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Abstract

Let N be the (n+1)-dimensional unit sphere
and R be a function defined on aregion of N.
Consider M as a graph of a function u
defined on a totally geodesic n-sphere, we
derive the fully nonlinear partial differential
equation for the problem of prescribed scalar
curvature R. Then we consider the equation
in the case of n=2, and obtain some
observations.
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1. Introduction
Let N be a complete (n+1)-dimensional

manifold and Q be a open connected subset
of N. Let F be a smooth, symmetric function

defined in the n-dimensional Euclidean space.

The problem of prescribed curvature is.
Given a smooth function K defined on Q ,
find a closed hypersurface M contained in
Q such that the principal curvatures satisfy
the equation F = K on M.

This is in genera a problem for a system
of fully nonlinear partial differentia
equations. For technical reasons it is
convenient to consider certain associated
scalar elliptic equation. The existence of
convex solutions has been studied
extensively by various authors. Using the
elliptic theory, the problem has been solved
in the case when F is the mean curvature (see
[BK], [TW] and [HSW]), in the case when F
is the Gaussian curvature (see [Ol]), and in
the case when F is the genera curvature
function (see [Gel], [Ge2] and [CNS]). On
the other hand, using the evolutionary
approach, the existence of convex solution
has been studied by Ecker and Huisken (see
[EH]), Gerhardt (see [Ge3] and [Ged]).
Roughly speaking, in the elliptic approach
one need find ¢°, ¢!, &¢ and C’a priori
estimates, and in the evolutionary approach
one need find %, C'and ¢ (and hence C*
“Yapriori estimates.

In this report, we consider the case when
N is the (n+1)-dimensiona unit sphere. Let
M be the graph of afunction u definedon a
totally geodesic n-sphere. We establish the



following elementary polynomials of degree
one and two, and scalar curvature equation:
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3. The scalar curvature equation
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In particular, in the case n=2, the scalar
curvature equation is just

det( u, +ud,) = (J) 2(k(u, ) - 1).

This is a equation of Gaussian curvature
which we will give some observations in
section 3.

2. TheFully nonlinear PDE

For deriving the equation for the
problem of prescribed scalar curvature, we
parameterize the standard (n+1)-dimensional
unit sphere by (A ,x) asfollows

1 /

/ ® X+ e
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where X is the position vector of the standard
n-dimensional unit sphere S' = {(X, Xp+1):
Xn+1=0}, €= (0,...,0,1) and\ isarea number.
Let u be a smooth function defined on the
standard n-dimensional unit sphere, and Y
be the embedding from the standard
n-dimensional unit sphere into the standard
(n+1)-dimensional unit sphere given by
Y (xX)=(u(x), X) viathe parameterization of the
standard (n+1)-dimensiona unit sphere. Let
€1, &, ..., &, be an orthonormal frame fields
on the n-dimensional unit sphere and 1,
w2 .., Wy its dua coframes. Taking
exterior differentiation, we see that the
tangent space of the hypersurface M=

graph( u) is spaned by

- uux+ue+(L+u)e

for i = 1,2,...,n, and the first fundamental
formis given by

¢ =8 (uu, + @+ )d,ww,

L+u)
And the unit normal vector is
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N =

(- ux+ e- Nu).



Assume that f4, fo, ..., f, iS an orthonormal
frame fieldson M, and let 6 1, 6 2, ..., B .
beits dua coframes. We then have fundamental form are given by
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follows from the structure equations that
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We then have the scalar curvature equation.
In particular, in the case n = 2, we have

We then have the mean curvature

H=trh= 1 7 |NL4
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V2 (k(u, X) - 1).



3. Some Observations

The scalar curvature equation given in
section 2 is very complicated. We now
consider the case of n=2 which is a equation
of Gaussian curvature. In general, for
applying the maximum principle and the
elliptic theory, one like to make some
restrictions on the solutions for the equation
when consider the equations of Gaussian
curvature,. e.g., convex solutions or positive
solutions (see [Ol] and [Ge3]). However,
here we only consider some generd
observations without any constraints.

Since the equation was raised from a
geometric setting, there must have natural
geometric restrictions if the problem  admits
a solution. The following condition follows
from the Gauss-Bonnet Theorem.

Let K be a function defined on S° .
Suppose that K(A , x) is essentially not less
than 1+A °, for al (A , x) in S°. We claim the
equation has no solutions.

Let ubeasolutionof theequation

W4
det[u +ud;; ]—( ) (k-1).
Accordingto theGauss— Bonnet Theorem,
OKov=4p.

wheredv isthevolumeelement of thegraph u.
Since
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Thus for the existence of solutions there
has a necessary condition: K(A , x) 1+A

somewhere. This necessary condition makes
sense. One just notices that if u is the
constant function u =A then K=1+A °

particular, we have the following observation:
ifK=KQ\),KQ) 1+A * for some A =
A1 and KA ) 1+\ ° for some A =A
then there has a solution. There are
existence results which have anaogous
conditions ( see [Ol], [TW] and [HSW] ),
even these equations are not in the same type.
We may expect that if K(A , X) 1+A *for
some A =\ 1 for al x , K\ , X) 1+A 2
for some A =A : for al x, and K is
monotonic inA then there has a solution.

The following proposition shows that the a
priori C* estimate of u follows from the a
priori C° estimate of u.

Prop.(C'-estimate) Let K be a function
definedon S*, K(\ , x)# 1, foral (A , x) in
S®. If uisabounded solution of
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Proof. Let v=u? +|Nif*. Assumethat vattains
itsmaximumvalueat X, .Thenwehave
v, =0 at xqforali=1,2. Itfollowsthat

[]
uu; +Q u;uj; =0 andhence

Q (u; +ud;)u; =0 for dl i=12

Since
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u;=0 foradli=1, 2. Thus
max ( u? +|NL42):u2(x0)£max( u?),

max(|NL.12)£max( u?).

The multiplicity of the solutions
depends on the behavior of the function K.
One can find that u = c¢(x,a) is a solution
when K=1 for al real number c and al ain
§* since K is invariant under O(3)-actions



and the dilation of A . In this case we
observe that there has no uniformly bounds
for the C° -norm. Thisis different to the case
of Euclidean space; in the case of Euclidean
space, positive solutions has a uniformly
bounds for the C° —norm for certain class of
K (see[Ol ] ) . The equation in the Euclidean
space is amost similar to our equation except
aminus sign in the termof u in the determinant.
From this, we learn that for finding a
C® —estimate it is necessary to restrict
solutions in some class of solutions. A
prioi C*> and C® estimates were rather
complicated even in the eliptic case (see [Ol]
and [Gel]).

4. Final Comments

The problem of prescribed curvature is
an interesting problem, the existence of
solutions has been studied extensively by
various authors. For technical reasons, all
known results are using either elliptic or
parabolic approach. There are still many
nonconvex solutions that were not found.
The main problem will be: how to find a
method which can show the existence of
solutions when the equation is not elliptic or
parabolic. In this report we establish the
equation of prescribed scalar curvature, a
equation related to 2-mean curvatures. The
equation is well worth studying as a equation
of homogeneous degree two.
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