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摘要

假設 N 為(n+1)-維單位球面， R 為定義於
N 上之預設函數。 此報告主要導出： 當 M
為一定義於 n-維單位球面的函數之超曲面
時，其對應之非線性方程。 在 n=2 的情形
下，即高斯型方程的情形，觀察存在與唯
一的可能性。

關鍵詞：純曲率、超曲面、球面

Abstract

Let N be the (n+1)-dimensional unit sphere 
and R be a function defined on a region of N. 
Consider M as a graph of a function u 
defined on a totally geodesic n-sphere, we 
derive the fully nonlinear partial differential
equation for the problem of prescribed scalar 
curvature R. Then we consider the equation 
in the case of n=2, and obtain some 
observations.       

Keywords: scalar curvature, hypersurfaces, 
spheres.

1. Introduction
    
   Let N be a complete (n+1)-dimensional 
manifold and Ω be a open connected subset 
of N. Let F be a smooth, symmetric function 
defined in the n-dimensional Euclidean space.  

The problem of prescribed curvature is:  
Given a smooth function K defined on Ω,
find a closed hypersurface M contained in 
Ω such that the principal curvatures satisfy 
the equation F = K on M.
    
  This is in general a problem for a system 
of fully nonlinear partial differential  
equations. For technical reasons it is 
convenient to consider certain associated 
scalar elliptic equation. The existence of 
convex solutions has been studied 
extensively by various authors. Using the 
elliptic theory, the problem has been solved 
in the case when F is the mean curvature (see 
[BK], [TW] and [HSW]), in the case when F 
is the Gaussian curvature (see [Ol]), and in 
the case when F is the general curvature 
function (see [Ge1], [Ge2] and [CNS]). On 
the other hand, using the evolutionary 
approach, the existence of convex solution 
has been studied by Ecker and Huisken (see 
[EH]), Gerhardt (see [Ge3] and [Ge4]). 
Roughly speaking, in the elliptic approach 
one need find C0, C1, C2  and  C3 a priori 
estimates, and in the evolutionary approach 
one need find C0, C1 and C2  (and hence  C4,

α) a priori estimates.

In this report, we consider the case when 
N is the (n+1)-dimensional unit sphere. Let  
M be the graph of a function u defined on  a 
totally geodesic n-sphere. We establish the 
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following elementary polynomials of degree 
one and two, and scalar curvature equation:

1. The mean curvature
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In particular, in the case n=2, the scalar 
curvature equation is just
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This is a equation of Gaussian curvature 
which we will give some observations in 
section 3. 

2. The Fully nonlinear  PDE

    For deriving the equation for the 
problem of prescribed scalar curvature, we 
parameterize the standard (n+1)-dimensional 
unit sphere by (λ,x) as follows
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where x is the position vector of the standard
n-dimensional unit sphere Sn = {(x, xn+1): 
xn+1=0}, e = (0,… ,0,1) andλis a real number.
Let u be a smooth function defined on the 
standard n-dimensional unit sphere,  and Y
be the embedding from the standard 
n-dimensional unit sphere into the standard 
(n+1)-dimensional unit sphere given by 
Y(x)=(u(x), x) via the parameterization of the 
standard (n+1)-dimensional unit sphere. Let 
e1, e2, … , en be an orthonormal frame fields 
on the n-dimensional unit sphere and  ω1, 
ω 2, … , ω n its dual coframes. Taking 
exterior differentiation, we see that the 
tangent space of the hypersurface M= 
graph( u ) is spaned by 
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3. The scalar curvature equation
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Assume that f1, f2, … , fn is an orthonormal 
frame fields on M, and let θ1, θ2, … , θn

be its dual coframes. We then have 
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 Let h=[hij] , I= [δij ] and U=[uij]. It 

follows from the structure equations that
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We then have the mean curvature
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and the square of the length of the second 
fundamental form are given by 
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 Finally we have the scalar curvature
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We then have the scalar curvature equation. 
In particular, in the case n = 2, we have
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where K is the Gaussian curvature at (u, x).

At the points where│▽u│= 0,  the above 

formulas for H, S and R still work.
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3. Some Observations 

    The scalar curvature equation given in 
section 2 is very complicated. We now 
consider the case of n=2 which is a equation 
of Gaussian curvature. In general, for 
applying the maximum principle and the 
elliptic theory, one like to make some 
restrictions on the solutions for the equation 
when consider the equations of Gaussian 
curvature,. e.g., convex solutions or positive 
solutions (see [Ol] and [Ge3]). However, 
here we only consider some general 
observations without any constraints.

Since the equation was raised from a 
geometric setting, there must have natural 
geometric restrictions if the problem  admits 
a solution. The following condition follows 
from the Gauss-Bonnet Theorem.  

    Let K be a function defined on S3 . 
Suppose that K(λ, x) is essentially not less 
than 1+λ2 , for all (λ, x) in S3. We claim the 
equation has no solutions. 
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  Thus for the existence of solutions there 
has a necessary condition: K(λ, x) ≦ 1+λ2

somewhere. This necessary condition makes 
sense. One just notices that if u is the 
constant function u =λ then K=1+λ2 . In 
particular, we have the following observation: 
if K = K(λ), K(λ) ≦ 1+λ2 for some λ=
λ1 and K(λ) ≧ 1+λ2 for some λ=λ2

then there has a solution. There are    
existence results which have analogous 
conditions ( see [Ol], [TW] and [HSW] ), 
even these equations are not in the same type. 
We may expect that if K(λ, x) ≦ 1+λ2 for 
some λ=λ1 for all x , K(λ, x) ≧ 1+λ2

for some λ = λ 2 for all x, and K is 
monotonic inλthen there has a solution.

 The following proposition shows that the a 
priori C1 estimate of u follows from  the a 
priori C0 estimate of u. 

Prop.(C1-estimate) Let K be a function 
defined on S3 , K(λ, x)≠1, for all (λ, x) in 
S3 . If u is a bounded solution of 
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     The multiplicity of the solutions 
depends on the behavior of the function K. 
One can find that u = c(x,a) is a solution 
when K=1 for all real number c and all a in 
S2 since K is invariant under O(3)-actions 
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and the dilation of λ . In this case we 
observe that there has no uniformly bounds 
for the C0 -norm. This is different to the case 
of Euclidean space; in the case of Euclidean 
space, positive solutions has a  uniformly 
bounds for the C0 –norm for certain class of  
K (see [Ol ] ) . The equation in the Euclidean 
space is almost similar to our equation except 
a minus sign in the term of u in the determinant. 
From this, we learn that for finding a 
C0 –estimate it is necessary to restrict 
solutions in some class of  solutions. A
priori C2 and C3 estimates were rather 
complicated even in the elliptic case (see [Ol] 
and [Ge1]).   

4. Final Comments 

    The problem of prescribed curvature is 
an interesting problem, the existence of 
solutions has been studied extensively by 
various authors. For technical reasons,  all 
known results are using either elliptic or 
parabolic approach. There are still many  
nonconvex solutions that were not found. 
The main problem will be: how to find a 
method which can show the existence of 
solutions when the equation is not elliptic or 
parabolic. In this report we establish the 
equation of prescribed scalar curvature, a 
equation related to 2-mean curvatures. The 
equation is well worth studying as a equation 
of homogeneous degree two.    
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