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SUMS OF ORTHOGONAL PROJECTIONS

MAN-DUEN CHOI and PEI YUAN WU

ABSTRACT

In this paper, we consider the problem of characterizing Hilbert space operators
which are expressible as a sum of (finitely many) orthogonal projections. When the
underlying space is finite-dimensional, this was completely solved by Fillmore: a
finite-dimensional operator is the sum of projections if and only if it is positive, its
trace is an integer and the trace is greater than or equal to the rank. In this paper,
we obtain necessary/sufficient conditions for infinite-dimensional operators to be ex-
pressible as such. For example, we prove that (a} a positive operator with essential
norm strictly greater than one is always a sum of projections, and (b) if an injective
operator of the form 1 + K, where K is compact, is a sum of projections, then either

tr Ky =tr K_ = oo or K is of trace class with tr K a nonnegative integer.
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Which bounded linear operator on a complex Hilbert space can be expressed as
the sum of finitely many orthogonal projections? {an orthogonal projection is an op-
erator P with P2 = P = P*.) This is the problem we are going to address in this
paper. If the underlying space is finite-dimensional, then a complete characterization
of such operators was obtained before by Fillmore [2}: a finite-dimensional operator
is the sum of projections if and only if it is positive, it has an integral trace and the
trace is greater than or equal to the rank. In this paper, we consider this problem for
operators on an infinite-dimensional separable space. It turns out that in this situa-
tion the necessary/sufficient conditions we obtained for sums of projections are, after
some appropriate interpretation, not toc much different from the finite-dimensional
ones. Although we haven’t been able to give a complete characterization, we can
reduce the whole probleni to the consideration of operators of the form identity +

compact.

The organization of this paper is as follows. In Section 1 below, we start by
giving a special operator matrix representation for sums of projections (Proposition
1.2). This is used to give a more conceptual proof of the above result of Fillmore
(Corollary 1.3). The main result of this section is Theorem 1.5. It says that every
positive operator with essential norm strictly greater than one is the sum of projec-
tions. This essentially reduces our problem to the consideration of operators of the
form identity + compact. We then concentrate on this latter class in Section 2 and
derive some necessary conditions for such operators to be sums of projections. It
culminates in Theorems 2.3 and 2.5 in which we show that if an injective operator of

the form 1 + K, where K is infinite-rank compact, is a sum of projections, then both
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the positive and negative parts Ky and K_ of K have infinte rank and, moreover,
the traces of A, and K_ are either both infinity or both finite with the difference
tr K,—tr K_ a nonnegative integer. We end this section by conjecturing that the
converse is also true. If this is indeed the case, then we have a complete character-
ization of sums of projections. Finally, in Section 3, we consider some variations of
the sum-of-projections problem. They fall into two different categories. One of them
involves the characterization of sums of projections which are commuting and for
having some ﬁxed. (finite or infinite) rank. The other concerns the characterization

of the closure of sums of (two) projections in the norm topology.

Recall that an operator T is positive (resp. strictly positive), denoted by T > 0
(resp. T > 0) if {T'z,z} > O (vesp. {T'z,z} > 0) for any (resp. nonzero) vector z. For
Hermitian operators A and B, A > B (resp. A > B) means that A — B > 0 (resp.
A— B > 0). For an operator T on H and 1 < n < oo, T denotes the operator
Te---®@Ton HM = H@®--- @ H. The trace of T, when defined, is denoted by tr
N e’ e, st
T, and the range and rank of T are ran T and rank T, respectively. In the following,
we will need the Fredholm theory of operators. For this, the reader can consult [1,

Chapter XIJ.

1. REDUCTION

We start by showing that in considering sums of projections we may as well as-

sume that the operator under consideration is injective.



Lemma 1.1. An operator of the form T @0 is the sum of projections if and only

if T atself is.

Proof. I T @0 =>_P;isthe sum of the projections

i=1

_| A Bi L
PJ_lcj Dj]’ .?—1$ 3 Ty

then S"A; = T and 3 D; = 0. Since all the Djs are positive, the latter equality
7 k]
implies that D; = 0 for all . Hence B; = 0 and C; = 0 and therefore T = S Ajis
i

the sum of the projections A;. a

The next result characterizes sums of projections in terms of a certain operator

matrix representation.
Proposition 1.2.  Let T be a strictly positive operator. Then T is a sum of

projections if and only if T @ 0 is unitarily equivelent to an operator matriz of the

form

where 0 and I, - -+ I, denote the zero and identily operaiors on some spaces.

Proof. If T = ¥}, P; is a sum of projections, then, letting A = [P, -+ PJ}, we

have 7' = A®A. It is well-known that in this case AA” is unitarily equivalent to T &0



for some zero opeator 0. But

.Pl *
AA* = e
* P,

15 unitarily equivalent to a matrix of the form .

[ L, ©
0 0 i

. I. 0

- 0 0 .
which is in term unitarily equivalent to
Il #
N @ D:
* I

where each I; acts on a space of dimension rank P;. Since T is injective, we conclude

that 7 is unitarily equivalent to

as asserted.

Conversely, assume that T @ 0 is unitarily equivalent to
I1 *

* I

Let C' = [Cy]?;-, be the positive square root of the positive operator B and D; =
[Cij -+ Cojl*for j=1,---,n. Then B = C* = 3~ D; Dj. Note that D; D is Her-

i=1

mitian and (D;D7)? = D;(D;D;)D; = D,;I;D7 = D;D}. Hence B =) _ D, D} is the
-
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sum of the projections D; D}. Lemma 1.1 then implies that T is a sum of projecticns. u

Note that in the preceding proposition the sufficiency part is valid even assuming
only the positivity of T. The characterization of sums of projections among finite-
rank operators can be obtained as an easy corollary, the finite-dimensional case of

which is due to Fillmore [2].

Corollary 1.3. A finite-rank operator T is the sum of projections if and only if

T >0,tr T is an integer end tr T >rank T.

Proof. Since every finite-rank operator is the direct sum of a finite-dimensional
operator and a zero operator, we may assume that T itself acts on an, say, n-
dimensional space. To prove the nontrivial sufficiency part, we may, as in the proof
of (2, Theorem 1], subtract some rank-one projections from T and thus assume that
tr T = rank T = n. By [3, Corollary 2], T is unitarily equivalent to an n x » matrix
with diagonal entries all equal to 1. Propostion 1.2 then implies that T is a sum of

projections. m

For the remaining part of the paper, we only consider operators on infinite-
dimensional separable spaces. We start with the following necessary conditions for

sums of projections. They greatly facilitate our search for the exact characterization.

Proposition 1.4. Let T be a sum of projections.



(a) If|| T ||< 1, then T = 0.
(b) If || T )le< 1, then T is of finite rank.
(c) If | T ||€ 1, then T is a projection.

(d) If || T ||e£ 1, then T is the sum of a projection and @ compact operator.
Here || T || denotes the essential normof T :|| T ||,=inf {|] T+ K& ||: K compact }.

Proof. Let T = Zﬂ: FP;, where the Pls are projections.

{a) Assume tl::cl P, #0. Since P, £ T, for any vector z in ran P; we have
(Piz,z} < {Tz,z). However, {Piz,z) =| Pz ||>=]|  |* and (T'z,z) =| T2z |
From this, we infer that || 7% ||> 1 and hence || T ||> 1. This shows that || T ||< 1
implies that P, = 0. Repeating this argument, we obtain that P; = 0 for all 7 and

therefore T = 0.

(b) Passing T = > _ P; to the Calkin algebra, representing the latter as operators

i
on some Hilbert space and following the arguments in (a) yield that T is compact.
Now 0 < P; < T implies that P; is also compact for every j (cf. {2, p.146]). Hence

P; must be of finite rank. The same is then true for 7.

()| T|<L1,then 0K P, + P, <T < 1. It was proved in [2, p.151] that sums
of two projections are exactly those which are unitarily equivalent to an operator of
the form A® (2] — A)® 0@ 27, where 0 < A < 1. From this, we infer that P, + P

is actually itself a projection. Repeating this argument with other projections in the



sum T' =) " P; yields that T is a projection.
i
)7Ll thenfrom0 < P+P T, o.(T) C [0,1] and the above
structure result of sums of two projections we infer that o.(P + P) C {0,1}. (Here
g.(A) denotes the essential spectrum of an operator A.) Hence P, + P, is the com-
pact perturbation of a projection and, in particular, T is the sum of n — 1 projections
with a c‘ompAa.ct operator. ?Repeating this argument, we obtain that T is the sum of

a projection and a compact operator. i
- » Rt ':":‘ l‘l.‘\ #‘Ih-f" . .,
cE Rt TR kT HElTign

A ' . -y
EN T iy vy T b o oaadd

In view of Proposition 1.4(b) and Corollary 1.3, to characterize sums of projec-
tions we need only consider positive operators with essential norm at least one in the
remaining discussions. The case when the essential norm is strictly greater than one

is taken care of by the next result, which is the main theorem of this section.

Theorem 1.5. Any positive operator with essential norm sirictly greater then one

is the sum of projections.

This will be proved via the following lemmas.
Lemma 16, I[fT=T1@®---®T, on H™ where the Tis are positive operators

satisfying Ty + .-+ T, = nl, then T s the sum of n projections.



Proof. Let P = L [T,%Tj%} and
n 1,5=1
- 0
W _
UJ = w1 , J=1, 3 Thy
|0 i ]

on the space H™, where w is the nth primitive root of 1. Then P is a projection

and U; is unitary. An easy computation shows that Z UPU; =T 8T, =T,
i=l1
completing the proof. n

Lemma 1.7. If 0 < T < M on H, where X is a rational number with 1 < A < 2,

then T ® M on H@® H is a sum of projections.

Proof. Since T' @ A is unitarily equivalent to the sum of the two operators
T @ T @ (A - T)) @ (A1) @ 0
and
0@ (M — T) @ T @ 00} @ (A1)

on H @ H®) @ Hiw} @ H) @ H{>), to prove our assertion we need only check that
T & (M —~T)® Al is a sum of projections. Let A = %, where n and m are integers
satisfying 1 < m < n < 2m. Then T @ (Af — T) @ AI is unitarily equivalent to the

sum of

7@ (A -T)e (M\)* g (- 1Dk



and
0p 0@ O[Zm—n} o I{n—m—l}

on H@ H @ H®m™ @ H*~™-1)  Since the first of the latter two operators is a
sum of m + 1 projections by Lemma 1.6 and the second is already a projection,

T& (A —T)® Al is a sum of m + 2 projections, completing the proof. n

Lemma 1.8. If T is a positive operator on H and X is a rational number with

l<h<?2 thenT @A on Hd H is a sum of projections.

Proof. Wedecompose T as T1 - - @ Ty, where (j— 1) < T; < jALj=1,---.n

Then T & Af is unitarily equivalent to the sum of
00 al;® - 00082 80, j=1,--,n,

on H(®® To complete the proof, we need only show that each T; & AJ is a sum of

projections. Since
TGeM=(T,-(G-DM) A+ (- 1) 80)

and both (T; — (j — 1)AI) @ AT and AT @0 are sums of projections by Lemma. 1.7,

T; @ Al is indeed a sum of projections as asserted. This completes the proof. a

We are now ready for the
Proof of Theorem 1.5.  Let Ay be any point in ¢.(7') which is greater than

one, and let A be a rational number with 1 < A < min (X, 2). We decompose T as
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T1®T,®T;, where 0 < Ty < A and Ty, Ta > A, the latter two on infinite-dimensional
spaces. Then T =(Ty @ AT @ (T3 — AI)) + (0@ (T2 — AI) @ AI). Lemma 1.8 implies

that these latter two operators are sums of projections. Hence the same is true for 7. 8

2. IDENTITY + COMPACT

In light of the results in Section 1, for the problem of sums of projections we may
restrict ourselves to operators which are injective and have essential norm equal to
one. The next lemma narrows down further the pool of operators which we need to

consider,

Lemma 2.1.  Let T be an injective operator with || T |.= 1. If T is a sum of

projections, then T is the sum of the identity and a compact operator.

Proof. By Proposition 1.4 (d), T = P + K, where P is a projection and K is
compact. On the other hand, since 7 is injective, we have o(T)C o(T — K) = o(P)
by [4, Corollary of Theorem 3.3]. Hence T itself is a projection. Then || T |.= 1

implies that T is of the form identity + compact. m

Note that if T is the sum of the identity and a finite-rank operator, then it can be
decomposed as Ty @/ on Hy & H, with dim H; < co. The next proposition reduces the
characterization of sums of projections among such operators to the finite-dimensional

case.

11



Proposition 2.2, LetT =Ty ® [ on H, @ H,, where dim H, < co. Then T is a

sum of projections if and only if T} is.

. n
Proof.  We need only prove the necessity part. Let T = Z.Pj be a sum of
§=1
projections. We claim that P, P; is of finite rank for any ¢ # j. Indeed, since the
subspace K = Hy V P;H, is invariant under P; and its orthogonal complement K*,

being contained in Hj, is invariant under T, we have the matrix representations

e[} ) pe[ 8] e ne[52]

on H = K+ & K. Let @ and R be simultaneously unitarily equivalent to

10 d A B
00 an c D|
respectively. Since T > P; + P;, wehave ] > (J + Rand hence1 21+ Aor A< 0.

But P; > 0 also implies that A > 0. Thus A = 0 and therefore B = 0 and C' = 0.

Hence P;P; is unitarily equivalent to

0 *
0 0 0 D =[D*l

* ¥

0 * * *
on Kt @ K. Since K is finite-dimensional, this readily implies that rank (P P;) < oo

as claimed.

Let L = H; v(\/ ran PP;) and M = L v (\/ P;L). Then the subspace M is

i#j 7

invariant under all the P/s. On the decomposition # = M @ M+, T = > P; may
J

12



be represented as T' @1 =) P, @ P/. Hence T" = > Piis a sum of projections
j 3
on the finite-dimensional M. Since ' =Ty @l on M = H, & (M & H,), it is eas-

ily seen from Corollary 1.3 that T} is also a sum of projections, completing the proof. n.

The preceding proof depends heavily on the fact that the summand 73 acts on a

finite-dimensional space. It is unknown whether the same assertion still holds without

this assumption.

We now proceed to consider operators of the form identity + infinite-rank com-
pact. The next theorem gives a necessary condition for such operators to be sums of

projections,

Theorem 2.3. IfT =1+ K, where K is an infinite-renk compact operator, and

is a sum of projections, then both K. and K_ have infinite rank.

Recall that the positive and negative parts of a Hermitian operator A are by defi-

nition A4 = —;—(lAI +A),and A_ = %(|A| — A), respectively, where |A| = (A%)3.

Here are some simple facts concerning the positive and negative parts which we

will need in the proof of Theorem 2.3.

Lemma 2.4. (a) If T = A — B, where A, B > 0, then rank T} < rank A and rank
T_ < rank B.

13



L]

(b) If A is a compression of the Hermitian operator B, then rank A, < rank B,

and rank A_ g rank B_.

(c) For any Hermitian operators A and B, the inequalities rank (A+ B)4 < rank

Ap+rank By and rank (A+ B)- <rank A_+ rank B_ hold.

Recall that A on K(C H) is a compression of B on H if A = PB|K, where P is

the projection from H onto K.

Proof. (a) Decompose T as Ty @ (—T2) on H1 & H,, where T} and T; are both

positive. If

S N

* *  *

on H, @ Hj, then we have Ty = A; — B, < A,. Hence rank T, =rank 71 <rank A; <

rank A. Similarly, rank 7 <rank B.

(b)LetB=[A *], E"+=[A1 =l‘}a.nclB_=[Az *]onﬂzKEBKl.
M _— * Ok

From B = B, — B., we have A = A; — A;. Since Ay, A2 2 0, part (a) implies that

rank Ay <rank A; <rank By and rank A_ < rank A; < rank B_.

(c) Since A+ B = (A — A-) + (By — B.) = (Ay + By) — (A_ + B_) with
Ay + By, A- + B > 0, part (a) implies that rank (A + B)y < rank (A4 + By) <
rank A,-+rank B, and rank (A + B)- < rank (A. + B_) < 1ank A_+ rank B_. &

14



Proof of Theorem 2.3.  Assume that K4 has finite rank. We will show that this
leads to a contradiction. Let T = E P;, where the Pjs are projections, let Q = 1 — P,
andlet G+ X =T 90 on He .F;;wth T injective. If T3 is of finite rank, then so is
Q@+ K, which implies that Q is compact. For a projectino, this is equivalent to @ being
finite-rank, and thus K is finite-rank, contradicting our assumption Hence 77 must
be of infinite rank. On the other hand, since Q + K = ZP,,Tl is, by Lemma 1.1,
also a sum of n — 1 projections. We also have I| T3 fie=]| Q + K |}e=]] @ ]|.< 1. Since
T: has infinite rank, Proposition 1.4 (b) implies that Il T3 Jle=1. Thus 7, =1 + K,

for some compact operator K, by Lemma 2.1, We next show that K also has infinite

rank.

*
Q2
%

Let @ = { Q*l
obtain @1+ Ly = 1+ Ky and Q3+ L, = 0. Since Q = [ G Q ] is a projection, from
2

] and K = { L*l ; ] on H, @ H,;. From @+ K = 7180, we
2

its structure theory we may assume that Q1 =0818(1-X)and Q; = 0816 X for
some operator X with 0 < X < 1, where the zero and identity operators may act on
different spaces (cf. [8, Theorem 2]). Then K, = QtLi-1=((-1)90(-X)+
Ly =Y + L,. Since the operator —X, being a direct summand of ~@Q2 = L,, can be

considered as a compression of K, Lemma 2.4(b) implies that
rank ¥; =rank (—X)y < rank K, < oo
and hence

rank K, <rank Y, + rank L1y £2rank K, < 00

15



by Lemma 2.4 (c) and (b). If Ky has finite rank, then

rank Ly =rank (L;y — L)

Fa

rank Li4 +rank L;_

IN

rank L4 + rank(L,- + Y.)
= rank L1+ + rank (L1+ —_ L1 + Y+ — Y)
< 2rank Ly +rank (L; +Y) +rank Y,

< 2rank Ky +rank K; +rank Y, < oo,

where the last inequality follows from Lemma 2.4(b). Let

K!  =* K %
f{+:[ . K;} and K-=[ . K.;f]

on H, ® H,. From K = K, — K_, we have L, = K| — K}'. Hence

(1) rank K| < rank L; + rank K] <rank I; +rank K, < oo.

Analogously, we have

rank Ly < rank Loy +rank L,_

IA

rank K, + rank (—@2)—

= rank A4 +rank(0@ (1)@ (-X))-

= rank K 4+ dim M + rank (—X)_,

16



where M is the space on which the identity summand in @; = 0@ 1 @ X acts. Note

that dim M < co since @2 = —L; is compact. On the other hand, we also have
rank X <rank ¥ = rank (K; — L) <rank K; +rank L, < oo

and hence rank (—X). < oo. It follows that rank L, < co and therefore

(2)  rank K} = rank({L; — K}) < rank L; + rank K}
< rank Ly +rank K, < co.

1
Since K_ = { Ky o l is positive, (1} and (2) together imply that rank A_ < oo

* K
and thus K has finits rank, contradicting our assumption. This shows that A; has

infinite rank.

So for we have proved that Ty = 1 + K is the sum of n — 1 projections with A,
infinite-rank compact satisfying rank K;; < co. We can repeat the above arguments
with 77 replacing T and proceed by induction to obtajn.a projection 7,1 = 1+ K,
with K, _; infinite-rank compact and rank K, _;; < co. Inparticular, K,_y, = 1-T},_;
is a projection which is infinite-rank compact. This is impossible. Hence we must

have rank K, = oo. Similarly, rank K_ = co.

The final result in this section gives information on the trace for sums of projec-

tions of the form identity + compact.

Theorem 2.5. Let T =14 K, where K is infinite-rank compact. If T is injective

17



and is a sum of projections, then either tr K =tr A_ = oo or K is of trace class

with tr K o nonnegative inleger.

For the proof, we need the following lemma. It is the trace analogue of Lemma

2.4 and its proof is also similar to that of the latter, which we omit.

Lemma 2.6. (a) IfT = A— B, where A, B> 0, then tr Ty <trAand trT_ <
tr B.

(b) If A ts a compression of the Hermitian B, thentr AL < tr By andtr A_ < tr
B_.

(c} For any Hermitian operators A and B, the inequalities tr (A+ B), <tr A+

tr By endtr (A+ B)_ <tr A_+ tr B_ hold

Proof of Theorem 2.5. As in the proof of Theorem 2.3, let T = z Fj, where Pjs
=1

are projections, @ =1 —F; and @+ K = T1 @0 on H; & H; with T injective. Then

T; has infinite rank and equals 1 + K for some compact operator K as before. Let

' Ly *
Q:lQ: 52]3,11(1}{:[;Lz]onHIGBHg,a.ndletQ1=0€B1§B(1—X)

on Mi@N dHand Q; =018 X on My, & N, & H, where 0 < X < 1. Then
G +Li=1+K, and ¢} + L, = 0. Assuming that tr £ < co, we will prove that

K is of trace class and tr K is a nonnegative integer.
Since I{I = (Ql - 1) + Ll = ((—1) &0G (—X)) + Ll: we obtain

(3) tr I’(l = —dim Ml —tr X +tr Ll.

18



Note that the right-hand side of (3) makes sense since dim M; < oo (because
(-)d0d (—X) =01 — 1=K, — L, is compact}, 0 <tr X < oo (because X > 0)
and tr L, is either finite or —oo (because tr L+ <tr Ky < co by Lemma 2.6(b}).
Also note that in the decomposition @2 = 0@ 1 & X, the summand 1 on N, does not
appear. Indeed, if it does, then L; = —Q, = 0@ (—1)®(—X) has —1 as an eigenvalue.

This implies that 1+ L, has eigenvalue 0, which in turn results in the noninjectivity of

1+L1 *

- 14 L, l, contradicting our assurnption. Hence

the positive operator T = [

(4)  trly=—tr Qy=—tr X

*

Moreover, from K = [ b
* Lg

} we also have

(5) tr K =tr Ly+tr L.

It follows from (3},(4) and (5) that tr K; = —dim M, +tr Lo+ tr L, =tr K—dim M, or
(6) tr K = tr K +dim M.

On the other hand, since K} = ((-1)®06(—X))+ L; and X > 0, Lemma 2.6 (c) and
(b) imply that tr K7, <tr ((—1)& 0@ (—X))p+tr L1y =tr L1y <tr K < oo, Hence
the injective T = 1 + K is the sum of n — 1 projections with K; compact satisfying
tr K1, < oo. Note that if K; has finite rank, then express K; as A® 0, where A acts

on an m-dimensional space, and apply Proposition 2.2 to infer that 1 + A is a sum

12



of projections. Hence tr (1 + A) is an integer and tr {1 + A) > rank (1 + A). Note
that 1 + A is injective since 1 + K, is. Therefore, tr K} =tr A =tr (1 + A} —m is an
integer and is greater than or equal to rank (1 4+ A) ~m = 0. By (6), tr K is also a
nonnegative integer. Thus we may assume that K, has infinite rank. We then repeat
the preceding arguments with 7 replacing T and proceed by induction to obtain am
injective projection Tp_; = 1 + K,_1, where K,_; is compact with tr K — tr K,
a nonnegative integer by (6). Since T,_; =1 or K,_; = 0, we conclude that tr K is
a nonnegative integer as asserted. Analogous arguments apply in case tr K_ < co.

This completes the proof. &

Theorems 2.3 and 2.5 together give some necessary conditions on the rank and
trace in order that an operator of the form identity + infinite-rank compact be a sum

of projections. Are these conditions sufficient? We conjecture that they are.

Conjecture 2.7. If K is a Hermitian compect perator with X' > —1, rank K| =rank

K_=co andtr K, =tr K_ < co, then 1 + K is a sum of projections.

Note that if this is indeed true, then so is the following assertion, which together
with other results in this paper will yield a complete characterization for sums of
projections: if K is a Hermitian trace-class operator with K > —1, rank K, =rank
K. = oo and tr K a nonnegative integer, then 1 4+ K is a sum of projections. Indeed,
let X be represented as the diagonal operator diag (di,dz, ) and tr K = n > 0.

Since rank K, = oo, there are infinitely many strictly positive dis. We may assume -

20



that dy,---,d, > 0. Let K' =diag (d; — 1,---,dn — 1, dst1,- ). Then K’ is of trace
class with K’ > —1, rank K =rank K' = 0o and tr K, =tr K! < oo. It follows
from Conjecture 2.7, if indeed true, that 1 + K’ is a sum of projections. Therefore

14 K =(1+ K)+diag (1,---1,0,0,---) is also a sum of projections as asserted.

3. MISCELLANIES

In this section, we consider some variations of the sum-of-projections problem.
They are of two different types. One type involves sums of projections with some
additional properties. For example, we may require that the projections be commut-
ing to each other and for having some fixed (finite or infinite) rank. Another tpe
concerns operators which can be approximated by sums of (two) projections in the

norm topology. We start with the case of sums of commuting projections.

Proposition 3.1. (a) T is the sum of commuting projections if and only if T is

positive and o{T'), the spectrum of T, consists of finitely many nonnegative integers.

(b) T is the sum of commuting infinite-rank projections if and only if T is positive,

has infinite rank and o(T) consists of finitely many nonnegative integers.
(c) Let k > 1 be a fired integer. Then T is the sum of commuting rank-k pro-

Jections if and only if T has finite rank, o(T) consists of finitely many nonnegative

integers, k divides tr T and 0 < T < (tr T/k)I.
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Proof. (a) LetT = zﬂ: P;, where the Pjs are commuting projections. Then the
abelian C*-algebra A gerf:rla,ted by the P/s and the identity operator is *—isomorphic
to the C*—algebra C'(X) of continuous functions on some compact Hausdorff space
X. Under this isomorphism, the spectrum of any operator in A4 is equal to the range

of the corresponding function in C(X). Hence ¢(T) consists of numbers of the form

Zy + -+ + z,, where each z; is 0 or 1, which are all nonnegative integers.

Conversely, if T satisfies the given conditions, then we may assume that it is of

n

the form EEBkJ- I;, where the k;s are integers satisfying &y > --- 2 k, > 0. Then the
=1

expression

T=)(ki—kn)ho  0L606 - @0)

j=1

n

with k.41 = 0 expresses T' as the sum of &, many commuting projections.

ki3

(b) If T =) _ P;, where the P!s are commuting infinite-rank projections, then, in
i=1

particular, 0 < P, < T. This implies easily that ran P; C ranT or rank P, <rank T

and thus rank T = oo.

Conversely, if T satisfies the given conditions, then we may assume that 7' =

ZEBI:,—I,- on ZEBH,-, where &y > .- > k, > 0 and for some ng,1 < npy < n, we
=1 =1 )
have kn, > 0, dim H; < oo for 1 € j < ng and dim H,, = co. Let m be an integer

such that m > (Z kj) [kny, and “split” H, into the direct sum of m copies of

J#Eng
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infinite-dimensional subspaces. Then T is unitarily equivalent to
™m
S ekl e (Z @kﬂofno) :
j#no i=1
Obviously, this latter operator can be written as the sum of m#é,, many commuting

projections of the form
([}e...@]j@...@g)@([]@...@[ﬂo@...@0)’

each of which has infinite rank.

. ,

(c) f T = )_ P;, where the P!s are commuting rank—k projections, then obvi-
=1

ously T has finite rank and o(7T') consists of finitely many nonnegative integers by

(a). We also have tr T = Ztr P; = Z rank P; = nkand || T ||< Z | & ||=n =tr
T'/k. The latter condition 1mphes tha,t T <(tr T/k)I.

The converse is proved by inductionon n =tr T/k. fn=1,then 0 < T < 1, tr
T = k and o(T') consists of integers, which implies that T itself is a rank—k projec-
tion. For the general case, we may assume that T =diag (t;, --,%,) on C™, where
the t;,s are integers satisfyingn > t; > --- > t,, > 0. Note that in this case we have
ty > 1. Indeed, if otherwise ty = --- =t,, = 0, then nk =tr T = kletj < (k—1)n
which is impossible. Let Ty =diag (¢1 — 1, -, — L, ta41, -+ tm)- E;lien Ty > 0, the
eigenvalues of T are nonnegative integers and tr T =tr T — k = (n — 1)k. Note
that we also have 71 < (n — 1). Indeed, if otherwise, then since t; — 1 < n —1 for
j = 1,--+,k we have #xy; > n, which implies that nk =tr T > Ei‘:} t; = (k+ 1)n,

a contradiction. Thus the induction hypothesis can be applied to 7} so that 77 is a
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sum of n — 1 commuting rank—k projections. Via simultaneous diagonalization, we
may assume that these projections are all represented as diagonal matrices. Thus
T = N+diag (1,---,1,0, - ,0) i3 the sum of n commuting rank—% projections. This

completes the proof. »

Dropping the requirement that the projections be commuting, we have the follow-

ing analogue of Proposition 3.1 (b).

Proposition 3.2. T is the sum of infinite-rank projections if and only if T itself

has infinite rank and is the sum of projections.

Proof. \Ii‘."e only prove the sufficiency part. Assume that T = Zn:P,- 18 a sum of
projections, where F; is of finite rank for y = 1,---,m (1 £ m <J1:)1 and of infinite
rank otherwise. Let K be the finite-dimensional subspace Vi_,{ran P; V Py i(ran
F;)). Then K is invariant for P, -+, Ppy1. Let B, = @Q; 40,7 = 1,---,m, and
Pryi = @m4+1® R on the decomposition K@ KL, Then TV = mZH P, = (TE:I Q_,-) @R
Since the infinite-rank R is unitarily equivalent to F{m+1) 633:(;, whereJ:l:e identity
operator acts on an infinite-dimensional space, T’ is unitarily equivalent to the sum

of the operators

Q;o0d --eld---d0)80, j=1,---,m+1,
ith

each of which is an infinite-rank projection. It follows that T is a sum of infinite-rank

projections. m
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It would be interesting to have a noncommutative analogue of Proposition 3.1(c),

that is, a characterization of sums of rank-k projections for each & > 1.

We next turn to problems concerning operators approximatable by sums of (two)
projections. Note that in the finite-dimensional case, the set of sums of (two) projec-
tions is itself closed. These are easy consequences of the results of Fillmore [2]. We
start with sums of two projections. Recall that an operator can be expressed as such if
and only if it is unitarily equivalent to an operator of the form 0@ 1 B2/ AB (21— A),
where 0 < A < 1 (cf. [2, p.151]). The next result gives a characterization of operators
(on an infinite-dimensional space) which can be approximated by such operators in

norm.

Proposition 3.3. The norm closure of the set of operators which can be written as
a sum of tw projections consists of those which are unitarily equivalent to an operator
of the form 01 @21 ® AD (2] — B), where 0 < A, B < 1,6(A) = o(B) and the

multiplicities of each isolated eigenvalue of A and B are equal.

Proof I T = A@ (21 — B), where A and B satisfy the stated properties, then
by [5, Theorem 1} there is a sequence of unitary operators {U,} such that UrAU,
converges to B in norm. Let T, = A@ (27 — U AU, ). Then each T, is a sum of two
projections by [2, p.151} and T, converges to T in norm. This shows that T is in the

asserted closure.

Conversely, assume that {7,} is a sequence of sums of two projections which
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converges to an operator T in norm. Then Cp, = (T — 1)4 (resp. Dy = (T — 1))
converges to C = (T — 1)4 (resp. D = (T - 1)_) in norm. Since 0 £ T < 2, we
have 0 < C, D < 1. We first show that o(C)U {0,1} = ¢(D) U {0,1}. Indeed, from
the structure of sums of two projections, we have o{C,) U {0,1} = o{D,) U {0,1}
for all n. Since the function which maps an operator to its spectrum is continuous
when restricted to the normal ones (cf. [9, Problem 105]), we obtain, as n approaches
infinity, o(CYU {0,1} = o(D) U {0,1} as asserted. Next, let 3,0 < A < I, be any
isolated eigenvalue of C. We will show that A, as an (isolated) eigenvalue of D, has
the same multiplicity as for C. Let 0 < &1 < €; <min {A,1 — A} be such that
o(CYC[0,A—e)U(A—en, A +e) UM +63,1] =, and let £:[0,1] - [0,1] be a
continuous function such that |

f(t)— 1 iftE()a_E-l,A"f'El)
TY0 ifte0,A—e)U()+eanl]

Since ¢(C,) converges to ¢(C) as n approaches infinity, there exists an N such that
a(Cy) C tfor all n > N. From C, — C in norm, we obtain f(Cy) — f(C') in norm
(cf. [9, Problem 126]). Since P, = f(C,) and P = f(C') are projections, we infer
that rank P, =rank P for all large n (cf. [9, Problem 57]). Similarly, we have rank
@, =rank @ for all large n, where @, = f(D,) and @ = f(D) are projections. Since
rank P, =rank @, for all n by the structure of sums of two projections, we cbtain
rank P =rank @ or dim {z : Cz = Az} =dim {y : Dy = Ay}. The assertions in the

statement of our proposition then follows immediately. 8

Qur final result is a characterization of the norm closure of the set of sums of

projections.
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Theorem 3.4. The norm closure of the set of sums of projections consists of all
positive operators which either have essential norm greater than or equal to one or

have finite rank and are a sum of projections.

Proof. If T is a positive operator with || T ||.> 1, then, for every n > 1, T + —1~I
n
" . 1 ) ..
is a positive operator with || T + =7 |.> 1 and hence is a sum of projections by
- n
.. 1 ..
Theorem 1.5. Hence T, as a norm limit of the sequence {T + -1 }, is in the asserted
n

closure.

Conversely, let T,, — T in norm, where each 7, is a sum of projections. Assumne
that || T ||le< 1. We will show that T" must be of finite rank and is a sum of projections.
Since || T || converges to | T |l., we may assume that | Ty [.< 1 for all n.
Proposition 1.4(b) implies that T, is of finite rank and thus T is compact. Assume
first that || 7 ||< 1. As || Tn || converges to || T' ||, we may assume that || T}, ||< 1
for all n. Thus Proposition 1.4(a) implies that 7, = 0 and hence T = 0. For the
remaining part of the proof, we assume that || T ||> 1. Let k, =rank T}, for n > 1.
Since rank T < lim inf,_ rank T, (cf. 7, Appendix]), if the quantity on the right-
hand side is infinity, then there exists a subsequence {7, } such that rank T, — oo.
For convenience, we will assume that &, =rank T, — occo. For each n, let AY) (resp.
A9} denote the jth largest eigenvalue (counting multiplicity) of T}, (resp. T), and
let d,, (resp. d) be the number of A7Vs (resp. Al)'s) which are greater than or equal

to 1. It is known that A) — A% as n — oo for each j (cf. [6, Theorem 1.4.2])
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and hence d, — d. Let § =min {%sl - f\(dﬂ}} > 0, and let n be so large that
2
HTa 1SN T} 41, 4. > -é:d | T||,d» = d and A1(1d+1} < AEH) 4 g Then
kn
k, =tank T, <tr T = 5 AD

=1

< d)| T +(ky — AED
@) L 8
< A TN L) + (e~ d) (A0 4 2

2
< AT I+ + (- ) (1 36).
Hence
i 7| +§5d2 25k, > %d Edl

or d | T ||< 26d. Since || T ||=> 1, we have d > 1. Therefore, | T ||< 26 < 1,
contradicting our assumption. This shows that lim inf. ., rank 7, < oo and, in
particular, rank T is finite. Passing to a subsequence, we may assume that rank T, is
a constant, say, k for all n. We have rank T < k and AY) — A9 as n — co for each
H1<i<k ThustrZ, = iAE} — i]\m =tr T. Since tr T, is an integer and tr
T, >rank T, = k by Ccrc::rlla,j;y1 1.3, we a?duce that tr T is also an integer and tr T=tr
T. > k > rank T. By Corollary 1.3 again, T is a sum of projections, completing the

proof. ®

To conclude this paper, we remark that on an infinite-dimensional space, the clo-
sure of the set of sums of projections in the weak operator topology (WOT) consists of

| _ , 1
all positive operators. Indeed, if T > 0, then, letting n >|| T' ||, we have 0 < —T' < L.
n
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[9, Problem 224] implies that there are projections P; such that P; — %T in the
WOT. Hence nP; — T in the WOT, which shows that T is in the WOT-closure of
sums of projections. The same proof also shows that for any n > 1, the WOT-closure

of sums of n projections equals the set {T: 0 < T < nl}.
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