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Abstract:

Consider a nonhomogeneous Markov
chain with time-dependent infinitessimal matrix.
The exact transition probabilities under various
conditions are  found. For  generd
nonhomogeneous  Markov  chain  with
continuous infinitesimal matrix, we find an
efficient way to approximate transition
probabilities. Various examples and some
numerical results are also presented.

Ketword: Nonhomogeneous Markov Chains,
Transition Probabilities

Nonhomogeneous Markov chains are
aways more difficult to handle with than
homogeneous ones. The solutions to the
Kolmogorov forward and backward equations
are aso hard to obtain. As we shall see later
that a nonhomogeneous Poisson process which
can be easily dealt with is an exceptiona one.
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The purpose of this article is to find conditions
under which the analytic forms of the transition
probabilities of nonhomogeneous Markov
chains can be obtained. Approximate
alternative solutions are also acquired. Various

examples and some numerical results are
included.
Consider a continuous time

nonhomogeneous Markov chain  X(f) with
state space {1,2,L} and time-dependent
infinitesmal ~ matrix ~ Q(f) = (g, (1) . Let

F(s)=PAX(®H=jX(9=i) be the
transition probability from state / at epoch sto j
a epoch t The wel known system of
Kolmogorov forward and backward differential
equations written in matrix forms are, [1],

250 = s pony
(1) e
1AS) - o9
Qs
where A(st)=(F(s1) and

1P(st) _ R (506

it it 5
solutions to (1) are unique under the condition
that |g,(t)|<¥.," t £1,[1]. However, they are
difficult to obtain in analytic form. Yet for
some cases we do have ways to write them in
nice patterns.

. For a given t, the

Proposition 1
Suppose Q(X) =/ (X)A, where /(X) is
a rea valued function and A is a constant



matrix. The transition probability matrix  idempotent and orthogonal to each other, then

O (9 L ek oy U
becomes P(s 1) = e (R.(),L,R,(1) = da.(X.L,q,(X)éq e  Aud
0 B~ g

Example 1
A nonhomogeneous Poisson process with
intensity function / (x) isatypica one. The

&1 1 0 Luy
. €0 -1 1 ol
constant matrix A=¢€ u,
eo 0 -1 u
é 1
gl Oq
Hence we have
éj(x)dxA —é‘j(x)dx éj(x)dx(AH)
P(st)=e° =e- e . Dueto

the specia structure of (A+/), it iseasy to see

éj(x)dx(AH) (é)/ (X) dx) //
that (e )= ° G- )

which isthe core part of the probability
function of the Poisson process with mean

o (X)ax .

Proposition 2

where

An=al,(nA

/;(x)’s are rea valued functions and A'’s are
constant matrices satisfying A° = A and
AA =0"it j Tha is, Q) s
diagonalizable with constant eigenspaces but

time-dependent eigenvalues. The transition
probability matrix becomes

ko Qi

Ash=ae A.

i=1

Suppose

Proposition 3
If QX satisfies the conditions of
Corollary 1, that is, C(x)=/(x)A, then

g WA

(R (0,1, B, (8) = § G (N, L, G, (X)) ax

If A X) satisfies the conditions of Corollary 2,
that is, C(X)=a/,()A where A's are

Example 2
If g,=q, for it j, i>1 and j>1,
then  C(x) = diag(- g, + Gy, L.~ 4, + )

O w+a) Ny

t
Hence R, (t) = o (Xe dx, i32.
0

A specia caseis a 2-state Markov chain whose
CX)=(-0a,+0,)(N0=-(q,+q,)(¥ , ad
t\ ‘6%2*‘721)()’)17)’
R,(t) = 0712()()9 ¥ ax .
0

three transition probabilities can be obtained by
symmetry and complementary.

The other

Example 3

The situation is more complicated for a
3-state Markov chain rather than a 2-state one.
Explicit forms of transition probabilities can be
obtained if conditions are imposed. Suppose

G, = Qs : we obtain
t
t “ QG2+ Gut ts) (V) Y
R.(t) = o.(Xe ax ,
0
t
- (%2t Gt Gas) (N Y
dx and. The

R (1) = (\}732()()6 ¥

first oneis obtained by noting that C(x) is upper
triangular. The second one is obtained by
interchanging the roles of state 1 and state 3.
The third one is obtained by assuming
g, =gy first, then multiplying the vector

(0,LDH¢ from the right to both sides of (4), and

finally interchanging the roles of state 1 and
state 2. The way we used is originated from
lumping the state 1 and state 3.

Example 4
For tES , we let



é t u
e QO sn— cos— e®y
é >
& t 50
gL+smg Q, cos- e’y .
Q(t)_§ : , I3 which
€l+cos— sn— Q, e°SU
é 5 5 a
e .t t 0 u
g e sin— Ccos— 0
e 5 5 “*u

satisfies the condition Q(#)(1,11,1)¢=(0,0,0,0)¢.
The () is chosen to make ((x) diagonal with

X

Cll(x):-(1+23ing+cosg+ e’) ,

X

sz(x):-(1+2005g+sing+ es) and

X X

Cyu(X) =- (sing+cosg+ es+e5) . Direct

computations show the transition probabilities.

It is understood that we are not able to
obtain analytic solutions to (1) in most cases.
Approximate solutions are naturaly an
aternative. To find an efficient way, we assume
that al g;(x) 's are continuous functions.

Moreover, letting Dt be small, we have

s+Dt

(®) Ass+Df) =1+ yAX)P(x s+Dr)ax

» |+ Q) (s 5Dt = /iQ(S)Dt-
Furthermore, the equation (1)
A(st+Dl)- Ast)= s t)Q()Dt. Thus,
(6) A(st+Dif)=HAsn/+)DL].
Combining (5) and (6), and letting
pt = (- % t,=s+iDt, i=0,K,n, we

have

(7)

gives

A(s 1) »O[l+Q(t)Dt] Og/+Q(t),(7t 90
If Qis constant, then A(s 1) » $/+Q(tn S’)E :

Choosing n=2" for some positive integer m,
we need to operate only log, n=m times of
matrix multiplication. Compared to the external
uniformization method proposed in [2], which
the inverse of a matrix is required and therefore

sometimes inefficient, our method is easier but
less accurate. However, it can be easily
compensated by taking large n technicaly yet
log, n practicaly.

With regard to (7), we see that Q is
assumed to be constant in each interval

(/iDt, (i+1Dt) and we  approximate
pDt, (i+1)Dt) by &+ QB9 oy
8 n b
so(t)( 9
P(iDt, (i+)Df) is & " U under that

assumption. Hence, we modify (7) as

8) Asf)» ogl+%§ .

Again, we choose m=2* so that log, m=k
matrix multiplications are needed in each
interval. Also, it is usually true that computing
Q(t) contains heavier load than matrix

multiplication does. Thus, we prefer to use (8)
for moderate n and large mrather than use (7)
for large ndirectly.

Example 4 (continued)

Another purpose of choosing such Q in
Example 4 is to comprise miscellaneous
functions in it, increasing or decreasing. Let ¢
=5and m=2°. Wetarget on computing /~0,5).
The exact solutions obtained in Example 4,
computed numerically though, can reach to
extremely high precision and thus are regarded
as standards. Computer results show that
=1358 is needed to reach the accuracy of
10"° when (7) is used, while only =90 is
required by using (8) to reach the same
precision.

This approach should be helpful to finding
transition probabilities of nonhomogeneous
Markov chain with time-dependent
infinitesimal matrix.
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