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Abstract

The coupled vibration of thin-walled beams with a generic open section induced by the boundary conditions is investigated using the finite
element method. If the axial displacement of the pin end is restrained at another point rather than the centroid of the asymmetric cross section, the
axial vibration, two bending vibrations, and torsional vibration may be all coupled. The element developed here has two nodes with seven degrees
of freedom per node. The shear center axis is chosen to be the reference axis and the element nodes are chosen to be located at the shear centers of
the end cross sections of the beam element. Different sets of element nodal degrees of freedom corresponding to different pin ends are considered
here. The relation between element matrices referred to different sets of element nodal degrees of freedom is derived.

Numerical examples are presented to demonstrate the accuracy of the proposed method and to investigate the effects of different pin ends on
the coupled vibrations of the thin-wall beam.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin-walled beams of open cross section are widely
used in structural design. The vibration characteristics are
of fundamental importance in the design of thin-walled
structures. In general, the shear center and the centroid of
cross section for monosymmetric or asymmetric thin-walled
beams are not coincident. Thus, the bending and torsional
vibrations are coupled. The doubly coupled bending–torsional
vibrations of monosymmetric beams and the triply coupled
bending–bending–torsional vibration of asymmetric beams
have been investigated by several authors [1–24] in recent
years. Recently, in [25] the influence of shear deformation
over the natural frequencies is investigated for the Timoshenko
thin-walled beam with arbitrary open cross section. In the
literature, the axial vibration is considered to be uncoupled
from the bending and torsional vibrations and can be
analyzed independently. However, for the axial pin end, this
consideration may only be correct in the case that the axial
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displacement is restrained at the centroid of the cross section. If
the axial displacement of the pin end is not restrained at a point
in the longitudinal plane of symmetry of the monosymmetric
cross section or not restrained at the centroid of the asymmetric
cross section, the axial vibration, two bending vibrations, and
torsional vibration may be all coupled. Coupled vibration of
that kind is induced by the boundary conditions and will be
called quadruply coupled vibration in the study. To the authors’
knowledge, the quadruply coupled vibration induced by the
boundary conditions has not been reported in the literature.
The object of this paper is to investigate the quadruply coupled
vibration of thin-walled beams with a generic open section
induced by the boundary conditions using the finite element
method.

In beam theories, it is assumed that the beam cross section
does not deform in its own plane. Thus, the relation between
displacements corresponding to different points on the cross
section of the beam can be determined using the kinematics
of a rigid body. To describe the deformation of the beam, the
axial displacement and lateral displacements of the beam may
be defined at different reference axes. The equations of motion
of the beam corresponding to different sets of reference axes
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are equivalent. Traditionally, two reference axes are used for the
linear analysis of thin walled beams with a generic open cross
section. The axial force and bending moments are defined at
the centroid and the shear force, twist moment and bimoment
are defined at the shear center, which can uncouple the linear
equilibrium equations to the largest extent. However, it is more
convenient to use one reference axis to describe the motion of
the beam for finite element formulations. The stiffness matrices
of the beam element referred to different nodal degrees of
freedom are equivalent, and can be transformed to each other
using standard procedures. However, to describe the boundary
conditions correctly, the restrained nodal degrees of freedom
at boundaries and the corresponding nodal degrees of freedom
of the beam element should be identical or equivalent. In [17],
the centroid axis is used as the reference axis. In [26], the shear
center axis is chosen to be the reference axis and a finite element
formulation is proposed for the geometrical nonlinear analysis
of a thin-walled beam with a generic open section. The beam
element proposed in [26] has two nodes with seven degrees of
freedom per node. Element deformations and element equations
were defined in terms of element coordinates. The element
deformations are determined by the rotation of the element
cross section coordinates, which are rigidly tied to the element
cross section, relative to the element coordinate system. The
out-of-plane warping of the cross section was assumed to be
the product of the twist rate of the beam element and the Saint
Venant warping function for a prismatic beam of the same cross
section. The element nodal forces are derived by the virtual
work principle and the consistent second-order linearization of
the fully geometrically nonlinear beam theory. It seems that
the kinematics of the beam element proposed in [26] can be
linearized and extended for the linear dynamic analysis of the
beam structures we discuss. Thus, the formulation of the beam
element presented in [26] is linearized and employed here.

Following [26], the shear center axis is chosen to be the
reference axis and the element nodes are chosen to be located
at the shear centers of the end cross sections of the beam
element. The element deformation and inertial nodal forces are
systematically derived using a consistent linearization of exact
kinematics of the Euler beam, the d’Alembert principle, and the
virtual work principle. The element stiffness matrix and mass
matrix are obtained by differentiating the element deformation
nodal force vector and the element inertial nodal force vector
with respect to the element nodal parameters and their second
time derivatives, respectively. As mentioned above, to describe
the boundary conditions correctly, the restrained nodal degrees
of freedom and the corresponding nodal degrees of freedom of
the beam element should be identical or equivalent. Different
sets of element nodal degrees of freedom corresponding to
different pin ends are considered here. The transformation
between the element matrices corresponding to different sets
of element nodal degrees of freedom is derived using the
kinematic relation between different sets of element nodal
degrees of freedom.

The subspace iteration method is employed for the solution
of the generalized eigenvalue problem. Numerical examples
are studied for a thin-walled beam with different boundary
conditions to demonstrate the accuracy of the proposed method
and to investigate the effects of different boundary conditions
on the natural frequencies and vibration modes of a thin-wall
beam with a generic open section.

2. Finite element formulation

The kinematics of thebeam element proposed in [26] is
linearized and employed here. Only a brief description for
the kinematics of this beam element is given here. A more
detailed description may be obtained from [26]. The element
deformation and inertial nodal forces of the linear beam
element are derived using the d’Alembert principle and the
virtual work principle.

2.1. Basic assumptions

The following assumptions are made in the derivation of the
behavior of the thin-walled beam element with a generic open
section.

(1) The beam is prismatic and slender, and the Euler–Bernoulli
hypothesis is valid if the out-of-plane warping of the cross
section is excluded.

(2) When the longitudinal normal strain at the centroidal axis
relevant to the twist about the shear center axis is excluded,
the unit extension of the centroid axis of the beam element
corresponding to the rest of longitudinal normal strain is
uniform.

(3) The cross section of the beam element does not deform in
its own plane and strains within this cross section can be
neglected.

(4) The out-of-plane warping of the cross section is the product
of the twist rate of the beam element and the Saint Venant
warping function for a prismatic thin walled beam of the
same cross section.

(5) The material is homogeneous, isotropic, and linear elastic.

In this study, Prandtl’s membrane analogy and the Saint Venant
torsion theory [26,27] are used to obtain an approximate
Saint Venant warping function for a prismatic thin walled
beam. However, if the accurate warping function for beams
of arbitrary cross-section is required, the method proposed
in [28,29] may be used.

2.2. Coordinate systems

In order to describe the system, we define three sets of right
handed rectangular Cartesian coordinate systems:

(1) A fixed global set of coordinates, X G
i (i = 1, 2, 3)

(see Fig. 1); the nodal coordinates, nodal displacements
and rotations, nodal velocity and angular velocity, nodal
acceleration and angular acceleration, and the stiffness
matrix and the mass matrix of the system are defined in
these coordinates.
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Fig. 1. Coordinate systems.

(2) Element cross section coordinates, x S
i (i = 1, 2, 3)

(see Fig. 1); a set of element cross section coordinates is
associated with each cross section of the beam element.
The origin of this coordinate system is rigidly tied to the
centroid of the cross section. The x S

1 axis is chosen to
coincide with the normal of the unwarped cross section and
the x S

2 and x S
3 axes are chosen to be the principal centroidal

axes of the cross section.
(3) Element coordinates; xi (i = 1, 2, 3) (see Fig. 1), a set

of element coordinates is associated with each element.
The origin of this coordinate system is located at node
1, and the x1 axis is chosen to pass through the two end
nodes (shear centers of end sections) of the element; the
directions of the x2 and x3 axes are chosen to coincide
with the directions of the principal centroidal axes of the
cross section in the undeformed state. The deformations,
deformation nodal forces, inertial nodal forces, stiffness
matrix, and mass matrix of the elements are defined in
terms of these coordinates. In this paper, the element
deformations are determined by the rotation of element
cross section coordinate systems relative to this coordinate
system.

2.3. Kinematics of the beam element

The deformations of the beam element are described in the
element coordinate system. Here, the shear center axis is chosen
to be the reference axis and the element nodes are chosen to
be located at the shear centers of the end cross sections of the
beam element. Let Q (Fig. 1) be an arbitrary point in the beam
element, and P be the point corresponding to Q on the shear
center axis. The position vector of point Q in the undeformed
and deformed configurations may be expressed as:

r0 = xe1 + (y − yp)e2 + (z − z p)e3 (1)

and
r = x p(x, t)e1 + v(x, t)e2 + w(x, t)e3 + θ1,xωeS
1

+ (y − yp)eS
2 + (z − z p)eS

3 = ri ei (2)

x p(x, t) = x + u(x, t)

where yp and z p, and y and z are the x S
2 and x S

3 coordinates of
point P and Q referred to the element cross section coordinates,
respectively, u(x, t), v(x, t), and w(x, t) are the xi (i = 1, 2, 3)

components of the displacement vector of point P referred
to the element coordinates in the deformed configuration,
respectively, θ1 = θ1(x, t) and θ1,x = ∂θ1/∂x are the twist
angle and the twist rate about the shear center axis, respectively,
ω = ω(y, z) is the Saint Venant warping function for a
prismatic beam of the same cross section, and ei and eS

i (i =

1, 2, 3) denote the unit vectors associated with the xi and x S
i

axes, respectively. Note that the directions of ei and eS
i are the

same in the undeformed state. The orientations of triad eS
i in the

deformed state are assumed to be determined by two successive
rotations of the triad ei about an axis perpendicular to the shear
center axis and about the shear center axis [26]. The relation
between the vectors ei and eS

i (i = 1, 2, 3) in the element
coordinate system may be expressed by [30]

eS
i = Rei (3)

where R is a rotation matrix. The rotation matrix R is
determined by θ1 and

θ2 = −
∂w(x, t)

∂s
= −

∂w(x, t)

∂x

∂x

∂s
= −

w′

1 + εo
,

θ3 =
∂v(x, t)

∂s
=

∂v(x, t)

∂x

∂x

∂s
=

v′

1 + εo
(4)

εo =
∂s

∂x
− 1 (5)

in which εo is the unit extension of the shear center axis and
s is the arc length of the deformed shear center axis measured
from node 1 to point P . In this paper, the symbol ( ) denotes
( ),x = ∂( )/∂x .

In this study, the θi are called rotation parameters. Let θ =

{θ1, θ2, θ3} be the column matrix of rotation parameters, δθ be
the variation of θ, and δϕ = {δϕ1, δϕ2, δϕ3} be the column
matrix of δϕi (i = 1, 2, 3), infinitesimal rotations about xi
axes. The triad eS

i (i = 1, 2, 3) corresponding to θ may be
rotated by a δϕ to reach their new positions corresponding to
θ + δθ [30]. In the undeformed state, θ1 = θ2 = θ3 = 0 and
εo = 0, the relationship between δθ and δϕ given in [30] may
be degenerated to

δθ = δϕ (6)

δθ1 = δϕ1, δθ2 = −δw′
= δϕ2, δθ3 = δv′

= δϕ3.

Similarly, the time derivatives of θ may be degenerated
to [31]

θ̇ = ω (7)

θ̇1 = ω1, θ̇2 = −ẇ′
= ω2, θ̇3 = v̇′

= ω3

and

θ̈ = ω̇ (8)
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θ̈1 = ω̇1, θ̈2 = −ẅ′
= ω̇2, θ̈3 = v̈′

= ω̇3

where ω is the angular velocity vector, ω̇ is the angular
acceleration vector, and ωi and ω̇i (i = 1, 2, 3) are xi
components of ω and ω̇, respectively. In this paper, the symbol
˙( ) denotes the time derivative.

The relationship among x p(x, t), v(x, t), w(x, t) in Eq. (2)
may be given as

x p(x, t) = u1 +

∫ x

0
[(1 + εo)

2
− v2

,x − w2
,x ]

1/2dx (9)

where u1 is the displacement of node 1 in the x1 direction.
Making use of Eq. (9), one obtains

` = L + u2 − u1 = x p(L , t) − x p(0, t)

=

∫ L

0
[(1 + εo)

2
− v2

,x − w2
,x ]

1/2dx (10)

in which ` is the chord length of the deformed shear center axis
of the beam element, L is the length of the undeformed beam
axis, and u2 is the displacement of node 2 in the x1 direction.

Here, the lateral deflections of the shear center axis, v(x, t)
and w(x, t), and the rotation about the shear center axis,
θ1(x, t), are assumed to be the Hermitian polynomials of x .
v(x, t), w(x, t) and θ1(x, t) may be expressed by

v(x, t) = Nt
bub, w(x, t) = Nt

cuc,

θ1(x, t) = Nt
dud

(11)

ub = {v1, v
′

1, v2, v
′

2}, uc = {w1, −w′

1, w2, −w′

2},

ud = {θ11, β1, θ12, β2}
(12)

where v j and w j ( j = 1, 2) are nodal values of v and w at
nodes j , respectively, v′

j and w′

j ( j = 1, 2) are nodal values of
v,x and w,x at nodes j , respectively, and θ1 j and β j ( j = 1, 2)

are nodal values of θ1, θ1,x at nodes j , respectively.
The axial displacements of the shear center axis may be

determined from the lateral deflections and the unit extension
of the shear center axis using Eq. (9).

If x , y and z in Eq. (1) are regarded as the Lagrangian
coordinates, the Green strain ε11, ε12 and ε13 are given by [32]

ε11 =
1
2
(rt

,x r,x − 1), ε12 =
1
2

rt
,x r,y,

ε13 =
1
2

rt
,x r,z .

(13)

Substituting Eqs. (2)–(5) into Eq. (13), making use of
assumption (2), Eq. (13), and retaining all terms up to the first
order yields [26]

ε11 = εc − yv,xx − zw,xx + ωθ1,xx (14a)

ε12 =
1
2
[ω,y − (z − z p)]θ1,x (14b)

ε13 =
1
2
[ω,z + (y − yp)]θ1,x (14c)

εo = εc − ypv,xx − z pw,xx (15)

εc =
u2 − u1

L
+

yp

L
(v′

2 − v′

1) +
z p

L
(w′

2 − w′

1). (16)
2.4. Element nodal force vector

The element proposed here has two nodes with seven
degrees of freedom per node. The element nodal force is
obtained from the d’Alembert principle and the virtual work
principle in the element coordinates. The virtual work principle
requires that

δWE = δWI (17a)

δWE = δut
afa + δut

bfb + δut
cfc + δut

d fd (17b)

δWI =

∫
V
(σ11δε11 + 2σ12δε12 + 2σ13δε13)dV

+

∫
V

ρδrt r̈dV (17c)

δua = {δu1, δu2} (18)

fa = f d
a + fI

a = { f11, f12} (19a)

fb = f d
b + fI

b = { f21, m31, f22, m32} (19b)

fc = f d
c + fI

c = { f31, m21, f32, m22} (19c)

fd = f d
d + fI

d = {m11, B1, m12, B2} (19d)

where δWE is the virtual work of the external force, δWI
is the virtual work of the internal stress, δu j ( j = b, c, d)

are variations of u j in Eq. (12), V is the volume of the
undeformed beam, δε1 j ( j = 1, 2, 3) are the variations of
ε1 j in Eqs. (14a)–(14c), respectively. σ1 j ( j = 1, 2, 3) are the
second Piola–Kirchhoff stresses, ρ is the density, δr and r̈ are
the variation and the second-time derivative of r in Eq. (2),
respectively. f d

j and fI
j ( j = a, b, c, d) are element deformation

nodal forces and element inertial nodal forces, respectively. fi j
and mi j (i = 1, 2, 3, j = 1, 2) are forces in the xi directions at
nodes j and moments about the xi axes at nodes j , respectively.
B j ( j = 1, 2) are the bimoments at nodes j .

The constitutive equations used here are σ11 = Eε11, σ12 =

2Gε12, and σ13 = 2Gε13, where E is the Young’s modulus and
G is the shear modulus.

For linear analysis, only the first order terms of nodal
parameters and their derivatives with respect to x and t in
the element internal nodal forces are retained by consistent
linearization.

From Eqs. (14)–(16), δε1 j ( j = 1, 2, 3) in Eq. (17c) may be
expressed by

δε11 = δεc − yδv,xx − zδw,xx + ωδθ1,xx (20a)

δε12 =
1
2
[ω,y − (z − z p)]δθ1,x (20b)

δε13 =
1
2
[ω,z + (y − yp)]δθ1,x (20c)

δεc =
δu2 − δu1

L
+

yp

L
(δv′

2 − δv′

1) +
z p

L
(δw′

2 − δw′

1). (21)

From Eqs. (2) and (6)–(11) and using consistent linearization,
δr and r̈ given in Eq. (17c) may be expressed by

δr1 = δx p − (y − yp)δv,x − (z − z p)δw,x + δθ1,xω (22a)

δr2 = δv − (z − z p)δθ1 (22b)

δr3 = δw + (y − yp)δθ1 (22c)
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δx p = δu1 + xδεc − yp(δv
′
− δv′

1) − z p(δw
′
− δw′

1) (23)

r̈1 = ẍ p − (y − yp)v̈,x − (z − z p)ẅ,x + θ̈1,xω (24a)

r̈2 = v̈ − (z − z p)θ̈1 (24b)

r̈3 = ẅ + (y − yp)θ̈1 (24c)

ẍ p = ü1 + x ε̈c − yp(v̈,x − v̈′

1) − z p(ẅ,x − ẅ′

1) (25)

ε̈c =
ü2 − ü1

L
+

yp

L
(v̈′

2 − v̈′

1) +
z p

L
(ẅ′

2 − ẅ′

1). (26)

Substituting Eqs. (11) and (20)–(26) into Eq. (17), and using∫
ydA =

∫
zdA =

∫
yzdA = 0,

∫
ωdA =

∫
yωdA =∫

zωdA = 0, one may obtain

f d
a = AEεcGa (27a)

f d
b = E Iz

∫
N′′

bv,xx dx + yp AEεcB (27b)

f d
c = E Iy

∫
N′′

cw,xx dx + z p AEεcC (27c)

f d
d = G J

∫
N′

dθ1,x dx + E Iω

∫
N′′

dθ1,xx dx (27d)

B = {0, −1, 0, 1}, C = {0, 1, 0, −1},

Ga = {−1, 1}
(28)

fI
a = ρ A

∫
NaNt

adx üa + ρ Ayp

∫
NaNt

edx üb

+ ρ Az p

∫
NaNt

f dx üc (29a)

fI
b = ρ A

∫
Nbv̈dx + ρ Iz

∫
N′

bv̈
′dx

+ ρ Ayp

∫
NeNt

adx üa + ρ Ay2
p

∫
NeNt

edx üb

+ ρ Aypz p

∫
NeNt

f dx üc + ρ Az p

∫
Nbθ̈1dx (29b)

fI
c = ρ A

∫
Ncẅdx + ρ Iy

∫
N′

cẅ
′dx

+ ρ Az p

∫
N f Nt

adx üa + ρ Az2
p

∫
N f Nt

f dx üc

+ ρ Aypz p

∫
N f Nt

edx üb − ρ Ayp

∫
Ncθ̈1dx (29c)

fI
d = ρ(Iy + Iz)

∫
Nd θ̈1dx + ρ Iω

∫
N′

d θ̈1,x dx

+ ρ Az p

∫
Nd v̈dx − ρ Ayp

∫
Ndẅdx

+ ρ A(y2
p + z2

p)

∫
Nd θ̈1dx (29d)

üa = {ü1, ü2}, Na =

{
1 − ξ

2
,

1 + ξ

2

}
,

Ne = −N f =

{
0,

1 − ξ

2
, 0,

1 + ξ

2

}
(30a)

Iy =

∫
z2dA, Iz =

∫
y2dA, Iω =

∫
ω2dA (30b)

J =

∫
{[−(z − z p) + ω,y]

2
+ [(y − yp) + ω,z]

2
}dA (30c)
in which the range of integration for the integral
∫
( )dx in

Eqs. (27) and (29) is from 0 to L , A is the cross section area,
Nk (k = b, c, d) are given in Eq. (11). J in Eq. (27d), defined
in Eq. (30c), is the torsional constant of the beam [27].

2.5. Element stiffness matrices and mass matrices

The element stiffness matrix and mass matrix may be
obtained by differentiating the element nodal force with respect
to nodal parameters and their time derivatives.

Using the direct stiffness method, the element tangent
stiffness matrix may be assembled by the submatrices

ki j =
∂f d

i

∂u j
(31)

where f d
i (i = a, b, c, d) are defined in Eq. (27) and u j ( j = a,

b, c, d) are defined in Eqs. (12) and (18). The explicit form of
ki j may be expressed as

kaa =
AE

L
GaGt

a, kab =
AE

L
ypGaBt ,

kac =
AE

L
z pGaCt , kad = 02×4

(32a)

kbb = E Iz

∫
N′′

bN′′t
b dx +

AEy2
p

L
BBt ,

kbc =
AEypz p

L
BCt , kbd = 04×4

(32b)

kcc = E Iy

∫
N′′

c N′′t
c dx +

AEz2
p

L
CCt , kcd = 04×4 (32c)

kdd = G J
∫

N′

dN′t
d dx + E Iω

∫
N′′

dN′′t
d dx . (32d)

Using the direct stiffness method, the element mass matrix
may be assembled by the submatrices

mi j =
∂fI

i

∂ü j
(33)

where and fI
i (i = a, b, c, d) are defined in Eq. (29). The explicit

form of mi j may be expressed as

maa = ρ A
∫

NaNt
adx, mab = ρ Ayp

∫
NaNt

edx,

mac = ρ Az p

∫
NaNt

f dx, mad = 02×4

(34a)

mbb = ρ A
∫

NbNt
bdx

+ ρ Iz

∫
N′

bN′t
b dx+ρ Ay2

p

∫
NeNt

edx,

mbc = ρ Aypz p

∫
NeNt

f dx, mbd = ρ Az p

∫
NbNt

ddx

(34b)
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mcc = ρ A
∫

NcNt
cdx

+ ρ Iy

∫
N′

cN′t
c dx+ρ Az2

p

∫
N f Nt

f dx,

mcd = −ρ Ayp

∫
NcNt

ddx

(34c)

mdd = ρ(Iy + Iz)

∫
NdNt

ddx + ρ Iω

∫
N′

dN′t
d dx

+ ρ A(y2
p + z2

p)

∫
NdNt

ddx . (34d)

2.6. The relation between element matrices corresponding to
different element nodal degrees of freedom

Let δuQ
j = {δuQ

j , δv
Q
j , δw

Q
j } and δuP

j = {δu j , δv j , δw j }

( j = 1, 2) denote virtual displacements of an arbitrary point
Q and shear center P of the cross sections corresponding to
element nodes j , respectively. In this study, Q = C and
Q = R are considered, where C and R denote centroid and
a point rather than a centroid and shear center, respectively.
Making use of the assumption that the cross section of the beam
element does not deform in its own plane, the relation between
δuQ

j (Q = C, R) and δuP
j may be expressed by

δuP
j = δuQ

j + δϕ j × rQP (35)

δu j = δuQ
j − yqpδϕ3 j + zqpδϕ2 j (36a)

δv j = δv
Q
j − zqpδϕ1 j (36b)

δw j = δw
Q
j + yqpδϕ1 j (36c)

where rQP = {0, yqp, zqp} = {0, yp − yq , z p − zq}, yp and z p,
and yq and zq are the x S

2 and x S
3 coordinates of point P and Q

referred to the element cross section coordinates, respectively,
δϕi j (i = 1, 2, 3, j = 1, 2) are virtual rotations about xi axes at
nodes j .

From Eqs. (35) and (36), one may obtain

δqP = TP QMδqQM (37)

δqP = TP QδqQ (38)

δqP = {δua, δub, δuc, δud} (39)

δqQM = {δuQ
a , δub, δuc, δud} (40)

δqQ = {δuQ
a , δuQ

b , δuQ
c , δud} (41)

TP QM =


I2×2 T1 T2 02×4
04×2 I4×4 04×4 04×4
04×2 04×4 I4×4 04×4
04×2 04×4 04×4 I4×4

 , (42a)

TP Q =


I2×2 T1 T2 02×4
04×2 I4×4 04×4 T3
04×2 04×4 I4×4 T4
04×2 04×4 04×4 I4×4

 (42b)
where

δuQ
a = {δuQ

1 , δuQ
2 }, (43a)

δuQ
b = {δv

Q
1 , δϕ31, δv

Q
2 , δϕ32}, (43b)

δuQ
c = {δw

Q
1 , δϕ21, δw

Q
2 , δϕ22} (43c)

T1 =

[
0 −yqp 0 0
0 0 0 −yqp

]
, (44a)

T2 =

[
0 z pq 0 0
0 0 0 z pq

]
, (44b)

T3 =


−zqp 0 0 0

0 0 0 0
0 0 −zqp 0
0 0 0 0

 , (44c)

T4 =


yqp 0 0 0
0 0 0 0
0 0 yqp 0
0 0 0 0

 . (44d)

Let kQM , kQ and kP denote the element stiffness matrices
corresponding to δqQM , δqQ and δqP , respectively. The
relation between kQM and kP , and the relation between kQ and
kP may be expressed by

kQM = Tt
P QM kP TP QM (45a)

kQ = Tt
P QkP TP Q (45b)

kQM =


kQM

aa kQM
ab kQM

ac kQM
ad

kQM
bb kQM

bc kQM
bd

kQM
cc kQM

cd

sym. kQM
dd

 , (45c)

kQ =


kQ

aa kQ
ab kQ

ac kQ
ad

kQ
bb kQ

bc kQ
bd

kQ
cc kQ

cd

sym. kQ
dd

 (45d)

kP =


kaa kab kac kad

kbb kbc kbd
kcc kcd

sym. kdd

 (45e)

where ki j (i = a, b, c, d, j = a, b, c, d) are defined in Eq. (32).

Let mQM , mQ and mP denote the element stiffness matrices
corresponding to δqQM , δqQ and δqP , respectively. The
relation between mQM and mP , and the relation between mQ

and mP may be expressed by

mQM = Tt
P QM mP TP QM (46a)

mQ = Tt
P QmP TP Q (46b)
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mQM =


mQM

aa mQM
ab mQM

ac mQM
ad

mQM
bb mQM

bc mQM
bd

mQM
cc mQM

cd

sym. mQM
dd

 , (46c)

mQ =


mQ

aa mQ
ab mQ

ac mQ
ad

mQ
bb mQ

bc mQ
bd

mQ
cc mQ

cd

sym. mQ
dd

 (46d)

mP =


maa mab mac mad

mbb mbc mbd
mcc mcd

sym. mdd

 (46e)

where mi j (i = a, b, c, d , j = a, b, c, d) are defined in
Eq. (34).

If Q = C , then the explicit form of kC M
i j and mC M

i j (i = a, b,
c, d , j = a, b, c, d) in Eqs. (45c) and (46c) can be obtained by
removing the underlined terms from ki j and mi j in Eqs. (32)
and (34).

If Q = C , the explicit form of kC
i j and mC

i j (i = a, b, c, d,
j = a, b, c, d) in Eqs. (45d) and (46d) may be given by

kC
aa = kaa, kC

ab = 02×4, kC
ac = 02×4,

kC
ad = 02×4

(47a)

kC
bb = kC M

bb , kC
bc = 04×4,

kC
bd = kbbT3 + Tt

1kabT3
(47b)

kC
cc = kC M

cc , kC
cd = kccT4 + Tt

2kacT4 (47c)

kC
dd = kdd + Tt

4kcbT3 + Tt
3kbbT3

+ Tt
4kccT4 + Tt

3kbcT4 (47d)

mC
aa = mC M

aa , mC
ab = 02×4, mC

ac = 02×4,

mC
ad = 02×4

(48a)

mC
bb = mC M

bb , mC
bc = 04×4,

mC
bd = mbd + mbbT3 + Tt

1mabT3
(48b)

mC
cc = mC M

cc , mC
cd = mcd + mccT4 + Tt

2macT4 (48c)

mC
dd = mdd + Tt

4mcd + mt
cdT4 + Tt

3mbd + mt
bdT3

+ Tt
3mbcT4 + Tt

4mt
bcT3 + Tt

3mbbT3 + Tt
4mccT4.

(48d)

It can be seen from Eqs. (32), (34), (47a) and (48a)
that if the axial displacement is restrained at the centroid
of the cross section, the axial vibration is uncoupled from
bending vibrations and torsional vibration as reported in
the literature. However, if the axial displacement of the pin
end is restrained at a point Q of the cross section (yq 6=

0, zq 6= 0) for a monosymmetric beam or an asymmetric
beam, the axial vibration, two bending vibrations, and torsional
vibration are all coupled. If the axial and lateral displacements
are all restrained at the centroid of the cross section, the
Fig. 2. Coordinate systems and notation for all examples.

axial vibration is still uncoupled from bending vibrations and
torsional vibration. However, the coupled bending and torsional
vibrations corresponding to δqC M , δqC are different if the axial
rotation is not restrained.

2.7. Frequency equations for linear free vibration

The natural frequencies and vibration modes of the discrete
structural system may be determined from the generalized
eigenvalue problem expressed by

KQ = ω2MQ (49)

where ω, M, K and Q are the natural frequency, structural
mass matrix, stiffness matrix, and vibration mode, respectively.
Here, the natural frequencies and vibrations modes are solved
by using the subspace iteration method [33].

3. Numerical studies

For all examples studied here, the global coordinates as
shown in Fig. 2 are chosen to coincide with the element cross
section coordinates. For all examples, the present results are
obtained using 20 elements. The vibration modes plotted are
UC , axial displacement of the centroid axis, V and W , lateral
displacements of the shear center axis in the X G

2 and X G
3

directions, respectively, and φ1, the twist angle about the shear
center axis.

Different boundary conditions for end sections A and B of
the beam given in Fig. 2 are considered here. For convenience,
in this study, BC I X , I = 1 − 5, X = P, C M, RM, C, R
are used to denote boundary conditions I corresponding to
nodal degrees of freedom qX . P, C , and R express that nodal
degrees of freedom corresponding to the axial and the lateral
displacements are all defined at the shear center P , centroid
C and point R of the end section, respectively. C M and RM
express that nodal degrees of freedom corresponding to the
axial displacement are defined at centroid C and point R of the
end section, respectively, and the lateral displacements are all
defined at the shear center P of the end section. The boundaries
considered here are given by

BC1: u X
A = 0, vX

A = vX
B = 0, wX

A = wX
B = 0, θ1A = θ1B = 0

BC2: u X
A = 0, vX

A = 0, v′X
A = 0, wX

A = 0, w′X
A = 0, θ1A = 0,

βA = 0
BC3: u X

A = u X
B = 0, vX

A = vX
B = 0, v′X

A = v′X
B = 0,

wX
A = wX

B = 0, w′X
A = w′X

B = 0, θ1A = θ1B = 0,
βA = βB = 0

BC4: u X
A = 0, vX

A = vX
B = 0, v′X

A = 0, wX
A = wX

B = 0,
w′X

A = 0, θ1A = 0, βA = 0
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Table 1
Natural frequencies (rad/s) of example 1 (monosymmetric channel section)

Mode BC1P BC1C M(C) BC1C M [19] BC1RM(R) BC2X BC2C M [19] BC3X BC3C M [19]

1 421.59 (W, T ) 421.59 (W, T ) 421.73 421.57 159.38 (W, T ) 159.40 938.20 (W, T ) 938.71
2 587.73 (A, V ) 592.83 (V ) N/A 587.70 211.31 (V ) N/A 1343.52 (V ) N/A
3 1653.48 (W, T ) 1653.48 (W, T ) 1656.69 1652.91 616.68 (W, T ) 619.21 2573.86 (W, T ) 2579.75
4 1717.33 (W, T ) 1717.33 (W, T ) 1732.59 1688.39 932.51 (W, T ) 934.00 3690.20 (V ) N/A
5 2270.23 (A, V ) 2363.83 (V ) N/A 2273.52 1320.33 (V ) N/A 3880.90 (W, T ) 3924.04
6 3698.25 (W, T ) 3698.25 (W, T ) 3714.81 3695.20 2575.91 (W, T ) 2585.97 5025.75 (W, T ) 5050.68
7 4473.19 (A, V ) 5291.02 (V ) N/A 4337.38 3679.45 (V ) N/A 7194.27 (V ) N/A
8 6288.05 (A, V ) 6445.14 (A) N/A 5896.49 3757.01 (W, T ) 3866.61 8272.94 (W, T ) 8344.01
9 6544.06 (W, T ) 6544.06 (W, T ) 6596.09 6545.51 5018.13 (W, T ) N/A 10 387.2 (W, T ) N/A

10 6687.65 (W, T ) 6687.65 (W, T ) N/A 7094.14 6445.14 (A) N/A 11 803.9 (V ) N/A

Mode BC4P(QM) BC4C BC4R BC5P BC5C M BC5RM BC5C BC5R

1 163.61 (W, T ) 408.32 (W, T ) 178.45 (V, W, T ) 163.61 (W, T ) 163.61 (W, T ) 163.62 408.32 (W, T ) 214.67
2 925.95 (V ) 823.00 (W, T ) 768.58 (V, W, T ) 932.01 (W, T ) 925.95 (V ) 931.96 823.00 (W, T ) 782.78
3 932.01 (W, T ) 925.95 (V ) 1118.52 (V, W, T ) 1082.89 (A, V ) 932.01 (W, T ) 1064.72 925.95 (V ) 1268.26
4 2554.59 (W, T ) 2176.52 (W, T ) 2367.26 (V, W, T ) 2554.59 (W, T ) 2554.59 (W, T ) 2565.70 2176.52 (W, T ) 2369.86
5 2700.77 (W, T ) 2990.64 (V ) 2680.95 (V, W, T ) 2700.77 (W, T ) 2700.77 (W, T ) 2749.00 2990.64 (V ) 2736.22
6 2990.64 (V ) 3364.10 (W, T ) 3236.91 (V, W, T ) 3144.22 (A, V ) 2990.64 (V ) 3163.62 3364.10 (W, T ) 3431.85
7 5015.73 (W, T ) 4677.57 (W, T ) 4799.19 (V, W, T ) 5015.73 (W, T ) 5015.73 (W, T ) 5016.39 4677.57 (W, T ) 4800.71
8 6206.27 (V ) 6206.27 (V ) 6445.14 (A) 6225.49 (A, V ) 6206.27 (V ) 6225.34 6206.27 (V ) 6453.34
9 6445.14 (A) 6445.14 (A) 6454.25 (V, W, T ) 8218.19 (W, T ) 8218.19 (W, T ) 8166.81 7541.26 (W, T ) 8027.73

10 8218.19 (W, T ) 7541.26 (W, T ) 8039.06 (V, W, T ) 8475.59 (W, T ) 8475.59 (W, T ) 8357.95 9555.59 (W, T ) 8270.84

X = P, C M, RM, C, R.
BC5: u X
A = u X

B = 0, vX
A = vX

B = 0, v′X
A = 0, wX

A = wX
B = 0,

w′X
A = 0, θ1A = 0, βA = 0

where j = A, B, β j denote the twist rate of the shear center
axis at end sections j . Due to the assumption that the out-of-
plane warping of the cross section is the product of the twist
rate of the beam element and the Saint Venant warping function,
β j = 0 denote warping restrained at end sections j . BC1
refers to both ends hinged. However, the axial displacement
is only restrained at end A. Torsion is restrained but warping
free at both supports. BC2 refers to one end fixed and one end
free. The axial displacement, lateral displacements, torsion and
warping are all restrained at one end and all free at the other
end. BC3 refers to both ends fixed. The axial displacement,
lateral displacements, torsion and warping are all restrained at
both supports. BC4 refers to one end fixed and one end hinged.
However, only the lateral displacements are restrained at the
hinged end. The axial displacement, torsion and warping are
free at the hinged end. BC5 refers to one end fixed and one
end hinged. However, the axial displacement and the lateral
displacements are restrained at the hinged end. The torsion and
warping are free at the hinged end. Due to the assumption that
the cross section of the beam element does not deform in its
own plane, the fixed end and free end corresponding to different
nodal degrees of freedom qX are equivalent. Thus, the boundary
conditions BC2X are equivalent and BC3X are equivalent
for X = P, RM, C M, C, R. From Eq. (36), it can be seen
that boundary conditions BC1C M and BC1C are equivalent,
BC1RM and BC1R are equivalent, and BC4P , BC4C M and
BC4RM are equivalent.
3.1. Example 1. Monosymmetric channel cross section

The example considered here is a uniform beam with
monosymmetric channel cross section as shown in Fig. 3. This
example was studied in [19] for boundary conditions BC I C M
(I = 1, 2, 3). The geometry and material properties are given
in Fig. 3. The section constants are as follows:

A = 2.669 × 10−4m2, Iy = 4.5 × 10−7m4,

Iz = 9.396 × 10−8m4, J = 1.4 × 10−10m4,

Iω = 1.636 × 10−10m6.

The lowest 10 natural frequencies of the present study
together with those given in [19] are shown in Table 1.
It can be seen that the agreement between the natural
frequencies of the present study and those given in [19]
is very good. In Table 1, (A) and (V ) denote that the
natural frequency corresponds to uncoupled axial vibration and
bending vibration in the X G

2 direction, respectively; (A, V )

denotes that the natural frequency corresponds to coupled axial
vibration and bending vibration in the X G

2 direction; (W, T )

denotes that the natural frequency corresponds to coupled
torsional vibration and bending vibration in the X G

3 direction,
(V, W, T ) denotes that the natural frequency corresponds to
the coupled bending vibration in the X G

2 and X G
3 directions

and torsional vibration. It can be seen that for boundary
conditions BC1C M(C), BC2X , BC3X , BC4P(RM), BC4C
and BC5C , the vibrations are a coupled (W, T ) vibration,
uncoupled (A) vibration and uncoupled (V ) vibration; for
boundary conditions BC1P and BC5P , the vibrations are a
coupled (A, V ) vibration and a coupled (W, T ) vibration; for
boundary condition BC4R, the vibrations are a triply coupled
(V, W, T ) vibration and an uncoupled (A) vibration; for
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Fig. 3. Monosymmetric channel cross section for example 1.

boundary conditions BC1RM(R), BC5RM , BC5R, the axial
vibration, two bending vibrations, and torsional vibration are all
coupled (quadruply coupled vibration). The natural frequencies
corresponding to the (W, T ) vibration are identical for
boundary conditions BC1P and BC1C M(C). The vibration
modes corresponding to the lowest 10 natural frequencies for
boundary condition BC1RM , BC4R, BC5RM and BC5R are
shown in Figs. 4–7.

3.2. Example 2. Monosymmetric T cross section

The example considered here is a uniform beam with a
monosymmetric T cross section as shown in Fig. 8. This
example was studied in [21] for boundary condition BC1C M .
The geometry and material properties are given in Fig. 4. The
section constants are as follows:

A = 1925.2 × 10−6m2, Iy = 7.6839 × 10−6m4,

Iz = 7.11143 × 10−7m4, J = 3.17103 × 10−8m4,

Iω = 3.86899 × 10−11m6.

The lowest 10 natural frequencies of the present study
are shown in Table 2. The first uncoupled axial natural
frequency for the boundary condition BC1C M may be given
by π/L

√
E/ρ = 8150.45 rad/s, which is much larger

than the lowest 10 natural frequencies for the boundary
condition BC1C M . The first natural frequency given in [21]
for boundary condition BC1C M is 191.49 rad/s. In Table 2,
(W ) expresses that the natural frequency corresponds to the
uncoupled axial vibration and the bending vibration in the
X G

2 direction, respectively; (A, W ) expresses that the natural
frequency corresponds to the coupled axial vibration and the
bending vibration in the X G

2 direction; (V, T ) expresses that
the natural frequency corresponds to the coupled torsional
vibration and the bending vibration in the X G

3 direction,
(V, W, T ) denotes that the natural frequency corresponds to
the coupled bending vibration in the X G

2 and X G
3 directions

and torsional vibration. It can be seen that for the boundary
conditions BC1C M(C), BC2X , BC3X , BC4P(RM), BC4C
and BC5C , the vibrations are a coupled (V, T ) vibration, and
Fig. 4. The first 10 vibration mode shapes for example 1 (BC1RM).

an uncoupled (W ) vibration; for boundary conditions BC1P
and BC5P , the vibrations are a coupled (A, W ) vibration and
a coupled (V, T ) vibration; for boundary condition BC4R,
the vibrations are a triply coupled (V, W, T ) vibration; for
boundary conditions BC1RM(R), BC5RM , BC5R, the axial
vibration, two bending vibrations and torsional vibration are all
coupled (quadruply coupled vibration). The natural frequencies
corresponding to (W, T ) vibration are identical for boundary
conditions BC1P and BC1C M(C).
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Fig. 5. The first 10 vibration mode shapes for example 1 (BC4R).

3.3. Example 3. Asymmetric cross section A

The example considered here is a uniform beam with an
asymmetric cross section as shown in Fig. 9. This example
was studied in [22] for boundary conditions BC1C M . The
geometry and material properties are given in Fig. 9. The
section constants are as follows: A = 3.4 × 10−2m2, Iy =

5.81146 × 10−4m4, Iz = 1.75303 × 10−3m4, J = 4.53333 ×

10−6m4, Iω = 1.28016 × 10−4m6.
Fig. 6. The first 10 vibration mode shapes for example 1 (BC5RM).

The lowest 13 natural frequencies of the present study
together with those given in [22] are shown in Table 3. In
Table 3, (A) denotes that the natural frequency corresponds
to uncoupled axial vibration. It can be seen that the agreement
between the natural frequencies of the present study and those
given in [22] is very good. For boundary conditions BC1P
and BC5P , the axial displacements are restrained at the shear
center P (yp 6= 0, z p 6= 0) of the cross section of pin ends
A and B, respectively. Thus, as mentioned in the previous
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Fig. 7. The first 10 vibration mode shapes for example 1 (BC5R).

section, for boundary conditions BC1P and BC5P , the axial
vibration, two bending vibrations and torsional vibration are
all coupled (quadruply coupled vibration). For the rest of
the boundary conditions, only two bending vibrations and
the torsional vibration are coupled (triply coupled vibration).
The vibration modes corresponding to the lowest 10 natural
frequencies for boundary conditions BC1P , BC1C M , BC4P ,
BC4C , and BC5P are shown in Figs. 10–14. It can be seen
Fig. 8. Monosymmetric T cross section for example 2.

Fig. 9. Asymmetric cross section A for example 3.

from Figs. 10 and 11 that the coupling characteristics of free
vibration for the boundary conditions BC1P and BC1C M are
quite different.

3.4. Example 4. Asymmetric cross section B

The example considered here is a uniform beam with an
asymmetric cross section as shown in Fig. 15. This example
was studied in [22] for boundary conditions BC1C M . The
geometry and material properties are given in Fig. 15. The
section constants are as follows: A = 2.85 × 10−2m2, Iy =

1.02858 × 10−3m4, Iz = 2.39265 × 10−3m4, J = 2.28750 ×

10−6m4, Iω = 9.26333 × 10−5m6.
The lowest 14 natural frequencies of the present study

together with those given in [22] are shown in Table 4. In
Table 4, (A) denotes that the natural frequency corresponds to
an uncoupled axial vibration. It can be seen that the agreement
between the natural frequencies of the present study and those
given in [22] is very good. The coupling characteristics of the
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Fig. 10. The first 10 vibration mode shapes for example 3 (BC1P).

free vibrations of this example are the same as those of example
3 for all boundary conditions.

3.5. Example 5. Asymmetric cross section C

The example considered here is a uniform beam with an
asymmetric cross section as shown in Fig. 16. This example
was studied in [22] for boundary conditions BC1C M . The
geometry and material properties are given in Fig. 16. The
Fig. 11. The first 10 vibration mode shapes for example 3 (BC1C M).

section constants are as follows: A = 2.4 × 10−2m2, Iy =

6.65827 × 10−4m4, Iz = 1.82139 × 10−4m4, J = 5.20000 ×

10−6m4, Iω = 3.94255 × 10−6m6.

The lowest 12 natural frequencies of the present study
together with those given in [22] are shown in Table 5. In
Table 5, (A) denotes that the natural frequency corresponds to
the uncoupled axial vibration. It can be seen that the agreement
between the natural frequencies of the present study and those
given in [22] is very good. The coupling characteristics of the
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Fig. 12. The first 10 vibration mode shapes for example 3 (BC4P).

free vibrations of this example are the same as those of example
3 for all boundary conditions.

4. Conclusions

A finite element formulation for the coupled vibration
analysis of thin-walled beams with a generic open section
is presented. If the axial displacement of the pin end is
restrained at any point rather than at the centroid of the
Fig. 13. The first 10 vibration mode shapes for example 3 (BC4C).

asymmetric cross section, the axial vibration, two bending
vibrations, and torsional vibration may all be coupled. Such
a coupled vibration is induced by the boundary conditions
and called a quadruply coupled vibration in the study. The
element developed here has two nodes with seven degrees
of freedom per node. The shear center axis is chosen to
be the reference axis, and the element nodes are chosen to
be located at the shear centers of the end cross sections of
the beam element. Both the element deformation and inertial
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Fig. 14. The first 10 vibration mode shapes for example 3 (BC5P).

nodal forces are systematically derived using a consistent
first-order linearization of the exact kinematics of the Euler
beam, the d’Alembert principle, and the virtual work principle.
The element stiffness matrix and mass matrix are obtained
by differentiating the element deformation nodal force vector
and element inertial nodal force vector with respect to the
element nodal parameters and their second time derivatives,
respectively. To describe the restrained nodal degrees of
freedom at boundaries correctly, the restrained nodal degrees
Fig. 15. Asymmetric cross section B for example 4.

Fig. 16. Asymmetric cross section C for example 5.

of freedom at boundaries and the corresponding element nodal
degrees of freedom should be identical or equivalent. Different
sets of element nodal degrees of freedom corresponding to
different pin ends are considered here. The relation between
element matrices corresponding to different sets of element
nodal degrees of freedom is derived.

From the numerical examples studied, the accuracy of
the proposed method is demonstrated and the effects of
different boundary conditions on the coupled vibrations of thin-
wall beams are investigated. The quadruply coupled vibration
of monosymmetric and asymmetric beams induced by the
boundary conditions is verified.

It should be noted that the vibration can be nonlinear
for slender beams. It seems that the proposed finite element
formulation can be easily extended to the nonlinear vibration,
if the element deformation and inertial nodal forces are derived
using a consistent second-order linearization instead of the first-
order linearization used here.
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Table 2
Natural frequencies (rad/s) of example 2 (monosymmetric T section)

Mode BC1P BC1C M(C) BC1RM(R) BC2X BC3X BC4P(QM) BC4C

1 190.81 (V, T ) 190.81 (V, T ) 190.41 78.42 (V, T ) 244.89 (V, T ) 121.84 (V, T ) 156.50 (V, T )

2 401.87 (V, T ) 401.87 (V, T ) 397.83 173.56 (V, T ) 506.32 (V, T ) 350.98 (V, T ) 310.67 (V, T )

3 463.22 (V, T ) 463.22 (V, T ) 462.89 287.48 (W ) 727.93 (V, T ) 502.69 (V, T ) 473.28 (V, T )

4 729.54 (V, T ) 729.54 (V, T ) 729.24 351.24 (V, T ) 807.18 (V, T ) 655.50 (V, T ) 727.28 (V, T )

5 798.98 (A,W) 804.87 (W ) 798.49 582.34 (V, T ) 1070.44 (V, T ) 887.49 (V, T ) 881.16 (V, T )

6 1007.27 (V, T ) 1007.27 (V, T ) 1007.00 809.52 (V, T ) 1384.71 (V, T ) 1182.30 (V, T ) 1121.10 (V, T )

7 1303.76 (V, T ) 1303.76 (V, T ) 1263.67 891.15 (V, T ) 1721.10 (V, T ) 1256.35 (W ) 1256.35 (W )

8 1336.60 (V, T ) 1336.60 (V, T ) 1303.94 1183.18 (V, T ) 1822.37 (W ) 1484.51 (V, T ) 1371.65 (V, T )

9 1623.85 (V, T ) 1623.85 (V, T ) 1623.62 1488.77 (V, T ) 2029.95 (V, T ) 1667.83 (V, T ) 1677.43 (V, T )

10 1971.33 (V, T ) 1971.33 (V, T ) 1970.92 1777.21 (W ) 2089.05 (V, T ) 1833.24 (V, T ) 1936.55 (V, T )

Mode BC4R BC5P BC5C M BC5RM BC5C BC5R

1 154.12 (V, W, T ) 121.84 (V, T ) 121.84 (V, T ) 122.68 156.50 (V, T ) 166.21
2 338.89 (V, W, T ) 350.98 (V, T ) 350.98 (V, T ) 356.33 310.67 (V, T ) 339.36
3 496.27 (V, W, T ) 502.69 (V, T ) 502.69 (V, T ) 574.02 473.28 (V, T ) 540.24
4 618.64 (V, W, T ) 655.50 (V, T ) 655.50 (V, T ) 689.69 727.28 (V, T ) 673.71
5 807.37 (V, W, T ) 887.49 (V, T ) 887.49 (V, T ) 888.50 881.16 (V, T ) 810.48
6 1066.81 (V, W, T ) 1182.30 (V, T ) 1182.30 (V, T ) 1182.68 1121.10 (V, T ) 1069.60
7 1328.38 (V, W, T ) 1308.43 (A,W) 1256.35 (W ) 1283.12 1256.35 (W ) 1337.62
8 1564.34 (V, W, T ) 1484.51 (V, T ) 1484.51 (V, T ) 1491.44 1371.65 (V, T ) 1564.74
9 1668.21 (V, W, T ) 1667.83 (V, T ) 1667.83 (V, T ) 1795.80 1677.43 (V, T ) 1764.65

10 1820.23 (V, W, T ) 1833.24 (V, T ) 1833.24 (V, T ) 1834.54 1936.55 (V, T ) 1866.42

X = P, C M, RM, C, R.

Table 3
Natural frequencies (rad/s) of example 3 (asymmetric section A)

Mode BC1P BC1C M(C) BC1C M [22] BC2X BC3X BC4P(C M) BC4C BC5P BC5C M BC5C

1 54.41 54.54 54.54 20.56 120.71 28.47 69.09 28.50 28.47 69.09
2 80.83 81.83 81.83 30.27 183.35 105.74 90.48 117.88 105.74 90.48
3 210.56 212.57 212.57 79.36 330.70 143.98 132.43 158.38 143.98 132.43
4 212.58 212.74 212.73 120.46 474.68 306.10 269.73 309.54 306.10 269.73
5 302.70 322.45 322.45 181.25 502.33 341.73 398.81 347.23 341.73 398.81
6 459.11 475.07 475.05 331.20 645.27 425.38 461.71 444.96 425.38 461.71
7 562.80 719.56 719.57 462.95 977.56 629.00 565.30 632.02 629.00 565.30
8 790.77 804.90 (A) N/A 501.21 1061.68 804.90 (A) 804.90 (A) 850.13 857.03 848.73
9 820.47 819.00 819.01 644.42 1269.75 857.03 848.73 1012.48 1013.10 949.86

10 878.69 840.03 N/A 804.90 (A) 1577.75 1013.10 949.86 1067.82 1072.85 1216.53
11 1293.13 1267.51 N/A 972.67 1601.13 1072.85 1216.53 1223.76 1431.19 1433.88
12 1333.75 1305.48 N/A 1059.01 1611.04 (A) 1431.19 1433.88 1570.27 1570.48 1459.15
13 1767.33 1768.81 1768.75 1241.30 2190.78 1570.48 1459.15 1598.39 1611.04 (A) 1611.04 (A)

X = P, C M, C .

Table 4
Natural frequencies (rad/s) of example 4 (asymmetric section B)

Mode BC1P BC1C M(C) BC1C M [22] BC2X BC3X BC4P(C M) BC4C BC5P BC5C M BC5C

1 51.04 51.05 51.05 19.90 112.22 21.28 62.42 21.28 21.28 62.42
2 99.54 101.41 101.41 36.28 229.58 111.88 96.20 112.36 111.88 96.20
3 197.75 197.83 197.83 84.57 307.25 158.91 160.30 187.16 158.91 160.30
4 233.55 233.71 233.71 112.35 526.86 306.30 255.80 306.43 306.30 255.80
5 364.98 402.91 402.91 225.30 599.54 365.52 461.10 365.98 365.52 461.10
6 441.26 441.50 441.48 307.98 628.53 509.63 510.88 533.23 509.63 510.88
7 625.25 780.81 N/A 509.03 986.80 599.04 557.20 599.04 599.04 557.20
8 781.51 804.90 (A) N/A 599.06 1219.46 804.90 (A) 804.90 (A) 978.02 981.20 893.59
9 904.06 897.70 897.74 624.98 1402.48 981.20 893.59 1011.03 1054.73 1053.95

10 994.17 904.15 904.15 804.90 (A) 1467.33 1054.73 1053.95 1141.47 1142.01 1281.91
11 1214.69 1214.04 N/A 984.82 1611.04 (A) 1142.01 1281.91 1372.70 1461.92 1403.15
12 1582.53 1574.92 N/A 1209.22 1988.18 1461.92 1403.15 1465.25 1611.04 (A) 1611.04 (A)

13 1738.79 1739.13 N/A 1362.38 2038.97 1776.45 1779.76 1899.29 1776.45 1779.76
14 1937.23 1940.05 1939.99 1463.16 2616.21 2029.51 1905.92 2029.77 2029.51 1905.92

X = P, C M, C .
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Table 5
Natural frequencies (rad/s) of example 5 (asymmetric section C)

Mode BC1P BC1C M(C) BC1C M [22] BC2X BC3X BC4P(C M) BC4C BC5P BC5C M BC5C

1 42.40 42.41 42.41 15.48 84.94 39.24 45.81 39.29 39.24 45.81
2 74.87 74.91 74.91 29.18 127.94 74.36 67.39 76.10 74.36 67.39
3 99.46 99.48 99.48 47.64 203.43 126.16 120.76 127.88 126.16 120.76
4 150.81 150.87 150.87 92.68 213.46 148.00 163.45 148.38 148.00 163.45
5 226.73 227.12 227.12 148.38 331.36 222.28 209.18 223.13 222.28 209.18
6 304.69 304.82 304.81 203.39 392.35 290.06 306.11 291.46 290.06 306.11
7 356.92 357.86 357.85 232.31 553.67 405.22 376.53 405.22 405.22 376.53
8 472.06 474.66 474.64 342.04 624.20 453.38 472.62 454.64 453.38 472.62
9 508.53 508.85 N/A 409.06 632.79 550.77 555.65 552.01 550.77 555.65

10 739.28 766.58 N/A 553.95 910.30 644.14 641.19 644.15 644.14 641.19
11 768.56 792.11 792.13 627.93 1031.86 804.90 (A) 804.90 (A) 891.55 891.86 856.82
12 804.26 804.90 (A) N/A 649.16 1073.95 891.86 856.82 925.77 926.92 925.45

X = P, C M, C .
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