系統在 RTL
階層及系統階層確實是相吻合，而這些保
證了 RTL 階層及系統階層的一致性。 

 

關鍵詞：系統晶片，正規驗證，處理器，

數位信號處理器，系統匯流排，功能驗證，

模擬，測試. 
 
Abstract 
In this project, we propose to investigate the 
algorithms for solving functional verification 
problems, to build a suitable verification 
system for SOC designs, and to verify several 
important IP blocks and the system bus in a 
SOC design to illustrate the usefulness and 
efficiency of our verification system. We 
believe that different class of IPs needs 
different verification techniques and 
approaches to perform the verification tasks 

efficiently. Thus, we will concentrate on our 
research work on the important classes of IPs 
such as embedded processors, DSP, and 
system buses. For each class of IP designs, we 
will investigate the verification problem, 
propose verification techniques and then 
apply these techniques to verify a real design. 
We also integrate all of our research work 
together into a system framework. After 
solving the verification problems of important 
IP designs, we will further investigate the 
sequential equivalence- checking problem of 
the RTL level design against the system level 
design to ensure the RTL design match the 
system level design. This will ensure the 
consistence between the RTL design and its 
system level design. 
 
Keywords: System-on-a-chip (SOC), 
Formal Verification, Functional Verification, 
IP, Processor, DSP, Bus Protocol, Testing, 
Simulation. 
 
二、緣由與目的 

Hardware designs have reached a 
mammoth scale today, with over ten million 
transistors integrated on a single chip. This 
breakthrough in technology has, in fact, 
reached the point, where it is hard to design a 
complete system from scratch. Industry has 
already started designing a circuit from a large 
repertoire of Intellectual Property (IP) 
Components or IP Cores sold by many 
vendors. System-on-chip designs usually 
involve the integration of heterogeneous 
components on a standard bus as shown in 
Figure 1. Designers often do not have 
complete knowledge of the implementation 
details of each component. For example, 



vendors may want to protect their IP Cores by 
only providing interface specifications. 
Consequently, the validation of such designs 
is becoming more and more challenging. In 
this project, we propose to investigate 
methodologies and algorithms for formally 
verifying IP Core-based, system-on-chip 
designs. 

Processor
IP Core

Figure 1 A typical SOC design.
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Figure 1 shows a typical IP Core based 

system using a collection of various IP cores, 
with interconnecting buses running among 
them. Since the cores may be obtained from 
different vendors, there is a need for standard 
buses to connect them. We also envision some 
kind of interface logic to connect IP Cores to 
the standard buses. In some cases IP Cores are 
designed to be compliant to a standard bus 
protocol and can be connected directly to the 
bus without glue. Bridges are used to extend 
such systems in a hierarchical fashion by 
connecting buses. 

IP Cores are often pre-validated. This 
increases the confidence of system designer in 
third party IP Cores. The validation of IP 
Cores must be part of the IP Core design itself. 
So in this scenario, where we have a) 
pre-verified IP Cores with certain guarantees 
and confidence, b) a standard bus protocol, 
and c) IP Core specific glue to connect cores 
to the bus, we can decompose the task of 
verifying system-on-chip designs into three 
parts as follows: 

1. Verify the interconnecting buses and bus 
bridges; 
2. Verify the IP Core specific glue logic; 
3. Given the verification guarantees of 
interconnecting buses and IP Cores, verify the 

complete system. 
Since the bus protocol is standard, it 

needs to be verified once and for all. Glue 
logic is IP Core specific. If we have a 
collection of protocols for IP Cores, then we 
can design an abstraction of the glue between 
the standard bus and each IP Core protocol. 
This abstract model is designed once. Then, 
we intend to check if the actual glue 
implementation refines the abstract model of 
the glue [7]. Thus, we have reduced the 
complexity of verifying the glue to checking 
refinement. When this is completed for all IP 
Cores and their glues, we can proceed to the 
third step. 

Experience in industry with IP Core based 
ASIC designs shows that most of the bugs are 
found in the bus or glue logic. To our 
knowledge, there is still no agreement on a 
standard bus protocol for system-on-chip 
designs. However, the PCI Local Bus protocol 
[12, 13, 14] is widely accepted by many 
microprocessor based systems (eg. Pentium 
and Alpha) and IP Core companies. Therefore, 
we focus in this paper on verifying 
system-on-chip designs using the PCI Local 
Bus. This will provide insight into questions 
like, what basic functionality is required of the 
buses, what kind of standard interfaces are 
needed for IP Core based designs, and how 
glue logic may be designed and verified for 
heterogeneous IP Cores. We have formally 
verified the correctness of the PCI bus 
protocol using symbolic model checking [5]. 

In many cases, bus protocols can be 
verified with current for-mal verification 
techniques as demonstrated by [4] and [6]. We 
concentrate more on the functional properties 
of the PCI local bus and bridges rather than 
performance issues. A formal treatment of 
PCI bus performance is given by Campos, et 
al. in [4]. In a recent paper [11], theorem 
proving techniques have been used to validate 
a proposed solution for a bug in the PCI bus 
protocol, but this approach requires 
considerable expertise in modeling the bus 
and is not easily automated. 

 
三、研究方法與成果 



The increasing complexity and circuit 
size of designs have made function 
verification task as one of bottlenecks in VLSI 
design cycle. In recent conferences, many 
panelists claimed that functional verification 
takes about 60%-70% of design cycle.  

The tasks of functional verification 
include detecting errors in designs and finding 
the causes of the errors (debugging process). 
To detect errors in designs, verification 
engineers and designers may generate test 
vectors manually, write test benches using 
tools, and write properties. Currently, formal 
verification tools checks whether the design 
satisfies their properties. If not, a set of 
counter-examples (``error traces'') can be 
generated to debug the design.  

Usually, formal verification tools can 
generate good error traces to make the 
debugging process easier.  Test vectors and 
test benches are mainly used in simulators and 
emulators to detect errors in designs. If errors 
are found, error traces are written out for 
debugging process. In general, these error 
traces produced by random/ pseudo-random 
test benches contain very long cycles and 
many redundant states. It is very difficult for 
users to debug using these traces and to take 
long simulation time to verify the bug fixes. 
Thus, we are inspired to develop the technique 
to compact error trace generated by 
random/pseudo-random test benches. 

The main reason for compacting error 
traces generated by pseudo random 
simulations is that they may contains very 
long cycles and many redundant states. In the 
debugging process, users need to find the 
causes of bugs from the information in the 
error trace. Thus, The longer cycles of 
simulation trace are, the more time users 
spend to debug. Moreover, after finding the 
causes of bugs and fixing them, users perform 
the same simulation run to verify the bug fixes. 
Then, users put the simulation run into the 
daily regression suites to prevent the same 
bugs happen again. Therefore, shorter error 
traces not only reduce the simulation time 
required to verify bug fixes, but also reduce 
the simulation time for daily regression. 

A digital circuit can be formulated as a 
finite state machine (FSM) and the circuit 
behavior can be viewed as the sequences of 
state traversal. The error trace contains all 
information of a sequence of state traversal 
from an initial state to an error state. The 
problem of compacting the error trace can be 
defined as follows: Given a digital circuit 
design and its simulation error trace 
information containing the initial state and the 
error state, the problem is to find other error 
trace as shorter as possible.  

Our approach to solve compacting the 
error trace is based on the following three 
techniques: First, an efficient technique is 
used to eliminate the redundant states and to 
generate the unique states of the error trace.  
Then, the connected graph of these unique 
states is generated by computing the reachable 
states by one cycle for each unique state. The 
Dijkstra's shortest path algorithm is applied on 
the connected graph to find out the shortest 
error trace. Finally, the corresponding 
input/output test patterns are automatically 
generated for the new error trace. This 
algorithm is named as SET1. In experiments, 
we found out that not all of the unique states 
are needed to compute their reachable next 
states. Thus, algorithm SET2, modified from 
SET1, only computes the reachable states by 
one cycle for those unique states, when they 
are needed in Dijkstra's shortest path 
algorithm to find the shortest error trace. 
 
四、結果與討論 

We have implemented our SET1 and 
SET2 algorithms in C++ language with the 
CUDD (Colorado University Decision 
Diagram) package. The experiments were 
performed on a 1.4 GHz AMD Athlon 
machine with 2GB main memory.  

 
Circuit CPU  Time (sec) Mem (MB) 
-Trace# SET1 SET2 Speedu

p 
SET1 SET2 

B4-1 2847.40 183.58 15.5 12.28 11.79 
B4-2 4882.02 933.54 5.2 17.47 16.65 
B4-3 6864.21 1005.14 6.8 24.11 22.92 
B4-4 8180.27 221.32 37.0 27.88 26.37 
B4-5 8937.08 558.03 16.0 29.12 27.56 



B11-2 272.43 153.58 1.8 92.18 51.38 

Table 1. The results of SET1 and SET2. 
 

Table 1 shows the CPU time and memory 
usage of SET1 and SET2 algorithms for cases 
in circuit ``b4'' and case ``b11-2'', which 
requires longer CPU times to find the shortest 
error trace.  SET2 found the same length of 
shortest error trace as SET1 did. In general, 
SET2 used less memory usage to achieve the 
same quality as SET1 did, while SET2 
improve the CPU time dramatically for cases 
in ``b4''. The CPU time improvement is 
contributed by that the number of states to 
compute the next states in SET2 is reduced 
from the number of unique states to the 
number states with length not greater than the 
length of the shortest error trace. For instance, 
in case ``b4-4'', SET1 compute the reachable 
next states for 9380 states, SET2 only 
compute the reachable next states for states 
with length less than 167 from initial state. 
Thus, SET2 has 37 times speedup than SET1 
for this case. 

We have published three papers based on 
this research work: 
1. Jiunn-Chern Chen, Yirng-An Chen, "Equivalence 

Checking of Integer Multipliers", in Proceedings 
of ASP-DAC'01, 2001. 

2. Chien-Pang Lu, Wen-Chien Liu, Yirng-An Chen, 
“High Probability High Density Finite State 
Traversal”, in proceeding of IEEE/ ACM 10th 
International Workshop on Logic & Synthesis, 
2001. 

3. Yirng-An Chen, Fang-Sung Chen, “Algorithms for 
Compacting Error Traces”, to be appeared in 
Proceedings of ASP-DAC'03, 2003 
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