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Abstract

Conventional data envelopment analysis (DEA) assists decision makers in distinguishing between efficient and inefficient decision-
making units (DMUs) in a homogeneous group. However, DEA does not provide more information about the efficient DMUs. This
research proposes a methodology to determine one common set of weights for the performance indices of only DEA efficient DMUs.
Then, these DMUs are ranked according to the efficiency score weighted by the common set of weights. For the decision maker,
this ranking is based on the optimization of the group’s efficiency.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Charnes et al. [1] introduce data envelopment analysis (DEA) to assess the relative efficiency of a homogeneous
group of operating decision-making units (DMUs), such as schools, hospitals, or sales outlets. The DMUs usually
use a set of resources, referred to as input indices, and transform them into a set of outcomes, referred to as output
indices. DEA successfully divides them into two categories: efficient DMUs and inefficient DMUs. The DMUs in the
efficient category have identical efficiency scores. However, it is not appropriate to claim that they have the equivalent
performance in actual practice. In addition, for the category of inefficient DMUs, the efficiency score is derived from
comparisons involving performances of different sets of efficient DMUs. Their performances cannot be compared by
comparing them with the range of efficiency scores generated from the different facets.

Andersen et al. [2] evaluate that a DMUs efficiency possibly exceeds the conventional score 1.0, by comparing the
DMU being evaluated with a linear combination of other DMUs, while excluding the observations of the DMU being
evaluated. They try to discriminate between these efficient DMUs, by using different efficiency scores larger than 1.0.
Cook et al. [3] developed prioritization models to rank only the efficient units in DEA. They divide those with equal
scores, on the boundary, by imposing the restrictions on the multipliers (weights) in a DEA analysis. Torgersen et al. [4]
achieved a complete ranking of efficient DMUs by measuring their importance as a benchmark for inefficient DMUs.
Bardhan et al. [5] ranked inefficient DMUs using measure inefficiency dominance (MID) which is based on slack-
adjusted DEA models. The measure ranks the inefficient DMUs according to their average proportional inefficiency in
all inputs and outputs. Cooper et al. [6] ranked inefficient units according to scalar measures inefficiency proportion
(MIP) in DEA, based on the slack variables.
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Doyle et al. [7], in their research into the ranking of overall DMUs, developed a ranked scale method utilizing the
cross-efficiency matrix, by ranking the average efficiency ratios of each unit. The idea of common weights in DEA was
first introduced by Cook et al. [8] and Roll et al. [9] in the context of applying DEA to evaluate highway maintenance
units. Cook et al. [10,11] gave a subjective ordinal preference ranking by developing common weights through a
series of bounded DEA runs, by closing the gap between the upper and lower limits of the weights. Ganley et al. [12]
considered the common weights for all the units, by maximizing the sum of efficiency ratios of all the units, in order
to rank each unit. They suggest the potential use of the common weights for ranking DMUs. Sinuany-Stern et al. [13]
used linear discriminant analysis in order to find a score function which ranks DMUs, given the DEA division into
efficient and inefficient sets. Sinuany-Stern et al. [14] developed DR/DEA to provide for given inputs and outputs the
best common weights in order to rank all the units on the same scale.

In this paper we aim to search one common set of weights to create the best efficiency score of one group composed
of efficient DMUs. Then, we use this common set of weights to evaluate the absolute efficiency of each efficient DMUs
in order to rank them. The ranking that adopts the common set of weights generated from our methodology makes sense
because a decision maker objectively chooses the common weights for the purpose of maximizing the group efficiency.
For instance, the general manager of a bank desires to measure the performance of DEA efficient branches of the bank.
He would determine one common set of weights base upon the group performance of the DEA efficient branches.
In Section 2, we review the concept of DEA framework. In Section 3, we introduce a two-stage algorithm. The first
stage is a linear programming model to search one common set of weights for all efficient DMUs. The second stage
is to select an optimal solution while the first stage generates alternative solutions. In Section 4, we take two virtual
examples to trial our methodology. The expansion of ranking object from efficient DMUs to all DMUs is completely
discussed in Section 5. Finally, Section 6 gives our conclusions.

2. DEA framework

DEA was initially developed as one methodology for assessing the comparative efficiencies of organizational units.
The initial problem is usually expressed as: n DMUs to be assessed with m inputs and s outputs indices. For each DMU,
say DMUj , the given values of indices are denoted as (x1j , x2j , . . . , xmj ) and (y1j , y2j , . . . , ysj ), respectively. Given
the data, DEA measures the best practice comparative efficiency of each DMU once and hence needs n optimizations,
one for each DMUj to be evaluated. Let the DMUj being evaluated on any trial be designated as DMUo where o
ranges over 1, 2, . . . , n. We can solve the following fractional programming problem (P1) or linear programming (P2)
to obtain objective value (relative efficiency �∗

o) and one comparative set of weights of inputs (vio, i = 1, 2, . . . , m) and
outputs (uro, r = 1, 2, . . . , s). The symbol � is a positive Archimedean infinitesimal constant, which is used in order
to avoid the appearance of zero weights. This zero case in weights would result in the meaningless of certain indices
used in DEA.

(P1) DEA-FP:

�∗
o = max

∑s
r=1yrouro∑m
i=1xiovio

s.t.

∑s
r=1yrjuro∑m
i=1xij vio

�1, j = 1, . . . , n,

uro �� > 0, r = 1, . . . , s,

vio �� > 0, i = 1, . . . , m.

(P2) DEA-LP:

�∗
o = max

s∑
r=1

yrouro

s.t.
m∑

i=1
xiovio = 1
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−
m∑

i=1
xij vio +

s∑
r=1

yrjuro �0, j = 1, . . . , n,

uro �� > 0, r = 1, . . . , s,

vio �� > 0, i = 1, . . . , m.

It is claimed that object DMUo is comparative efficient, with the efficiency �∗
o = 1.0, also called an efficient DMU.

We defines E = {j |�∗
j = 1.0, j = 1, 2, . . . , n} to represent the set of efficient DMUs. It is helpful for decision makers

only to focus on the efficient DMUs. However, decision makers always face the problem of how to carry out a further
comparison among DMUs on the set E. The following sections provide further analysis from the viewpoint of absolute
efficiency, to assist in discriminating amongst the efficient DMUs.

3. Common weights analysis (CWA) methodology

3.1. Development

In conventional DEA models, each DMU in turn maximizes the efficiency score, under the constraint that none of
DMUs’efficiency scores is allowed to exceed 1.0. Decision makers always intuitively take the maximal efficiency score
1.0 as the common benchmark level for DMUs. We will take advantage of this benchmark level to help us describe
concretely the concept about the generation of common weights here. In Fig. 1 the vertical and horizontal axes are
set to be the virtual output (weighted sum of s outputs) and virtual input (weighted sum of m inputs), respectively.
By the definition of the efficiency score, the common benchmark level is one straight line that passes through the
origin, with slope 1.0 in the coordinate. Ur (r = 1, 2, . . . , s) and Vi (i = 1, 2, . . . , m) in the weighted sum denote
the decision variables of the common weights for the rth output and ith input index, respectively. The notation of a
decision variable with superscript symbols “′” represents an arbitrary assigned value. For any two DMUs, DMUM and
DMUN , if given one set of weights U ′

r (r = 1, 2, . . . , s) and V ′
i (i = 1, 2, . . . , m), then the coordinate of points M ′

and N ′ in Fig. 1 are (
∑m

i=1xiMV ′
i ,
∑s

r=1yrMU ′
r ) and (

∑m
i=1xiNV ′

i ,
∑s

r=1yrNU ′
r ). The virtual gaps, between points

M ′ and M ′P on the horizontal axes and vertical axes, are denoted as �I ′
M and �O ′

M , respectively. Similarly, for points

N ′ and N ′P , the gaps are �I ′
N and �O ′

N . Therefore, in view of points M ′ and N ′, we observe that there exists a total

virtual gap �I ′
M + �O ′

M + �I ′
N + �O ′

N to the benchmark line. Let the notation of a decision variable with superscript “∗”
represent the optimal value of the variable. We want to determine an optimal set of weights U∗

r (r =1, 2, . . . , s) andV ∗
i ,

(i = 1, 2, . . . , m), such that both points M∗ and N∗ below the benchmark line could be as close to their projection

Benchmark
Virtual Output Slope =1.0

M′P

N′

N′P

ΔN
O

∑ ′m

i=1
xi j Vi 

∑ ′
s

r=1
yr j Ur

′′ ∑∑
s

r=1

m

i=1
yrM Ur xiM Vi ,M′

ΔM
O

ΔM
I

Virtual Input

′

′

′

ΔN
I ′

′′ ∑∑
s

r=1

m

i=1
yrN Ur xiN Vi ,

0

Fig. 1. Gap analysis showing DMU below the virtual benchmark line.
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Table 1
Simple example to simulate CWA scenario

Index Assign arbitrary weight Assign optimal weight
(V ′

1, V
′
2) = (25, 1) (V ∗

1 , V ∗
2 ) = (20.33, 1)

(U ′
1, U

′
2) = (1, 2) (U∗

1 , U∗
2 ) = (1, 3.33)

DMU x1 x2 y1 y2 25x1 + x2 y1 + 2y2 �I ′
j + �O ′

j 20.33x1 + x2 y1 + 3.33y2 �I∗
j + �O∗

j

A 3 5 6 18 80 42 38 65.90 65.90 0
B 4 3 5 22 103 49 54 84.32 78.26 6.06
C 2 6 14 9 56 32 24 46.66 43.97 2.67
D 3 2 13 15 77 43 34 62.90 62.90 0

Sum 150 8.73

Benchmark
Virtual Output

Virtual Input

Slope = 1.0

y1 j + 2y2 j

25x1 j + x2 j

C′ (56,32)

C′P (44, 44)

D′P (60, 60)

A′P (61, 61)

B′P (76, 76)

A′ (80,42)
D′ (77, 43)

B′ (103, 49)

0

Fig. 2. Coordinates of DMUs weighted by arbitrary common set of weights.

points, M∗P and N∗P on the benchmark line, as possible. In other words, by adopting the optimal weights, the total
virtual gap �I∗

M + �O∗
M + �I∗

N + �O∗
N to the benchmark line is the shortest to both DMUs.

The following numerical example simulates the above scenario. Table 1 depicts the values of DMUA, DMUB ,
DMUC , and DMUD on the two input and two output indices. Given an arbitrary weights, U ′

r = (U ′
1, U

′
2) = (1, 2) and

V ′
i = (V ′

1, V
′
2) = (25, 1), the weighted sum of inputs, weighted sum of outputs, and virtual gap �I ′

j + �O ′
j for every

DMU are recorded. In Fig. 2, points A′, B ′, C′ and D′ are weighted by arbitrary weights U ′
r and V ′

i , while A′P , B ′P ,

C′P and D′P are their projection points on the benchmark line. There is a total virtual gap of 150 from the four DMUs
to the benchmark line.

Our methodology, presented in the following subsection, generates one optimal set of weights, U∗ = (U∗
1 , U∗

2 ) =
(1, 3.33) and V ∗ = (V ∗

1 , V ∗
2 ) = (20.33, 1). In Fig. 3, A∗, B∗, C∗ and D∗ are the DMUs weighted by the optimal

common set of weights U∗ and V ∗ while A∗P , B∗P , C∗P and D∗P are their projection points onto the benchmark line.
The minimum total virtual gap will approach 8.73. Obviously, the set of weights is favorable to these efficient DMUs
since they are near the benchmark line. (P3) expresses the original model of our methodology. The object function is to
minimize the sum of the total virtual gaps of DMUs, in set E, to benchmark line. As for the constraint, the numerator is
the weighted sum of outputs plus the vertical virtual gap �O

j and the denominator is the weighted sum of inputs minus

the horizontal virtual gap �I
j . The constraint implies that the direction closest to the benchmark line is upwards and
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Benchmark
Virtual Output

Virtual Input

y1 j + 3.33y2 j

20.33x1 j + x2 j

D*P ≡ D* (62.9, 62.9)

A*P ≡ A* (65.9, 65.9)

B*P (81.29, 81.29)

B* (84.32, 78,26)

C*P (45.32, 45.32)

C* (46.66, 43.97)

Slope = 1.0

0

Fig. 3. Coordinates of DMUs weighted by optimal common set of weights.

leftwards at same time. The ratio of the numerator to the denominator equals to 1.0, which means that the projection
point on the benchmark line is reached. All the DMUs in set E perform in the same manner. � is a positive Archimedean
infinitesimal constant. We also avoid a case of zero value of indices obtained by choosing the set of zero weights. In our
methodology, we assume the benchmark line is located above all DMUs in set E. The optimal common set of weights
U∗

r (r = 1, 2, . . . , s) and V ∗
i , (i = 1, 2, . . . , m) to each efficient DMU would be solved and then each efficient DMU

could obtain one absolute efficiency score as the standard for comparison. Then, ranking of those efficient DMUs would
be completed.

(P3) CWA-FP:

�∗ = min
∑
j∈E

(�O
j + �I

j )

s.t.

∑s
r=1yrjUr + �O

j∑m
i=1xijVi − �I

j

= 1, j ∈ E,

�O
j , �I

j �0, j ∈ E,

Ur �� > 0, r = 1, . . . , s,

Vi �� > 0, i = 1, . . . , m.

The ratio form of constraints in (P3) can be rewritten in a linear form, formulated in the constraints of (P4).
(P4) CWA-LP 1:

�∗ = min
∑
j∈E

(�O
j + �I

j )

s.t.
s∑

r=1
yrjUr −

m∑
i=1

xijVi + (�O
j + �I

j ) = 0, j ∈ E,

�O
j , �I

j �0, j ∈ E,

Ur �� > 0, r = 1, . . . , s,

Vi �� > 0, i = 1, . . . , m.

Then, if we let �I
j + �O

j be �j , (P4) is then simplified to the following linear programming (P5).
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(P5) CWA-LP 2:

�∗ = min
∑
j∈E

�j

s.t.
s∑

r=1
yrjUr −

m∑
i=1

xijVi + �j = 0, j ∈ E,

Ur �� > 0, r = 1, . . . , s,

Vi �� > 0, i = 1, . . . , m,

�j �0, j ∈ E.

(P5) could be rewritten to the equivalent linear programming (P6) by taking out the slack variable �j and aggregating
yr and xi to be Yr and Xi , respectively, where Yr =∑

j∈Eyrj and Xi =∑
j∈Exij .

(P6) CWA-LP 3:

−�∗ = max
s∑

r=1
YrUr −

m∑
i=1

XiVi

s.t.
s∑

r=1
yrjUr −

m∑
i=1

xijVi �0, j ∈ E,

Ur �� > 0, r = 1, . . . , s,

Vi �� > 0, i = 1, . . . , m.

An implicit constraint
∑s

r=1YrUr −∑m
i=1XiVi �0 could exist in (P6). This constraint is redundant since it is a linear

combination of the first set of constraints. We regard Xi (i = 1, 2, . . . , m) and Yr (r = 1, 2, . . . , s) in (P6) as the
input and output indices of one aggregated DMU or group. The goal of (P6) is to maximize the efficiency of the
aggregated DMU, under the constraints that the efficiency score of each DMU in set E cannot exceed the benchmark
level. While the optimal efficiency of the aggregated DMU occurs, one corresponding set of weights is also determined,
to be assigned to every DMU in set E. The ranking score that adopts the common set of weights generated from (P6)
makes sense because the decision maker objectively chooses the common weights for the purpose of maximizing group
efficiency.

For instance, the general manager of a bank desires to measure the performance of all branches of the bank.
A branch would have a higher performance if the required resources could be reduced and the outputs could be
increased. The possible resources could be employees, the number of bank service counters, etc., while the outputs
could be multiple business items existing in the bank such as deposit business, loan business, credit card business,
etc. In addition, customer satisfaction is an important output. The general manager desires to have a set of weights
for these resources and output indices. However, each branch manager may focus on a different business base, a
different strategy, or the limited resources. Therefore, it is difficult for the general manager to set the weight of
each business item subjectively for the discrimination requirement of branches. The general manager could take
advantage of DEA to distinguish the efficient branches from the inefficient ones. While the detailed ranking of ef-
ficient branches is necessary, the general manager could determine one common set of weights for the purpose
of maximizing the overall efficient branches’ efficiency (group efficiency) under the constraints that every efficient
branch’s highest efficiency score cannot exceed 1.0. Because of only considering the group of efficient branches,
the general manager can take those efficient branches as a virtual bank. In other words, the general manager can
determine one common set of weights for efficient branches, with the purpose of maximizing the virtual bank’s
efficiency.

In comparison with a non-radial DEA model in the CRS case, the difference is that (P6) is used to search one common
set of weights, in order to evaluate the absolute efficiency score. Furthermore, (P6) can be used to discriminate between
the DEA efficient DMUs which resulted from the DEA model in the CRS case. In order to obtain more information,
we transform (P6) to its dual form (P7).
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(P7) CWA-DLP 1:

max �

(
s∑

r=1
Pr +

m∑
i=1

Qi

)

s.t. ∑
j∈E

yrj�j − Pr = Yr, r = 1, . . . , s,

∑
j∈E

xij�j + Qi = Xi, i = 1, . . . , m,

�j �0, j ∈ E,

Pr �0, r = 1, . . . , s,

Qi �0, i = 1, . . . , m.

Similarly, (P7) can be used to compare with the Phase II extension of a traditional CCR model (max-slack model) while
the parameter �∗

o is equal to 1.0, as the depicted (P8). The major difference between (P7) and (P8) is that Pr and Qi

are, respectively, the total shortfalls and excesses of all efficient DMUs relative to the benchmark line, corresponding
to the output index r and input index i.

(P8) Phase II extension of CCR model

max �

(
s∑

r=1
s+
r +

m∑
i=1

s−
r

)

s.t. ∑
j∈E

yrj�j − s+
r = yro, r = 1, . . . , s,

∑
j∈E

xij�j + si = xio, i = 1, . . . , m,

�j �0, j ∈ E,

s+
r �0, r = 1, . . . , s,

s−
i �0, i = 1, . . . , m.

The variable value �∗
j in (P7) is the shadow price of the linear programming (P6). Then, the variations of criterion

Eq. (1) will result in the variation of constraint Eq. (2). That is, if the right-hand side of the jth constraint increases 1
unit, then the criterion Eq. (2) will get the variation �∗

j .

s∑
r=1

yrjUr −
m∑

i=1

xijVi �0 + 1, (1)

⎛
⎝ s∑

r=1

⎛
⎝∑

j∈E

yrj

⎞
⎠Ur −

m∑
i=1

⎛
⎝∑

j∈E

xij

⎞
⎠Vi

⎞
⎠+ �∗

j (0 + 1). (2)

�∗
j represents the total virtual gap scale to the benchmark line that can be reduced while we release the upper

bound of efficiency 1.0 for DMUs. If there are multiple DMUs on the benchmark line, �∗
j will give valuable in-

formation to indicate which one most influences the total virtual gap. It is useful for determining the priority of
DMUs on the benchmark line. In the following subsections, we analyze further the ranking rules of those efficient
DMUs.
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3.2. CWA-efficient and CWA ranking rule

In this section, we will introduce the definitions of the CWA-efficient and CWA ranking rules. First, the CWA-
efficiency score of DMUj is defined as Eq. (3).

�∗
j =

∑s
r=1yrjU

∗
r∑m

i=1xijV
∗
i

, j ∈ E. (3)

By the value of CWA-efficiency, we can distinguish the DMUs into two separable classes, DMUs on the benchmark
and those below the benchmark.

Definition 1. DMUj is CWA-efficient (on the benchmark) if �∗
j =0 or �∗

j =1.0. Otherwise, DMUj is CWA-inefficient
(below the benchmark).

The following three definitions is necessary to distinguish whether the DMUs are on or below the benchmark line.

Definition 2. The performance of DMUj is better than DMUi if �∗
j > �∗

i .

Definition 3. If �∗
j =�∗

i < 1, i.e. they are both CWA-inefficient (below benchmark line), then the performance of DMUj

is better than DMUi if �∗
j < �∗

i .

Definition 4. If �∗
j = �∗

i = 1, i.e. they are both CWA-efficient (on benchmark line), then the performance of DMUj is
better than DMUi if �∗

j > �∗
i .

Each DMUs CWA-efficiency score is limited to no greater than 1.0, so there is no DMU upon the benchmark line.
Furthermore, we can even ensure that there is at least one DMU that joins the assessment located on the benchmark
line.

Theorem 1. There is at least one DMU that joins the assessment located on the benchmark line.

Proof. We will use the proof of contradiction to explain the existence of above theorem. Assume that there is no DMU
on benchmark, so we can obtain the optimal criterion and the corresponding optimal value U∗

r , V ∗
i and �∗

j where �∗
j > 0

in P(4) for all j ∈ E (formulated in Eq. (4)). That is, each DMUs efficiency is less than 1 (formulated in Eq. (5)).∑s
r=1yrjU

∗
r + �∗

j∑m
i=1xijV

∗
i

= 1, j ∈ E, (4)

∑s
r=1yrjU

∗
r∑m

i=1xijV
∗
i

< 1, j ∈ E, (5)

∑s
r=1kj (yrjU

∗
r )

m∑
i=1

xijV
∗
i

= 1, j ∈ E. (6)

We can set the constant kj (kj > 1) such that the efficiency is equal to 1 for every j ∈ E (formulated in Eq. (6)). Let
K be the minimum of set {kj , for j ∈ E}, then we can obtain another feasible common set of weights KU∗

r and V ∗
i

accompanies the smaller �∗
j (at least one equals to 0) for all j ∈ E in (P5). The case will result in smaller criterion

and contradicts the fact that the current criterion has been minimized. Hence, there is at least one DMU locates on
benchmark line. �

3.3. Virtual gap analysis

The virtual gaps between virtual input and output indices for each CWA-inefficient DMU could be further decomposed
into the real gap of each performance index. We can further analyze this by translating the model (P6) to the equivalent
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model (P9). As (P9) showed, Pr and Qi can be partitioned as Pr =∑(j∈E)prj and Qi =∑(j∈E)qij and prj and qij are
the shortfall at the output index r and excess at input index i of DMUj , respectively, to the benchmark. So prj = Pr�j

and qij = Qi�j with convex combinations of multipliers �j �0 (j ∈ E ) and
∑

(j∈E) �j = 1.
(P9) CWA-DLP 2:

max
∑
j∈E

�

(
s∑

r=1
prj +

m∑
i=1

qij

)

s.t. ∑
j∈E

yrj�j = ∑
j∈E

(yrj + prj ), r = 1, . . . , s,

∑
j∈E

xij�j = ∑
j∈E

(
xij − qij

)
, i = 1, . . . , m,

�j �0, j ∈ E,

prj �0, r = 1, . . . , s, j ∈ E,

qij �0, i = 1, . . . , m, j ∈ E.

The shortfall p∗
rj and excess q∗

ij of (P9) could be obtained indirectly by the following theorem.

Theorem 2. The shortfall p∗
rj and excess q∗

ij of CWA-inefficient DMUj to benchmark corresponding to the output
index r and input index i are P ∗

r (�∗
j /�

∗) and Q∗
i (�∗

j /�
∗).

Proof. Since p∗
rj and q∗

ij are shortfall and excess of CWA-inefficient DMUj to the benchmark, we have Eq. (7) holds
because of the Definition 1.∑s

r=1(yrj + p∗
rj )U

∗
r∑m

i=1(xij − q∗
ij )V

∗
i

= 1, (7)

∑s
r=1

(
yrj + P ∗

r �∗
j

�∗

)
U∗

r

m∑
i=1

(
xij − Q∗

i �
∗
j

�∗

)
V ∗

i

= 1. (8)

To prove Eq. (8) is a truth, we first decompose the numerator and denominator to obtain Eqs. (9) and (10), respectively.

s∑
r=1

yrjU
∗
r +

s∑
r=1

P ∗
r �∗

j

�∗ U∗
r , (9)

m∑
i=1

xijV
∗
i −

m∑
i=1

Q∗
i �

∗
j

�∗ V ∗
i . (10)

Subtract Eq. (10) from Eq. (9) resulted Eq. (11).

s∑
r=1

yrjU
∗
r −

m∑
i=1

xijV
∗
i + �∗

j

�∗

(
s∑

r=1

P ∗
r U∗

r +
m∑

i=1

Q∗
i V

∗
i

)
. (11)

Since the lower bound of U∗
r and V ∗

i is �, according to Complementary Slackness Theorem, the following relationship
holds.

s∑
r=1

P ∗
r U∗

r +
m∑

i=1

Q∗
i V

∗
i = �

(
s∑

r=1

P ∗
r +

m∑
i=1

Q∗
i

)
= �∗. (12)
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Therefore, the formula inside the parenthesis in Eq. (11) could be substituted by the right-hand side in Eq. (12).
Obviously, Eq. (11) easily translates to Eq. (13).

s∑
r=1

yrjU
∗
r −

m∑
i=1

xijV
∗
i + �∗

j . (13)

Eq. (13) is equal to zero by the fulfillment of constraints in (P5). Hence, Eq. (8) comes into existence and the theorem
is proved. �

3.4. Selection of the alternative optimal common sets of weights

It is worth noting that (P5) sometimes encounters the existence of alternative weights; moreover, different weights
can result in different rankings of efficient DMUs. It is necessary for the decision maker to select the applicable one
from these efficient DMUs. We propose one approach to assist decision makers in dealing with the issue of alternative
rankings. Lets it is observed that one set of output indices with two sets of different index value has the same weighted
sum. While the same weighted sum exists for both sets of different index value by adopting different sets of weights,
Obata et al. [15] propose that it is preferable for output indices to adopt the smaller range of weight. In other words,
a larger range of output index values is desirable to the decision maker. He explains that the benefit of the weighted
sum is from the indices value itself, rather than from the individual weights. Similarly, it is preferable to use the larger
range of weights for input indices. That is, a smaller range of input index values is desirable to the decision maker. The
following procedure is suggested as a way to search the appropriate range of the existing alternative set of weights,
using the L1-norm.

Stage 1: Solve (P5) and obtain the optimal value �∗.
Stage 2: Solve the following linear programming (P10) to obtain one optimal common set of weights.
(P10) Optimal weight analysis:

min
s∑

r=1
Ur −

m∑
i=1

Vi

s.t.
s∑

r=1
yrjUr −

m∑
i=1

xijVi + �j = 0, j ∈ E,

∑
j∈E

�j = �∗,

Ur �� > 0, r = 1, . . . , s,

Vi �� > 0, i = 1, . . . , m,

�j �0, j ∈ E.

In stage 1, we first have to look for the minimization of the total virtual gap. Then select one appropriate weight in
stage 2, under the optimal status of (P1). Thus, we keep the optimal criteria value of (P5) as one constraint in the linear
programming (P10) and then take the minimization of the sum of output weights and maximization of the sum of input
weights as the criterion.

4. Dealing with the data sets with special properties

Two data sets are introduced here, as an illustration. In the first data set, the scales of DMUs are in large ranges. In
the second data set, the number of performance indices is much larger than the number of DMUs. These two examples
usually produce a similarly large number of efficient DMUs. The proposed CWA methodology is able to deal with the
data sets with special properties.
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Table 2
Example 1 with large scale ranges

DMUj x1j x2j y1j �∗
j CCR-Slack (s−∗

1 )

C1 470 000 700 000 200 000 1 0
C2 4800 7000 2000 1 100
C3 49 70 20 1 0
C4 5 7 2 1 0
C5 510 700 200 1 40
C6 52 000 70 000 20 000 1 5000
C7 530 000 700 000 200 000 1 60 000

Table 3
Corresponding outcomes of example 1 assessed by CWA

DMUj �∗
j �∗

j Rank p∗
1j (p∗

1j /x1j ) ∗ 100

C1 0 1.000 1 0 0
C2 100 0.992 2 100 2.1
C3 2 0.983 3 2 4.1
C4 0.3 0.975 4 0.3 6.0
C5 40 0.967 5 40 7.8
C6 5000 0.959 6 5000 9.6
C7 60 000 0.951 7 60 000 11.3

4.1. Data with large-scale ranges

Table 2 gives the simulated data set of seven DMUs with two inputs and one output. The figures for DMUC1, DMUC2,
DMUC3, DMUC5, DMUC6 and DMUC7 are shown to be many times larger than DMUC4, with efficiency scores = 1.0.
Slacks appeared in the index x1. First, we take advantage of the input (output)-oriented CCR model to determine the
efficiency of each DMU. For the sake of scale issues and the existence of slacks, it may not be possible to rank the
seven DMUs, but, intuitively, their rankings are DMUC1, DMUC2, DMUC3, DMUC4, DMUC5, DMUC6 and DMUC7 .

Employing the proposed CWA methodology, we obtained the optimal common set of weights (V ∗
1 , V ∗

2 , U∗
1 ) =

(1, 1, 5.85). The rankings, according to their CWA efficiency scores �, are consistent with the intuitive rankings. As
shown in Table 3, DMUC1 is the only one that locates on the benchmark line. The last two columns show the gap to the
benchmark on index x1 in current value and percentage. It shows that CWA is able to provide complete ranking and
gap in performance indices information for all DMUs.

4.2. Data with large number of indices

DEA models usually have no more than n/2 indices when assessing n DMUs. Otherwise, the number of efficient
DMUs becomes unreasonably large. It means that the discriminating power of DEA is reduced. The example uses
seven DMUs, with three inputs and three outputs. The last column in Table 4 shows that the seven DMUs are efficient
by radial efficiency 1 obtained by CCR-Input-oriented model.

Table 5 gives the detailed ranking information assessed by adopting CWA. We still find that there are five DMUs
still on benchmark line. If we release the upper bound of the efficiency score 1.0 for these DMUs, then �∗

j leads to a
reduction in scale in the total virtual gap towards the benchmark line. Obviously, a CWA-efficient DMU with a larger
�∗

j is the better one. The total virtual gap can be reduced to a maximum 3.225, compared to the other DMUs on the
benchmark line ,while we release the upper bound of efficiency score to over 1.0. Therefore, after comparing with
�∗

j , we are able to determine the final ranking of CWA-efficient DMUs to be DMUD3, DMUD6 , DMUD1, DMUD4,
DMUD5, DMUD7 , and DMUD2.
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Table 4
Example 2 with the number of indices is much larger than DMUs

DMU x1j x2j x3j y1j y2j y3j Efficiency (�∗
j )

D1 1621 436 205 174 497 22 1
D2 2718 314 221 172 497 22 1
D3 1523 345 215 160 443 22 1
D4 5514 1314 553 487 1925 63 1
D5 1941 507 309 220 521 36 1
D6 1496 321 339 109 699 38 1
D7 932 158 200 37 431 19 1

Table 5
Corresponding outcomes of example 2 assessed by CWA

DMU �∗
j �∗

j �∗
j Rank

D3 0 3.225 1.000 1
D6 0 1.772 1.000 2
D1 0 1.118 1.000 3
D4 0 0.922 1.000 4
D5 0 0.028 1.000 5
D7 304.864 0.000 0.847 6
D2 925.362 0.000 0.778 7

Table 6
Example 3 including the initial DMUs in example 2

DMU x1j x2j x3j y1j y2j y3j

D1 1621 436 205 174 497 22
D2 2718 314 221 172 497 22
D3 1523 345 215 160 443 22
D4 5514 1314 553 487 1925 63
D5 1941 507 309 220 521 36
D6 1496 321 339 109 699 38
D7 932 158 200 37 431 19
D8 2013 1037 412 198 471 32
D9 1891 976 399 191 491 22
D10 2277 891 418 241 379 28
D11 1995 693 349 167 412 31

5. Expansion and discussion

In this section, we extend the object of CWA ranking from DMUs in set E to E ∪ EC in (P3) where EC represents
the set of inefficient DMUs. It is unfortunate that a paradoxical case exists, that some DMUs in EC are better than
DMUs in E. However, the phenomenon is acceptable and explainable without violating the original concept of DEA.
In fact, each DMU in EC would have a particular reference set that is composed of parts of DMUs in E. One should
not assume that one certain DMU in E is better than all DMUs in EC .

We verify the inference mentioned above by practicing one complete example including DMUs in set E ∪ EC . As
listed in Table 6, Example 2 with 7 DMUs in set E is extended to Example 3 with 11 DMUs in set E∪ EC . Using
DEA model (P2) and CWA methodology, models (P5) and (P10), the results are depicted in Table 7. In view of CWA,
we observe DMUD2 of set E is ranked 11, and is worse than DMUD8, DMUD9, DMUD10, and DMUD11 of set EC .
Although DMUD12 belongs to set E, it is not an element of the reference set to any DMUD8, DMUD9, DMUD10, and
DMUD11. In other words, individual DMUD8, DMUD9, DMUD10, and DMUD11 really are not dominated by DMUD2.
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Table 7
The reference set, DEA and CWA efficiency score of 11 DMUs in example 3

DMU Reference set DEA efficiency (�∗
j ) CWA efficiency (�∗

j ) Rank

D1 D1 1 1 1
D2 D2 1 0.69 11
D3 D3 1 0.99 4
D4 D4 1 0.97 5
D5 D5 1 1 3
D6 D6 1 1 2
D7 D7 1 0.82 6
D8 D1, D5 0.87 0.72 7
D9 D1, D5 0.91 0.73 8
D10 D5 0.93 0.74 9
D11 D5, D6 0.79 0.71 10

Table 8
The DEA efficiency score revaluated only to 5 debatable DMUs in Table 7

DMU DEA efficiency (�∗
j )

D2 1
D8 1
D9 1
D10 1
D11 1

Therefore, in view of DEA, one should not conclude that DMUD2 in set E is better than DMUD8, DMUD9, DMUD10,
and DMUD11 in set EC . In addition, using DEA model (P2) to measure the relative efficiency of only these 5 DMUs,
at this time one would observe that they belong to the equivalent set E, just depicted in Table 8. Therefore, the CWA
ranking seems also to be workable in set E ∪ EC without violating the original concept of DEA.

CWA ranking reflects two consequences. The first is that it is primarily used in ranking the DMUs in set E. The
second is that when it is used in ranking the DMUs in set E∪EC , one could still obtain a reasonable conclusion without
conflicting with the DEA’s initial classification.

6. Conclusion

This paper researches one common set of weights that is the most favorable for determining the absolute efficiency
for DMUs in set E at the same time. The practical application of this methodology is aimed at the ranking of a group
of DMUs without advanced priority in them, such as DMUs in set E. New intuitional ranking rules, obtained from
absolute efficiency, could help decision makers understand the performance of DMUs. The CWA methodology is also
workable in two assessments where the number of indices is much larger than the number of DMUs, and the scales of
DMUs are in large ranges. Two examples given in this paper show good ranking results.

The methodology proposed in this paper is initially adopted in the ranking of DMUs in set E. This paper also discussed
the possibility of expansion in ranking objects from set E to set E ∪ EC . We have obtained a positive conclusion and
illustrate how CWA ranking could not conflict with the original DEA classification.
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