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On Two-phase Flow in Fractured Media

Li-Ming Yeh
Department of Applied Mathematics, Notional Chiao Tung Universily
Hsinchu, 30050, Taiwar, R.0.C.

A model describing two-phase, incompressible, immiscible flow in fractured media is
concerned. A fractured medium is regarded as a porous medium consisting of two super-
imposed continua, a continuous fracture system and & discontinuous system of medium-
gized matrix blocks. Transport of fluids through the medium is primarily within the
fracture system. No flow is allowed between blocks, and only matrix-fracture flow is pos-
gible. Matrix block system plays the role of a global source distributed over the entire
medium. Two-phase flow in & fractured medium ig strongly related to phase mobilities
and capillary pressures. In this work, four relations for these functiong are presented,
and existence of weak golutions under each relation will be shown also.

1. Introductien

A dual-porosity model describing two-phase, incompressible, immiscible flow in frac-
tured media is concerned. The phases are the nonwetting “o” (oil) phase and the
wetting “w” (water) phase. Within a fractured medium there is an interconnected
system of fracture planes dividing the porous medium into a collection of matrix
blocks. The fracture planes, while very thin, form paths of high permeability. Most
of the fluids reside in matrix blocks, where they move very slow. For model con-
sidered here, a fractured medium is regarded as a porous medium consisting of two
superimposed continua, a continuous fracture system and a discontinuous system
of medium-sized matrix blocks. Fracture system has a lower storativity and higher
conductivity than matrix block system. Transport of fluids through the medium is
primarily within the fracture system. No flow is allowed between blocks, and fluids
that reside in matrix blocks must enter the fractures to move great distance. Es-
sentially, matrix block system plays the role of a global source distributed over the
entire medium. As a consequence, two sets of equations are obtained for the flow.
One contains macroscopic equations for fracture flow, and the other consists of mi-
croscopic equations for flow in matrix blocks. The two sets of equations are coupled
through locally defined macroscopic matrix-fracture sources, one for each phase.
For more description of flow in the medium, readers are referred to (5, 7, 10, 12, 13]
and references therein.

If @ c RS is a fractured medium, equations for fracture flow [5, 10] are, for
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Figure 1: Phase mobilities (left) and capillary pressures (right) of fracture system
and matrix blocks.

2 €0 >0,
&S —Vz- (Aw(s)vx(Pw = Ey)) = qu, (1'1)
~8i8 = V3 - (Ao(S)V (P, — Ep)) = o, {1.2)
Y(S) = P, — Pu. (1.3)

S € [0,1] is water saturation; A, (@ = w, o) is phase mobility of n-phase, a nonneg-
ative monotone function of S (see Figure 1); P, denotes pressure; E, is a function
depending on density, gravity, and position; g, is the matrix-fracture source; and T
is capillary pressure, a nonnegative decreasing function of § (see Figure 1). Porosity
and permeability field have been set 1 for convenience. Incompressibility implies
Jo + Gw = 0.

Above each point z € ) is suspended topologically a matrix block Q. C 3.
Equations for flow in a matrix block are, forz € 2, y € g, t> 0,

s —Vy- (Auw(8)Vypu)} =0, s (1.4)
—8a — vu - (-"o(s)vyija) =0, (1-5)
v(8)} = po — Pu- (1.6)

Each lower case symbol denotes the quantity on {2, corresponding to that denoted
by an upper case symbol in the fracture system equations. S, Pa, ga for a € {w, 0}
in {1.1-1.3) are functions on Q2 x [0, T}, and &, p, in (1.4-1.6) are on Hzeafe x [0, T
Po (@ = w,0) in (1.4-1.5) only takes derivative with respect to variable y.

The matrix-fracture sources are given by, for z € 2, £ > 0,

du(2t) = ‘;}—1\ fn ez, )y = ~aula.t) (1.7)

where |(2;| is the volume of ;. Boundary 89 of {} includes o0, 3,0, which sat-
isfying 100N &0 = 8,60 = 50U & 0. Boundary conditions for fracture system
are, for ¢t > 0, a € {w,0},
Py = Pa, for z € B, (1.8)
A(S)Vo(Py — Eo) -fi=0, for z € 211, (1.9)
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where # is the unit vector outward normal to 8f. Boundary conditions for each
matrix block require continuity of pressures, that is, for £ > 0, ¢ € @2, y € &},
a € {w,o},

pa(m, ¥, t) = Pﬂ(z: t)' (110)

Initial equilibrium gives '
S(z,0) = Sp(z), for « € 2, (1.11)
#(z,y,0) = solz), forze, yef,. {1.12)

Two-phase flow in fractured media is strongly related to phase mobilities and
capillary pressures [10, 11, 12, 13]. For flow in a bundle of tubes, a mobility curve
was measured to be a linear function of phase saturation. In general, phase mo-
bility curves may be determined by being adjusted to history-match field data if
all other data are known. Fracture capillary pressure would be near zero for most
water saturation values. Matrix mobilities and matrix capillary pressure can be
those measured on unfractured media. To maintain gravity /capillary equilibrium,
capillary pressure end-points in fracture system and matrix blocks must be set equal
[12, 13]. In reality, it is not easy to measure phase mobilities and capillary pressures
accurately. Our intention is to look for proper relations for these functions. Some
literatures related this problem are listed below. For unfractured media case (that
i8, gw = go = 0), existence of solutions of (1.1-1.3) were studied in [3, 4, 8, 14]
and references therein. If one linearizes matrix mobility A, (o = w,0) or assumes
matrix blocks are small, matrix-fracture source g, is a function of phase saturation.
Existence of weak solutions in these cases were considered in [6, 9]. Existence of
solutions in a global pressure form of (1.1-1.12) could be found in [7, 17]. In this
work, four relations for phase mobilities and capillary pressures are presented. Ex-
istence of weak solutions of (1.1-1.12) will be shown, for each relation. To reach
the goal, & global pressure is introduced to simplify system (1.1-1.12} first. Next,
existence of solutions of the simplified system will be shown. Finally, we prove that
a subsequence of these solutions converges to a weak solution of (1.1-1.12). Phase
mobilities and capillary pressures in [10, 11, 12, 13] satisfy one of the relations here.

Rest of the paper is organized as follows: Notation is recalled and main result is
stated in §2. An auxiliary system for (1.1-1.12) is derived and procedure of proof for
main result is described in §3. The main result is proved in §4 under the assumption
of existence of solution for auxiliary system, which is shown in §5.

2. Notation and Main Result

2.1. Notation

Let 2 C %% be open, bounded, and connected with Lipschitz boundary. For every
z € (1, 2, C R is a bounded region. Identify the product space II,en{l, (denoted
by Q) as a subset of £®. For simplicity, all matrix blocks are assumed to be identical,
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volume 1, and smooth enough. That is, @ = @ x M, |M| = 1, and M C ®®
is assumed to be bounded with Lipschitz boundary M. £} 0 x [0,1] and
& Qx0,4].

L7(B), H™(B), W™r(B), L™ (Q, W™ (M)}, LT(Q, LT(8M)), L7(0,T; X}, and
H™(0,T; X) are Sobolev spaces [1] for r > 1, m € N, B C QT, and a Banach space
X.

WET () EA{f e W™ (@) : floyn = 0},

v Ewgta),

Wir(Q) ¥ {f e L7(Q): Vyf € L7(Q)},

u ¥ wir Q).
Note Wir(Q) € L™(, W1"(M)). Let 7; be the usual trace map of W17 (M)
into L7(8M). We define the distributed trace 7 : Wy (Q) — L™(%2, L(dM)) by
T Hlz,y) = (T F{2))(y).

[ WpHQ) E {fewin(Q): TF=0},

U Wi(Q),

Wy def Vx V¥V xly,

W BV %V x i x U,

dual X % dual space of X,

8 (resp. 1—s,) 4% residual matrix water {resp. oil) saturation.

\

REE RU{0) BT :(0,1] - RE (resp. v : (s1,8,) = RY) is onto and a
strictly decreasing function, let T~! (resp. v~!) be the inverse function of T (resp.
v). We define 7 : (0,1] = (s1,5+] by J(2) & v~1(Y(2)), and denote the inverse

function of 7 by J~1. Let J(0.5) € {s1,5,} C (0,1).

(8 f(y) & LRI,

Pc.fefg Poy — Pups

] A=At A, (2.1)
A= Ao+ Ao,

R(z & f;5 Aﬁﬁl |%| (E)d§1 for z € (0, 1]:

| D) E [0 22 |9] ()d6,  for 2 € (a1, 5.].

We define £ : L7(§1) = L7(Q, L®(M)) by Lf(z,y} = f(z)l,,2 € iy € M,
where f(z)1, is constant in M with value f(z). f € L"(§!) will be identified with
Lf € L™}, L (M)).

2.2. Main result

Taking (Cuw, (o, M o) € LE(U:TE W?), multiplying (1.1}, (1.2), (1.4), (1.5) by {u, o,
e, T Tespectively, and integrating these functions over 97, one obtains a weak
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formulation for equations (1.1-1.2) and (1.4-1.5}, by (1.8-1.10),

f 85 Co + f Au(S)Va( Py — Eu)Valo = — f Bt Cur (22)
nT . QT Qr

"[ S (o +f Aa(s}vz(Po - Eo}szo - f 018 (o, (2'3)
or oT Qr
/ B8 +f '\w{:s)vrpwvyﬂw =0, (2.4)
QT QT
- [+ [ %@9pTm =0 (2.5)
QT QT

Definition 2.1 {5, Py, P;, 8, Py, Po} 18 & weak solution of the equations (1.1—71.12)
if there is a number r € (1,2) such that, for a € {w, o},

1.

b T T . S

Py — Pap € L7(0,T; W)™ (), pa — Pa € L0, T5 W, 5(Q)),

8,5 + [, 0:8 dy € dual L*(0,T;V), &5 € dual L*(0,T;Uy),

AyVo Py € L2(OT), A.Vypa € LHQT),

T(S) = P, — Py, v(8) = Po — Pu,

(2.2-2.5) hold for any ¢, € L2(0,T; V), ne € L*(0,T;h),

0<8<«1, i <8< sy,

F;?r}c € L*0,T;V) n HY(QT),n € L*0,T;U) n HY0,T; L*(Q)), (T} =
My =0,

-LT 0.8 €+.[QT B 1= —LT(S—SQ)&C - fQT(s—so)am. {2.6)

Theorem 2.1 A weak solution of the eguations (1.1-1.12) exists if the following
conditions hold:

Al
A2

A3

A4,
A5,

8 #0,

ApyAw (resp. AgAg) 1 [0,1] = [0,1] are continuous and increasing (resp.
decreasing), Ay(0) = Ao{l) = Aw(m) = Ao(sr) = 0, Awlo(2)|sc0y # 0,
’\w)*a(z)lze(s;,sr) #0, :éﬁi:u{l\(z],)x(z]} >0,

T:(0,1) = RF (v:(s,8,] = RY) is onto, decreasing, and a locally Lipschitz

. . ; 47 : du
continuous function, and inf (25| x inf [2¥]>0
! z€(0,1] I dS| *€(a),0r] dSI ?

P € LI[QT),E,;. e L=(0,T; Wl‘cl"(ﬂ)), Pap € Lz(ﬂ, T;Hlfﬂ)), o =w,o,
ki ST HPp) <1k, ky < So(z) €1 -k, visplz)) = T(Se(x)),z € Q,
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w La
A6. mm{hm nigt ,ElﬂJJ((gu}<co, min{lim lim A., T ,€41JA3-(§)-1} < 00,

A7 One of the following conditions is satisfied:

T Awlz kT Aalz [T{x))
j I e e TR e E e T Ee <%
Aulz}A(z Aw [(TENA(T (=
9 | inf Rl x e =Feel > 0,

im o =w{m:zn| >0,

( Awld T AT Nz (T
m |=—ii|=| ] T M LT sn(z) T TEm <
Aw( T NALT " H2)) o A (2] (%)
b} < mf I(z—ls{lf-z)]kz z 2 —z]l 7] > 0

EE(8).,8p] JELI! ..,.] {z 8[}(81-

zll_% z—sglE‘ll‘D{zi >0

[ v Aw(z (J{z))
Lm |z|=]'1}<z1 +i‘-‘.'i% ( <1T’}
AT J7Hz)
Jm R H., T
>0,

¢) | im Fﬁ(‘%l"hm ks

lirn “"—’t‘j—,(,—uxiun Aol >0,

THar - “l A — -~ LLE]

lim cerpeE > 0

z—0
o AT NE) | T (T~ =)
zh—IIEI |Z—8r|= '5'2'[5) z-—+u ( s (z) <
J{z])
ll—n |1—=I’|§?{z)| z—u <%
d) ﬁJ IllIl ﬁp&—n = ].lIIl ;\'“T ) > O,

”

“

Xo (T
o ] z
11m | 5 X hm T(—zf;}l >0,
= z-wl"ﬂ?—‘*(z) >0

where ky, ke are positive constants. See (2.1) for A, A, P, D.

Remark 2.1 1) By A2-3, D is a strictly increasing function on (s;, 8/, so it has
a bounded and strictly increasing inverse function D~!, Let us extend D! to R
continuously and lineerly with slope 1. The new function will not be relabelled.

2) A7 sets restrictions on phase mobilities and copillary pressures around end-
points only. Roughly speaking, A7.a) corresponds to that fracture capillary pressure
decreases faster than matriz capillery pressure around end—points. A7.b} is the
inverse case of A%.a). By proper combinations of the restrictions in A7.q) and
A7.b), we obtain A7.c) and AT.d). A¥.c) is the case that fracture capillary pressure
drops faster around 0 {resp. slower around 1) than matriz capillary pressure ground
&y ({resp. around s, ). A7.d} is the inverse case of A%7.c).

3 If i‘%‘- [%’;’I € L'(s;, 8;) {assumption in [7, 17)), D is bounded. If D is a
bounded function on (s, 8.], then A%.a)a, AT.b)s, A7.c)s, and A7.d)s hold obvious.

LI Elzlkﬂ'l’(zﬂ < 00, AT.a)s and A%.c)s hold. If E|z-—s;|k’|v(z)| < oo,
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A?’b}g and A7.d)s hold. So, if D(J(z)) (resp. D(z)) grows slower than ——lr {resp.
—trl r—Ti; /) 08 z approaches 0 {resp. as z approaches &), then A%.a); aﬂd ATl
{resp. A7.5)3 and A7.d)s) hold.

3. Procedure of Proof

Now we derive an auxﬂiary system for (1.1-1.12), and describe procedure of proof
for Theorem 2.1, Global pressure [§] is defined as

P¥1@a+m+L“ﬂ( ) - o)) e

See (2.1) for A. Then V,F = %{‘LV,,P,,, + -,-\‘V,:P,,. Let {w = ¢, = ¢ in (2.2-2.3),
and add the two equations to obtain

f A(S)V, PVl — / Aa(S) Vo Vol = 0. (3.2)
nT

aE{w o}
If we define tat
G= J(8), (3.3)

(2.2) can be written as

o AL
/0 BS Gt /; ) (Aw(S)v,(P Ey) 5 v,g) Volu

=~ f 845 Cu. (3.4)
QT

If we repeat the process (3.1-3.4) in each matrix block, (2.4) can be written as

Aw Ao du
f 8,8 T — f (o) M(:;) ()vysvynﬂ,=o. (3.5)

Let £ be a small number satisfying
0 L EL kl/‘l: (3.6)

where k; is the one in A5 Let us extend mobility functions Ay, A, (o = w,0)
constantly and continuously to R, and find continuous monotone functions AZ, A%,
in & such that

{ £< mf {A (z), Xa(z)} < sup{As( )ALz} <1, 37)
Ag(z) Aa(z) and Af,(.f(z)) Aa(T(2)) for z € [g,1 —¢].
Next we define, for z € R,

A%(2) E AL (=) + AS(),

2 (2) E 2L (2) + X5(2), (3.8)

Ae(z ) Ef Aa(05(£2)), ae {w,0},

Re(z) % A2 (2) + Re(2).
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By AS, one may find decreasing and Lipschitz functions T%,v* in R so that
0<k3$ig£{|'ﬂr |(z)}<sup{|
Te({z) = T(z) and v‘(._‘?'(z)) = v(J(z)) for z€ {s 1- E],

T* (resp. v*) has inverse function T%~! (resp. v*~!) in R,
Je (dg fu""l('l“)) is linear in R Y [¢, 1 — &) and has inverse 75!

(3.9)

where kj i3 a constant independent of . By A4-5, there exist smooth functions
35, 85, Peys Psy (@ = w,0) such that

Pr, = P:, - Pt

w,b1
0<® < inf {S5TUPO}< sup {SET-1P)}<1~K,
2 T { il Pt < {-::e]:n'-"{ 0 ( c,b)} 3 (3.10)
85 = J(55),

8§ — v P )z,0) €V,

and, as € = (,

5§ —* Sa, in L2(Q),
Fos = Pap,  in L2(0, T HY(R)), (3.11)
OePEy = 8Py, in L1(OT).
Auxiliary initial and boundary conditions are defined as
gs i def ( )
Gt ¥ vl(P2y), (3.12)

Psd"“(PfﬁPsbﬂ;“( 2(X1(E) - R(71(E)) df)

Auxiliary system of {1.1~1.12} for each ¢ is to find {S%, 5%, P%, 5%} so that

8,5 + f 8,s°dy € dual L*(0,T;V), 8is® € dual L2(0, T; ), (3.13)
M
eS8 <l—g JE)<F<T(A-¢), (3.14)
GF = J(S), (G° -G, P°~ PS, o — G°) € L3(0, T3 Wh), (3.15)
[ooses [ (Rasrmaee - ) - 2 sveaesy) v
+/ 8;3‘(1 =0, {3.16)
QT
f Re(S*)V, PEV.(s — / A (S*)VoEaVala =0, (3.17)
ar ae{w.0}
AwAo .
Busn — / 222 (6 V() Vyn = 0, (3.18)
QT QT
G*(z,0) =G5, s°(z,y,0) =35, (3.19)

for any (¢1,¢z,n) € L2(0,T; Wh). See (3.8) for A%, A%, (o = w, 0). Later the following
result will be proved:
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Theorem 3.1 Under A1-5, for each ¢, there is {S¢,G°%, P¢, &%, P5, 0t (o = w,0)}
such thot (3.13-3.19) hold. Moreover,

(P:u - P!.:l,b! P: - P:,a: pizﬂ - PI:J! P§ - P:) € L2(0$T§w2): E3'20}
T(8*)=P; - P, v(s)=p-p5, (3.21)
[ 087+ [ (AulSIVeEE ~ R8IV + (B~ A)VaP)Vats
Q nT
+ f Bus* Gy = 0, (3.22)
QT
- / 85+ f (Ao(S*)Vo BE = BE(ST)VLE, + (RS — Ao)VoPE) Vot
1] ar
- [ awt=o, (3.23)
QT
[t [ ouls)9yme =0, (3.24)
QT QT
- [Losnt [ 299 =0 (3.25)
QT QT

for all {, € L3(0,T; V), 5, € L*(0, T; 1),

Similar result as Theorem 3.1 had been considered in [17]. For completion, proof
of this theorem will be given in §5. In next section one will see that a subsequence
of the solutions of Theorem 3.1 converges weakly to a solution of (1.1-1.12) as e
approaches 0, which implies Theorem 2.1.

4, Existence of A Weak Solution

Objective of this section is to prove Theorem 2.1 if Theorem 3.1 holds, It is
done as follows: First we show PZ,p% for a € {w, o} (solutions of Theorem 3.1)
are bounded independently of & (see Lemmas 4.1, 4.2, 4.3), next prove {5°} has
a convergent subsequence in L*($7) (see Lernmas 4.4, 4.5, 4.6), then show {s°}
has a convergent subsequence in L?(QT) (see Lemmas 4.7, 4.8, 4.9), and finally
coniclude the existence of a weak solution of (1.1-1.12). We define

[ 0(2) ¥ [F(T~1(-2) — T~ (-£))dE, for z € (—o0,0],

¥ ¥ _1(5ey,

6(2) ¥ [Fw (~2) v (=), for 2 € (~00,0), 1)

¢E dZEf —U(‘ge)’ -

=T ),

| o5 = —rry

(4.1)3,4,5 are well-defined by (3.14}. (3.15) implies ¢°|pa¢ = 5° in 7, O(z) and

8(z) are nonnegative functions on (—c0,0], and, for any z;,2; <0,

{ B(z1) — O(z2) < (T7H(—21) = T (—22))21, (4.2)
8(z1) = B(22) < (V™ (—21) — v {~z))21. '
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Xg, B C QT, is a characteristic function defined as

_J 1, for z€ B,
Ap{z) = { 0, otherwise. 4.3)

Let us find two nonnegative smooth functions g, and g; defined on [0, 1] such that gy
(resp. g2) is decreasing (resp. increasing), g1(0) = g2{1) = 1, g1 (0.6) = g=2(0.4) = 0,
and g1 + g > 0 in [0,1]. Let &,& : (s8] = R by #1(6) ¥ (7)),
22(6) & g2(T1(€)). By A6, we define £ : (0,1) —+ R by
’ T Au

if{ & welotey <

Jos VRS |G

lim < 00,
g1 27
T(z) 4 }1_13.‘, 2 35 <o,
Sros Viura |2, iy — 7
h_r& A < 09
E(z) =< il—m A < 00(4'4}
Wi ~ . 0 Aw (T )
Jos VEGES | 5| 81 + fg{ﬂ} Vaud |58, if %a, TEO) ¢ o0
=1 Ael€ '
'\‘R J{ < o0
J(2) dulz. ¢l €20 Aw ’
fofs VAuho |%| g + fJ{a.sJ vAule |?£| g1, = 4
{ Jim sty <o

£ in (4.4) may have more than two options. If so, one selects the foremost possible
one in (4.4) so that £ is well-defined. £ is a strictly increasing funetion, so it has a
bounded and strictly increasing inverse function £-!. We extend £7! to ® so that
it is bounded, continuous, and strictly increasing in ®. Let us define

{ 3¢ % g(5ey,
def

¢ % £(p%).
Lemma 4.1 Solutions of Theorem 3.1 satisfy

Y (IWASIVaPillraary + IV A()VypE 2 om))

ac{w,0}
+ P23y < & (4.5)
IR{S*ML2(0,: 5300y + NV P(*Nlpacory + 1€ 20, (1))
+#* || 20,720y < & (4.6)

where ¢ is a consiant independent of =. See (2.1) for R, D.
Proof: Set & = P* — Pf in (3.17) to obtain, by A4 and (3.12)3,

“PE”Lﬂ(D,T;Hl[n)] < ¢ (indep. of £). (4.7)
By (4.2);, forall ¢, w > 0,
B(¥ (1)) - O(¥*(t — @) < (5°(1) - 5°(t ~ @)} ¥*(t), (4.8)
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where P4(t) = ¥4(0) for —w < ¢t < 0. Integrate (4.8) over £27 to obtain

% fh“, fn B(F) < /ﬂ RUEE LR j; (T (0))
- fo T_w/ﬂ(se - 5:(0))8™¥; + é ff :w /ﬂ (§° —5°(0N%;.  (49)

See {2.1)y for time differentiation. Similarly, by (4.2)2, one obtaing
— [ Jewr< [ w-wmo=s+ [ oo
W ir-wd@ Qr Q

[ e —roerue L [T [ @ —ropr w1

Summing {4.9) and (4.10) as well as letting = — 0, by boundedness of 5° and 5%,
we get, for almost all 7 € (0,7,

[ewim+ [owien < [ we-was+ [ wr-wpas
+c{|| 25 (0)]| L1¢eys | ¥E Lo o, 7522000030 [1Be FE [l L1y )- (4.11)
Letting (o = PE — P§ y,%a = P} — PZ for a € {w,0} in (3.22-3.25), one obtains

/’r(qﬁ ~w)as + 3

ac{w,0}

+ 5 [ Al < V2P, Ve, VePlalliaan)- (412)
wE{w,0} "

| Aa(soNVLELE + / W - ¥))Bs*
n‘l‘ Q‘r

By (3.11), (4.7), (4.11-4.12), and A{-5, we obtain (4.5). Clearly {4.5) implies
/ﬂ AoAo(SHTL (S + fQ AN <o (413)

where ¢ is independent of . (4.6) is due to A5, (4.4), and (4.13). [ |

Lemma 4.2 Suppose 2 < wg € N ond 25 < min{J(%) — 51,8, — J(1 — &}
where k; is the one in A5, Forany 7(<T), w(> 2+wp) EN, end e (< t def 2%’;—),

solutions of Theorem 3.1 satisfy the following results: If A7.a) holds, then
sup (|{z € 2: 5%() < s}l + H(m9) € Q2 4°(8) < )
+sup ({z € Q: 1-p < SO+ {imy) € @: 1 p < P (1))

ColcoT [~ "
~ (w — wo)lw—wo)fw’ ) (4.14)
if A7.b) holds, then
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sup (i{z € 2: G°()) S u+ si}l + {imp) € Q: () <+ si})
+up (HzeQ:ar~p <G WY+ Hizy) € Q8 — p < 5°(B)})

coleoT]™® ™0
< (- ae e (.15
if A7.c} holds, then

sup ([{z € 2 §°(t) <}l + Hiz,w) € Q1 6°(8) < wi})

+sup (Hze:s, —p <G} + {(z.9) € Qs —p S 5 (BH)

co|cpT|® 0
S e 1y (4.16)
and finally if A7.d) holds, then
sup ({z € Q:G°(t) S n+ s} + {(z,p) € Q:6°(t) < p+ ar})

+ggg(l{r €Q:1-pu< S MH+I|{(z.y) € Q:1~p < (1)}

coleoT] "™
= (w — wp)@—=olt=’ (4.17)

where mi-—l?loc fz =1 and cy is o constant independent of 7, @, ¢, .
Proof: CASE 1: We claim (4.14). A%.¢); is assumed here. Define KC,,, K¢, as

0, for 2u <z,
Kulz) € ¢ 2-2u, for p<2<2p,
-y, Cfor z< p,
[0 for <(2u) <z,
Keu(z) = § z-<(2p), for ¢(p) < # < <(2p),
slu) —¢(2u),  for z<<(p),
where .
+ e
o(z) f Ao, 2€(0,1). (4.18)
0.5 Af
Define

def | 1, for u<z< 2y,
%, u(z) = { 0, otherwise.

Then %,(2) = £K0(2) = £Ksuls(2)), £5(2) = B2(2). By 24 < 't and (3.15),
(€1, oo} = (Ku(8%), K, (5(S%)), K () — Ku(5%)) € L0, T; W) (4.19)
Employ ((1,€2,n) of (4.19) in (3.16-3.18) to obtain, by A4,

K, (5%)8,5¢ + / A(S) R, (S5)V, 94V, 5¢ 4+ f Ku(o?)Bys"
nr aQr a7

<o / Re, %, (5%)|V2 5%, (4.20)
ﬂr
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where constant ¢; is independent of £, 4. Suppose

f K, (5°)8:5° + f K, (6)8,5° 2 0, @21
nf Qr

{4.20-4.21) imply

f Rou(5)IV.S < f [ Aty gy \/ / Re £, (59)| Vo ||V 5|
or ar |5zl ar

AL ¥, - o
< e —ar, (5°) AL X, (S4)| V.5, (4.22)
|53l ar

where constant ¢g is independent of £, u. (4.20-4.22) imply

A X,
Sulh (e, (4.23)
& ds

Ku(5905 + [ Ku(lou® <oa [

Qf
Define Z] & Z,(5%) + fp(s’} where
V def ¢ 5 def ¢ -1
L0 [ ted, 20 [ e
2p T(2p)
(4.23) implies

j &QZ; =/ ’Cp(SE}atSE'l‘f Kyu(p°)Ous® SC&[ A':afp (S°). (4.24)
< ar (=43 Qr Iagl

(3.9)a, (4.24), and A7.a); yield that, £ 0 <t <t, < T,

£ ta
[[oaz<af ] z. (4.25)
h IR B /Q

where ¢4 is independent of ¢;, ta, #,£. Define
der 1
F{u,7) = —su /Z’-,t.
{#,7) 25 | (1)
{4.25) implies that, for 0 <) <, & T,

Felp, ta) — F(p, t) < o5(te — 0)F°(2p, 82}, (4.26)

where ¢s is independent of ¢;,%s, g,e. By induction and (3.10)2, one obtains, for
JEN, jR<T,

k;

7=

ky

2o

Fe(==,3h) < (w — wo + 1)V esh|" ™0 F (—, jh). (4.27)
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Ifji= ﬁﬂ?}' and 1 = jh in (4.27}, then

k;

2_‘,"

|C5 T|T-=e k;

}—e( T) < (m _ wn)(‘”“”f’)f* }-E(z_wzfr}! (428)

where f; = 1 as @ — oo. Define

{ B (zecn: 55 (xt) <=1},
B Y {(z) € Q: pF(mut) S = B}

A7.a), (3.11), and (4.28) imply

k, CGIG5T|w-w° k;
fgf ([ Xo, (* +/‘Xs,(¢)) < CGFE(F’T] < (@ — wo)[w—Wu)fw F(.?TC'

where constant cg is independent of 7, w, €, 4. See (4.3) for X, (i = 1,2). So proof
of the first part of (4.14) i3 completed.

Proof of the second part of (4.14) is similar to that of the first part, so we just
sketch the proof. For comparison with proof of the first part, some notations above
will be used again. Define K, K , a8 '

')y

0, for 2 <1-2y,
K,'#(z)cl*e:f z=142u, for 1-2u<2<1—p,
78 for 1-p<z
0, for 2z <¢{l-2y),
ch,p(z}@{ z—¢(1 —2y), for ¢(1—2p) <z<s(1—p),
sl-w—c(1-24), for ¢(1-p)<z

where ¢ is the one in (4.18). Define

o def | 1, for 1-2u<z<1l—y,
Xu(2) = { 0, otherwise.

Then X,(z) = £K.(2) = £K,,.(s(2)). By 24 < X and (3.15),
(C1a G2, m) = (Ka(S8%), Ko u(s(S9)), Kp(p®) — Ku(S5)) € L2(0,T; W), (4.29)
Employ ({1, (2. %) of (4.29) in (3.16-3.18) to get
f K, (S)8,5° + f Ao(SE)E, (S6) Vo W5V, 5° + [ K, (o%)8a
ar ar Qr
<a [ KI5 (4.30)
nf

where constant ¢; is independent of £, u. Then following the proof of the first part,
one can complete the proof of the second part.
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CASE 2: We assume A7.b); and claim (4.15). Proof of this case is similar to
that of CASE 1. Define X, K, as

def{ 0, for 2u+s8 <2,

Ku2)E S z—Q@p+s), for pragz<2puts,

—H4 for z <+
et 0, for <(2u+8) < 2,
Keul2) S 8 2—s(2p+a), for ¢(p+s) <z <s(2p+a)
slp+s) —c@u+s), for z<clut =),

where

def # K_:u -1
[ Eoe se ).

Let 1 f < 2
o def ’ or p+s < x<2uts;,
Xulz) = { 0, otherwise.

By 2u < J{¥&) - & and (3.15),
(Cy C2o) = (Cu(G9), K p(5(6°)), Ko (%) — Ku(G°D) € L}0,T; W), (4.31)
Set (C1, Ca,) of (4.31) in (3.16-3.18) to obtain

K. (G5)0,S5° + f Au(S5) (G T 7.6 + f Ko(s)0s"
ar ar Qr

<e | AS(SHAGIVLE, (4.32)
) ar
where constant ¢, is independent of £,4. As CASE 1, (4.32) implies
KE £ i{' £
Ku(G*)0:S" + / Ku(s%)0es®* < c3 f ————"(fv) ;‘(g ), (4.33)
ar Qr o 1E@N
Define 2 def 2,08+ Z,(s°) where
- £ - £
A KT 5O [ K
J-H2p4a) 2p+-8;
(3.9)3, (4.33), and A7bh yield that, if0<t <t £ T,
£a ty
f aze<e | | 2. (4.3)
b Q@ 142

where ¢, is independent of 13,2, i, €. Then following the proof of CASE 1, one can
show the first part of (4.15). The second part of (4.15) can be shown by a similar
argument as the first part of (4.15). By tracing proofs of CASE I and CASE 2, one
can see that (4.16) and (4.17) hold also. |
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Lemma 4.3 Suppose 2 < wo € N and 3 < min{J(%) — a1,8- - J(1 - k)
where Ky is the one in AS. If 1 <r <2 and £ < sy, then

S (1Bl + 185 oo romsian) < © (4.35)
ae{u,0}

where ¢ is 6 constant independent of €.
Proof: We assume A7-5 and A%.¢)is hold. Suppose 7y <€ < gk < s
Due to (3.14), we define

Bo, & {(z,8) € 0T : 5 < 87,
B, % ((2,0) € QT: ¥y <5< B}, for2+mSs w1,
Bo. & {(z,£) € OF : 784y <6< 8° < 3%}

Lemmas 4.1, 4.2, (3.7), and Holder inequality imply

2—r

f o< (e (f were) ™

<a(f, IAw(S‘)If-_'f)%L =a (/n S 3 XB-)T

w=top

< ¢q (indep. of €). (4.36)

See (4.3) for Xs. By (3.11), ||[Fillzrio,miwrm(a)) is bounded independently of .
By a similar argument, one can show the rest of (4.35). Furthermore, a similar
argument will show (4.35) if one of the conditions A7.8), A7.c), and A7.d) holds.

[ |

Lemma 4.4 For f € C°(0) ond sufficiently small @, solutions of Theorem 3.1
satisfy

T
f m[n FENSE () — S¥(t - )@ (t) - B (¢ — @) S cwlif[lwrm (e,

where ¢ is independent of £, @.
Proof: Let f € C¢°(f). One can see

; min(t+w,T)
a0 1) f @ -9 (z,7)dr € L*(0,T;V),
maz(lw)
dof min{i+w,T) _
mz.y.1) = fz) (e w 0~ (¢° — &)z, y,7)dr € L*(0,T;lb).
maz(t,

See (2.1); for time differentiation. Employ ¢ and 7 above in (3.16) and (3.18)
respectively to get, by Fubini's theorem and Lemma 4.1,

/l fleym?9~ =58 8 "% (z,7) + [:/; F(@)?8 785 0" (2,9, 7)
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- j 8.5%(z, £)¢ + f 8us* (2,9, (1 + 1)
[T QorF

= [, (Bevee - B - 22evnis) v+ [ 2220,y
< c@||Fllwros ey, (4.37)
where ¢ is independent of £, . So proof is completed. [ |
LetmeN, §=I, 7,5 = [(§ — 1)§,i8). We define A® : L}([0,T]) = L1([0,T))
by
A(0)(2) % /I C(r)dr,  forte€ Ty (4.38)
%8

Lemma 4.5 As§ = 0, |8 — A"(@‘]”anr} converges to 0 uniformly in ¢.
Proof: Let 0 # f € C§°(Q1). Define

Ble,,m) & {t € @, T): [1€¥lar ay () + 1€ s ey (¢ — )
1 =@
@ Jo | Fllwi=o

By Lemmas 4.1, 4.4 and (4.39}, fB(E,W e dt < ¢, where ¢ is independent of £, .
So

8-" 85 (z, )0~ " & (z, )dz > n}. (4.39)

|B(e,o,n)] < efn, forale,w. (4.40)
Next we claim: If n is fized, then, as w — 0,
H®e(-,t) — ®°(-,¢t — @}||zagmy — O, uniformly in c and t, {4.41)

where t € (w,T) \ B{e,w,n).
Proof of claim: If not, there is a constant ¢; > 0 and a sequence {t,&4} such
that, as w — 0,
ter € (@,T)\ Blew, @, m),
|| @4 "1;13 (i) + 2=l (o) {tw — @) <,
Jo AL 07755 (2,15)8~ 7~ (2, t5)dz < nw,
|®*=(tz) — &= (tm ~ @)l|za(qy = e1-

By (4.42}; and compactness principle, there is a subsequence (not be relabelled)
of {®°= (1), ¥~ (i — @)} converging to {g, g2} strongly in L?(Q) and pointwise
almost everywhere. By (4.42),4,

(4.42)

llgr — g2llz2¢0) > e1. (4.43)
Since £7! is bounded on ®, by (4.42)3,

[E @ -t @ -l —de
Q (£ 1l w1 ee

2z
= lim [ @) gmgee (s 11000 (2,0 )dz = 0. (4.44)
@0 fo | fllwreo iy
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Because £71 is strictly increasing on R and because f can be any nonnegative
smooth function, (4.44) implies g3 = g2 almost everywhere, which contradicts to

(4.43). So the claim is true.
{4.40-4.41) imply, as w = 0,

T
f 185, 8) — 8t — @)|Bagydt + 0, uniformly ime.  (4.45)
w

By (4.38) and (4.45), if § = L, then

T m 2
f IIQ’B*—A‘;(‘I’S)”iz(n)d’::ZI % (®*(z,t) - ®°(z, T))dT dt
o i=1“Zis Iis L3
m T . ) "
<S5l eH-Tei-Dliad
2 5T e (3 2
<3 [ 1o -att - wltqdde (4.46)

Right hand side of (4.46) convergea to ( uniformly in € as § + 0. So the lemma
follows. |

Lemma 4.8 There is a convergent subseguence of {5%,G°} in L2(07).
Proof: By Lemma 4.1, [[®°|[£3(0,7;81(n)) < €1, Which is independent of . So for
all 4,

(| A3 (@)| L2go, 733 @)y < 2 (indep. of €). (4.47)

By Lemma 4.5, (4.47), and diagonal process, one can find a subsequence of {#°}
converging to & in L?(Q7) strongly and pointwise almost everywhere. By bound-
edness and continuity of £~ as well as convergence of {®°} in L?(Q7), it is not
difficult to find a convergent subsequence for {S¢}. Convergence of {G*} is due to
the convergence of {5%} and boundedness of 7. [ |

For convenience, it is assumed that S¢ converges to S in L?(17) and pointwise
almost everywhere.
Lemma 4.7 0 < § < 1.
Proof: Suppose A7.a}; holds. By Theorem 3.1 and Lemma 4.6, 0 < § < L
We claim b & H=zte®:5= 0} = 0. If not, by Egoroff’s theorem [15] and
Lemma 4.6, there is a set B C Q7 such that (i) |B] < 2 # 0 and (ii) S* converges
uniformly to § in 27\ B.

Take g, o, large enough so that

2<my < — 2,

Ha < min {7(%) - 51,8, — T(1 - &)}, (4.48)
[0 o b S b

= _wn]ﬁﬁ-ﬂ'o}fwl = 3
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where k, is the one in A5 and ¢, fy are those in Lemma 4.2, By Lemma 4.2

and (4.48), for all ¢ < p % K

ICGlel—wn-i-l
(wl - Wu){w‘ —wo}fey

[{(z,2) € Q7 : 8* < p}| <

IA

(4.49)

b

3
Since 5° converges uniformly to § in 27 \ B, there is a g0 < b (= 2—’21—) such that,
for any £ < g,

|§* = S|(z,t) < g, for (z,t) € T\ B. (4.50)
However, (4.49-4.50) imply, for any ¢ < &g,
2b<|{(.'nt €QT\B:5=0}] < [{(z,6) € 0T\ B: S‘<,u}|<—— (4.51)

that is in contradiction to b # 0. So 0 < 5. By a similar argument, one can prove
S < 1. Moreover, a similar argument will show the lemma if one of the conditions
A7.b), A7.¢), and A7.d) holds. So proof of this lemma is completed. |

Lemma 4.8 {D(G*)} is a Cauchy sequence in L*(Q7T). See (2.1) for D.

Proof: CASE 1: Suppose A7.a} or A7.c) holds. If D is & bounded function on
(s, 8¢}, the lemma is obvious by Lemmas 4.6, 4.7. If not, for any § > 0, one can
find wp,w; € N and a positive number b such that, by A%.a)s or A%.c)s,

( 2 < wy < @ — 2,
2wg < nun {J{‘_L) - shsf J(l - %L)} 1
4 D(J(2=1 )<
co o =g+l
2z ID(J(—h- )| e <6
|®1==0

(ID(T (GNP +ID(T (D)) max{b, {m‘fggﬁ.l_%l } <4,

(4.52)

where k1 is the one in A5 and ¢, f are those in Lemma 4.2. Suppose —.,—_l.pr <
£ < X < M. Because of (3.14), we define

B déf {(:'G t) c QT S! < 21’1 },
de:;( ) €T Fr <5< }, for o <w < w, — 1,
Bo, % {(2,0) €07+ 7By <5 <5 < J).

L=
Then B® = |} Bg. Lemma 4.2 and (4.52)4 imply

W=

[ DTSN Rsem = [ PN S s,

W=
<3

W=nrN

|00le wn+1
(w _ wu)(ﬂ"’ﬂ’o]'fw

2
D(F (2,,,“))‘ < d (4.53)
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See (4.3) for characteristic function Xjp.
Let both £;,6; < gér. Define

K4 Y {2, € 0T : X < min{S%,5%}},
Ki; % {(z,t) € 0T : 5 < Jo. < 8%

Consider the following
[P - D@ < [ D) - D) P A
+ [ DTSR, + [ DR,
+ /; T [D(T (S5 ))|? Xpeion + fn . [D{T (5% )}|2 Xges= . (4.54)
By (4.53),
fn ID(I(5)) P Ko + fn DTS s <25, (459)
By Lemma 4.2 and (4.52)5,
[ 1o rxg, + [ s, <as 450
Lemmas 4.6, 4.7 imply.tha.t D(T(5*%)) converges to D(J(S)) pointwise almost
everywhere. By Egoroff’s theorem [15], one can select a set B such that (i) [B| < b
(b is the one in (452)s) and (i) D(J(5)) converges to D(J(S)) uniformly in
Q7T \ B. By (4.52)s,
| 1P(T(5%) = DTS Xgrsne < caf (457)
and there is a eg < 7% 80 that, for both &;,¢; < ¢,
[ DT - DTS easns < 8 (4.58)
VTherefore, by (4.54-4.58), for any & > 0, there is a gp so that, as e;,&; < gg,
./{; PISHN -DT (8%))* < esd. (4.59)
So convergence of {D(J(S¢))} (that is, {D(G)}) is proved.

CASE 2: If A7.b) or A7.d} holds, the convergence of {DP{G*)} can be shown by
a similar argument as CASE 1. [ |

Lemma 4.9 There is a convergent subsequence of {s¢} in L2(Q7T).
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Proof: STEF 1: By (3.11), Theorem 3.1, and Lemmas 4.1, 4.6, 4.8, thereis a
subsequence (not be relabelled) of {5%, 5%} such that, as £ — 0,
8¢,G¢ = S,G, in L2(QT) strongly,
D(ef) =+ D,  in L2(0,T;) weakly,
3¢ = 3, in L*(QT) weakly, (4.60)
O;8° — &3, in dual L?(0,T;U,) weakly, )
8*(T) = §, in L*(Q) weakly,
5%(0) — so, in L2(Q) strongly.

Suppose v; (i € IN) is a smooth function in @ and {v;}32, forms a basis of lp. For
each i and f € C'[0,T), one obtains, by (2.1) and (3.18),

~ [ st astver [ 9,06 109w = [ (050 - DDy (46D
QT QT <
As £ = 0, (4.60) implies

- fg s Bfvi+ fQ VD fOVyvi=- .[Q 5 f(Thvi + /; so FO)ve. (4.62)

Applying Green’s theorem for (4.62) in the ¢ variable yields

f Bis Flt)vi + f v, B f(6)V,v:
QT : QT
=— [ G-s@ni@i+ [ a-s@)f O 483
Q Q

Since {v;}2, is a basis of Ify, (4.63) implies
F=3s(T), s(0) = 30, (4.64)

and
/ B n+ / Tf’,ﬁ vy =0, for n € L2(0,T'; k). (4.65)
QT Qar

STEP 2: We claim D1(D) = 5. See Remark 2.1 for D~1. Let us find ¢*,p €
L2(0,T;Uy) by solving, for all {z,t) € QT,

~Aypf =5°, yEM, { ~-Aypp=38, yEM,
4,
{ ©*lost = 0, wlom = 0. (4.66)

(3.18), {4.66), and Green's theorem imply
[ pes = [ @)t - [ 06 -penaw
QT QT QT
= f D(GF)s — f Byt (4.67)
QT QT
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Note " —
__/ Byst¢f = _/ .|¥_V’|_(T)+f M(o), (4.68)
QT g 2 e 2

By (4.60)s5 and (4.64), s*(T) converges weakly to s(T'} in L%(Q). (4.66), Holder
inequality, and Green’s theorem imply

[1vwt@ < m [ 9,00 (4.69)
Q e—=0 JQ

Take limit supremum both sides of (4.67) to obtain, by (4.60) and Lemma 4.8,
2 2
Tm [ Do) < f D(G)s f [Vyel® oy 4 f Ml (aro)
=0 QT QT Q 2 Q 2

Set n = ¢ in (4.65) to obtain
o el Vel B _
0= fQ 2L ) fQ L (0) + /Q (B-D(0)s. (4.71)

By (4.70-4.71),

Im [ D)< | Ds. (4.72)
£=0 QT QT

Since D! is strictly increasing on ®, for any f € L*(Q7),
05 [ @) - DD - ). W

By (4.60), (4.72-4.73), and monotonicity argument [16], one can easily obtain
D YD) = s. (4.74)

STEP 8: We claim that {2°} is a convergent sequence in L2(QT). By {4.60), (4.72),
and (4.74),

e—0

lim j (D(s*) — D)(st - ) =0. (4.75)
QT

Define F; , & (D(s°) — D)(s* — s). By (4.74-4.75), F1 . converges to 0 in L1{QT).
So there is a subsequence (not be relabelled} of {F; .} converging to 0 pointwise
almost everywhere.

Let us consider a point (xq, ¥o,%0) € Q7 which satisfies Eh_% Fi1(zo,y0,t0) = 0.

It is not difficult to see {P(2%(zo,¥0,%0))} i8 a bounded set. For any accumulation
point Dz, 4, 1, of {P(5* (%0, Yo, 1))}, one may find a subsequence (not be relabelled)
of {P(s*(zo, ¥0.%0))} such that elﬁno D(s* (20, Y0,20)) = Dag,yo,te- Since D! is con-
tinuous,

0= f_l}},(p(s’(xo,yo,to)} — D(zo, y0, o)) (s° (20, %0, ta) — 8(z0, 30, %))

= (Dmo,m,to - ﬁ(mﬂzyﬂ:tﬁ))(D_l (Dzn.yu.tu) - 3(2:0,3{0,?0)). (4'76)
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(4.74) and (4.76) imply Daoyorts = Dlzo, 90, t0). So {D(s%(zo,¥0. o))} has only
one accumulation point Dz, yo,%s). Since Fi . converges to 0 pointwise almost
everywhere, D(s*) converges to D pointwise almost everywhere. By continuity of
D! and boundedness of {s°} in QT, 5* converges to # in L2 Q7). [ |

By Lemma 4.9 and a similar argument as Lemma 4.7, one can obtain the
following result:
Lemma 4.10 5, < 5 < s,.
Proof of Theorem 2.1: By Theorem 3.1 and integration by parts,

fLascr [ ascrn= [ s5-5980+ [ o5-wac+n),

QT QT Qr Q'I‘

for ¢ € L2(0, i VINHY(QT), € L*(0, T;Up)NH' (0, T; L2(Q)), and {(T) = nT) =
0. By (3.11) and Lemmas 4.6, 4.9, we obtain (2.6}. Indeed, Theorem 2.1 is a
direct. consequence of Theorem 3.1, Lemmas 4.1, 4.3, 4.8, 4.7, 4.8, 4.9, 4.10.

5. Existence of The Auxiliary Problem

Now we prove Theorem 3.1, which is done by Galerkin’s method. Let I = (0,7,
LeN,h=T t,,=mh,and I, = {(tm—1,tm). For a Banach space X,

LX) % {7 € L°(0,T; X) : f is constant in time on each crn. 61
It f € In(X), flry, = f{tm) for m < €= . For f € L=(QT),
def 1
o N@nt) ;[ foyndn fortel, (52)
I
One approximates Gf, P¢, E, for a € {w, o} by
6" L o), PP o), BN o(E,). (5.3)

By A{ and (3.11-3.12), it is not difficult to see, for a € {w, o},

G = G,
PSRy pe, in L2(0, T; HY(Y)) as h — 0. (5.4)
Eb 5 B,
Suppose that {e;}22, (resp. {v;}2,) is a basis of ¥ (resp. ), and v; satisfies
—ﬂyv; = GV, in Q,
{ Vilaxam =0, (5:5)

for some constant ¢;. Let V* (resp. 4} denote the linear span of {e;}{_, (resp.
{vi}i_,) where £ = L. wp 4 Ph x Pho Up. By (3.10)4, one may find G5** such
that G5'* — G*(0) is the L? projection of G5 — G£(0) on V&, Let st e gk
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A discretized scheme for (3.13-3.19) is to find {S¢*,G5*, P* 555} such that
(gs h gt‘ B Pe A P:.h,ss.h _ gc,h] e Ih(w{:} (56)
STRO) = JoTHGTRO)), GPO) =G5, PO =85t (5.7)

and if {55, G5, 854} (1) is given, then (G5:F — G5, Pesh — PER goih_geky(t,,)
is a zero of the mapping H&% : R3¢ - R3¢ ¢ = % defined by

He'h(fl,l, ':EI.E? {2,1: ':E?,h 53,1, 's£3,n‘.') = (El,l: '1%1,!:22,1: ':Ez,zaga,u '1?3,8) (58)

where

¢

(G5 — e, Pt — PER g — G5 RY(t,,) = Z(fl,ieh Ea,i€i, Ea.4vi) € WP, (5.9)
i=1

8¢ (tm) = T HG  (tm)), (5.10)
§= [ 075 tmder + [ R4S MIVa(P = BL)(tm) Ve
i 1]

E A&r Qe hydet ek
_/ ALAZ (S ) (G )V,,g‘"‘{tm)‘i?zei+f @"ﬂg’"’"(ﬁm)e.i,I (5.11)
Q <

Ae(Sz,h)
Ea:= B | [A(S™MIV P (ty) - AE (S (tm))VLER | Voes,  (5.12)
: ./;2 ( aE{Ewa} )
N NISAE () |
€3, = f "3 h(tm)vi”fngys b tm) Vyvi. (5.13)

See (3.9) for 75~ and 2&2 .1); for time differentiation. & in (5.12) is a constant
satisfying 3, > 311P Ae_(z}ﬁ!'({_ajn{_znl

Theorem 3 1 is proved by the following steps: First we show that zeros of
{5.8-5.13) exist and are bounded independently of % (see Lemma 5.1), next prove
a subset of these zeros forms a convergent sequence (see Lemmas 5.2, 5.3}, and
finally conclude the existence of a weak solution of (3.13-3.25) (see Lemmas 5.4,
5.5). Let us define a nonnegative function I': & » R by

) ¥ [T - 7o e
By (3.9), 7° ! is a strictly increasing function. As Remark 1.2 of [2],

[(z1) = T{23) < (T Hz1) = T 1(32)}21, for z1,22 € R,
|75 Hz)| € wl(z) + . Isup [T (6, forze®, @w>0 (5.14})
<1

Lemma 5.1 Under (3.7-3.11), (5.6-5.13) are solvabie for all h(=T/£), and solu-
tions satisfy, for ((1,Cz,n) € W, in Iy,

85 (tm) = THG (b)), (5.15)
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0= f FhSH (4 )01 + f Ke (SR T2 (P — ER)(tm) Vel
f Rl (5 M)V T (M) ) Vo + j o he )G, (5.16)
Q
f KE(STM) T PO (tm)Vala = ) f R (S MIVa B (tm)Vala, (5.17)

axe{w,o}

0=/ 85 (1) i 2 (5" MV uf (85%) (tm) V1. {5.18)
Q o ¥

Moreover,
f}(lg [|3e‘h(t)i|L9(Q) + ”ge'hllLﬂ(o,T;H‘[ﬂ)} + ||Pe’h||L={o,T;Hl(n}}
+ll8**| ago,rz0y < o, (5.19)

where cp 15 ¢ constant independent of h.

Proof: The solvability of (5.6-5.13) is done by induction. {5%, g%# s¢A}{0) is
given in (5.7). Suppose {8®,G** s8*}(tm—1) is solved. Since HM of (5.8) is
continuous, (5.4} and (5.9-5.13) imply

HEB (&0, B} (E1y oo Eae) 2 [ﬂ (G=* — GEME 485 ()

€,h)2
+C1(/ |3h|.+f |Vz§e,h|2+f |V,P¢,h|2+[ Ivyss'hlz)(tm)—c'g,(&iﬁ}
4] 11 It o

where ¢, cp are positive constants. By (5.14),,
BT (G (tm) < (G — G5O P (t) + GOSN b).  (5.21)
(5.20-5.21) and. (5.14), imply
HP G, G0 (€0 Eae)
> 63( j; r(g’:'h) +|VoGRR + [V PR 4 fg ]35:12 + [V,s‘-"iﬂ) — 0. (5.22)

If norm of (§1,1," -+, £a,¢) is large enough, right hand side of (5.22) is strictly positive.
So He* has a zero for t = i, By induction, is is easy to see (5.6-5.13) are solvable.
Clearly the zero of (5.6-5.13) satisfies (5.16-5. 18)

If (g5® - QEh peh — PR é‘“' gohy = _2(451 €4, 2,48, £3,4Vi) is a zero of

i=1
(5.8), then
HEP (€11, Ea ) (€11, Eae) = 0. (5.23)
Integrating (5.23) over [0,t.,], one obtains, by (5.4),

//gsh Shyghgeh 4 f/(seh GEhYa— gt h
+c5('[7 V.G + ffw pebp2 4 ff|v 3”‘]2)<c5 (5.24)
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where cg, cg are constants independent of k. By (5.14),,
BET(GUM(1) < (G5 ~ GEMERSEA (1) + GEFA~R IR (t). (5.25)

Integrate (5.25) over  x [0,{,] to get

tm_h/ r(gshK/ f (G=h - gyhahseh + f TGP (0)
ftm“/(seh S=h(0))atgy " _h/ (5% — SEAO)GEN, (5.26)

where S%%(t) = §5#(0) for A < t < 0. Similar to (5.26), we have

1 [t f |s=h? /t"‘ £h _ cEhya=h e .h / |s*2(0)
— I N L e T AL e —
hlm—h-/; 2 - h Q(a G7)0"s e 2
by, — tm
_£ /;(ss.h __se,h(n))ahg:,h_I_ %\/t “h./;(ss,h _ s,h(m)g:,h, (5_27}

where s h(t) = SE" (0) for —h < t < 0. Note |]8"Q‘ "LI(UTLeo(g})ﬁLa(QTJ and
||Qb || (nr) are bounded by a constant independent of A. (5.24), (5.26-5.27),
(5.14)z, and discrete Gronwall’s inequality imply (5.19). [ |

Lemma 5.2 For eny small w(> 0}, solutions of (5.15-5.18} satisfy

T
f Jn IG54(2) - G54(t - @)|? < com,

where cg is a constant independent of w, h(= T/¥).

Proof: For fixed y, we add {5.16) (resp. {5.18)) form = j+1,: -, j+u, and test the
resulting equation by ¢; = h2ud~ 4 (Geh — GEPY(tsy,) (vesp. n; = R2pd—ha(seh —
G**)(t;44)), where ¢;4, = (4 + u)}h. Then we sum above two equations for j =
1,---,£ — u to obtain, by Lemma 5.1,

{—p

Z{ fn e8P 8% P (254, )04 GO (814,) + /; Ihuﬂ_’”‘sE'“(tﬂu)lg}

j—'l

= Z { / |huffa—hugeh g-hegsh,, )+ j | g 23R g5t a-ﬁﬂgf"(tm)}

i=1

53> {[ (Baismwaees - 52 - B hyvar @) (Vo

=1 m=j+1

- [ By, “)(tm)vm,} (5.28)
<
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By Lemma 5.1 and rearranging the indices j and m, right hand side of (5.28} is
bounded by cu. So

T
f J |hu[28~H SE (1B PRGN(E) < chy. (5.20)
hut 2

Since §° is a step function in time, inequality (5.29) is also satisfied if one repla}:es
Ry by any positive constant w. So the lemma is complete. n

Arguing as Lemmas 4.5, 4.8, one obtains:
Lemma 5.3 There is a subsequence of {GE™*, 55*} converging to {G*, 5%} pointwise

almost everywhere and in L2(Q7) strongly.
Remark 5.1 Let us define D°: R =+ R by

Z £ Y&
D)% [ e
J(0.5

dut
E‘ (€)d§.

By (3.9); and Lemma 5.3, D*(G=") converges to D*(G*) in L2(07T), and D5 (s%")
is bounded in L2(0,T; ).
Lemma 5.4 There is {5%,0%, P*,8°} such that, for (¢1,(2,7) € L30,T; Wi},

8,5° + f 8,5° € dual L2(0,T;V), &s* € dual L*(0,T; ), (5.30)

M
gt = J5(S%), (G° —G§, P - Pf,s" — G°) € L*(0, Ty W), (5.31)
— £ &
/ 85°C + f (Af,,(ss)v,,(pe —Ey)- iﬁﬁ(swm(se}) Vata
nr Qr

+ [ s =0, (5.32)
QT

[ K@warvaG- ¥ [ R(SIVETiG =0 (539

nT e {mo} T

Moo et
o5t —/ Vvt (sf)Vyn =0, (5.34)
QT ar Af

G (x,0) = G 5*(z,y,0) = 55' (535)

Proof: By (5.7) and Lemmas 5.1, 5.3, there is {S¢,0¢, P¢, s, D¢, 5]} such that,
as h— 0,

[ S5k, goh o 5¢, G, in Z2(7) strongly,
geh geh pek o 5 GF, PF, in L2(0,T; H1()) weakly,
g5b De(s5h) 5 8¢, DF, in L2(0,T;U) weakly,
q FR(T) = 5, in L2(Q) weakly, (5.36)
R (0) > 88, in L*(Q) strongly,
g-hgek + [ 37hs"h = 8,5° + Jpi Des®, in dual L2(0,T; V) weakly,
fhath 4 G,5%, in dual L?(0,T;lp) weakly.
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If one can show
P = De(sf),

then (5.15~5.18) imply the lemma as h — 0.
For each i > 1 and f € C*[0,7], (5.18) implies

{ g =&, | (5.37)

T—4
—/ / ot p( ) (t)vi -I-f VoD (5P p(F )V v
o 2 Qr
__l " ek . b Vi
- hf_;,_/;s (T)P(f)(t)"s-‘r[gs (@) F(0)v;. (5.38)

See (5.2) for p(f). Letting h — 0 and following the argument in STEP { of Lemma
4.9, one obtains (i} 5 = s°(T) (that is, (5.37)1), and (i) for n € L*{0, T; 1),

- B+ fg . v, DV ,n=0. (5.39)

To show D* = D=(s%), one follows the argument in STEP 2 of Lemma 4.9 and
employa (5.5). [ ]
Lemma 5.5 ¢ < S*<1—¢ and J(e) <& < F(1—~¢).

Proof: By (3.6), (3.10) and (5.31), ¢ ¥ max{g® — 7°(1 - ¢£),0} € L*(0,T;V).
Let { = {z = ¢ in (5.32-5.33) and # = max{s® — J*(1 —€),0} — {; in (5.34).
By (3.9)4 and (5.35), we see 5 < 1 —¢,8 < J(1 — ¢). Similarly, letting (; =
max{—G* + J¢(£),0} in (5.32) and n = max{—s* + J%(¢),0} — {1 in (5.34), one
gets 5° > g,8° > Jle). [ |

Based on Lemmas 5.4, 5.5, Theorem 3.1 is proved below.
Proof of Theorem 3.1: (3.13-3.19) is a direct result of Lemmas 5.4, 5.5. Define

[ p e (1o + 7 (e - R creag),

pefre(gey 4 pe,

PP (0 (R - R - o) + %Em(vh-l))de),
% o — 3wy + [ (BoeY) - %cus'*))dz),

|75 & v (s) + 15

Clearly {S¢,G®, P*, s¢, Pt pf. (a = w, 0)} satisfies (3.20-3.25).
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