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一、中文摘要

x86 指令集有複雜的記憶體定址模
式，為了配合高時脈的要求，必須克服其
冗長的位址轉換計算。除此之外，其記憶
體存取的頻率很高，特別需要開發高效能
的記憶體存取技術，來提供足夠的記憶體
存取頻寬，以配合多重執行單元的運算能
力。本計畫研究各種記憶體存取位址與相
依性的預測策略，來克服 x86 指令集冗長
的位址計算等待延遲，設計出適合下一代
高派發率 x86 超純量處理器的預測性記憶
體存取單元。並提出一個測試原型，以驗
證設計的效率與可行性。

我們提出的預測性記憶體存取，主要
是將不需等待運算元的預測機制與傳統的
有效位址計算機制並行處理。為了增加預
測正確率，我們發展新的位址及相依性預
測。加上回送預測能力、2 位元計數器細
緻化預測、及以 2 位元計數器過濾預測等
方法，加強相依性預測。為了減小預測錯
誤處罰，我們考慮預測的時機與讀出資料
的送回策略等問題。實驗結果顯示，透過
增加預測正確率及減小預測錯誤處罰，我
們提出的預測性排程可以有效增加效能。

關鍵詞：x86 指令集、超純量架構、記憶體
資料存取、預測執行、位址預測、相依性
預測

Abstract
X86 instruction set has complex 

memory addressing modes and address 
calculations, and thus become difficult to 
achieve high clock rate. Moreover, with 
high memory access frequency, x86 
superscalar processors especially need 
parallel memory access techniques to 

support enough data bandwidth. In this 
project, we design the address and 
dependence prediction strategies for 
memory accessing of high-issue-rate x86 
superscalar processors, and build a 
prototype of our speculative memory access 
unit to evaluate the performance and 
feasibility of the design.

Our speculative memory access 
strategies handle the address and dependency
prediction mechanism in parallel with the 
traditional address calculation mechanism. 
To increasing the prediction accuracy, we 
develop new address and dependency 
prediction policies. We improve the 
dependency prediction by adding forwarding 
prediction ability, refining the predictions 
with 2-bit counter, and filtering out the 
error-like predictions with another 2-bit 
counter. To reduce the miss-penalty, we 
consider the prediction stage and the 
strategies for handling loaded data. 
Experiment results show that, by reducing 
the miss-penalty and increasing the 
prediction accuracy, the predictive 
scheduling proposed in this work can 
significantly improve the performance.

Keywords：x86 instruction set, superscalar, 
memory access, speculative execution, 
address prediction, dependency prediction

二、緣由與目的

For x86 program, the proportion of 
memory access instructions is relatively 
high and a specific address is likely to be 
accessed repeatedly in a short period 
because of their register-to-memory or 
memory-to-memory instruction set 



architectures and limited register sets. For 
the consistency of memory, stores are 
executed in the original program order. 
However, loads can be executed without 
obeying the original program order, and thus 
several scheduling policies of memory 
accesses such as load bypassing and load 
forwarding have been developed [1].
However, in these conservative scheduling 
policies, a load cannot be issued or 
forwarded if any addresses of its previous 
stores is unsolved, i.e. has not been 
generated. This problem becomes much 
severer in an x86 superscalar 
microprocessor because the pipeline is 
lengthen for address calculation.

Many prediction techniques, such as 
address prediction, dependency prediction, 
and value prediction, have been developed 
on RISC for resolving the unsolved address 
problem [2][3]. These techniques predict the
addresses, dependencies, or even data of 
loads at the fetch stage. However, when 
applying to x86 processors, which generally 
have longer pipelines than RISC 
microprocessors, all these techniques have 
to suffer the lengthen penalty of prediction 
errors and thus cannot work effectively.
Therefore, we enhance these prediction 
techniques by increasing the prediction 
accuracy and reducing the miss-penalty.

To increasing the prediction accuracy, 
we develop new address and dependency 
prediction policies. We choose the 2-stride 
scheme in [3] as our address prediction, and 
choose the store-load pair scheme in [5] to 
develop our dependency prediction. To 
reduce the miss-penalty, we consider the 
prediction stage and the strategies for 
handling loaded data.

三、結果與討論

3.1 Prediction Policies of Loads

We develop the prediction policies, 
including address prediction, pre-load, and 
three dependence/forwarding predictions, to 
increase the prediction accuracy.

3.1.1 Address Prediction

We choose the 2-stride scheme in [4] as 
our address prediction (AP) because its 
outstanding accuracy and reasonable 
implement cost. AP predicts the data 
addresses of loads using a 2-stride address 
predictor shown in Figure 1, whose address 
prediction table (APT) stores the information 
generated by previous loads as a 
set-associative cache.

Figure 1. Block diagram of 2-stride address predictor

3.1.2 Pre-Load

Pre-load (PL) is the simplest 
dependency prediction policy that predicts 
every load as non-dependent. In PL, loads
can be issued to the data cache without the 
address conflict check once its data address is 
calculated or predicted by AP. PL delays the 
address conflict checking after the data cache 
access, and thus loads can be executed 
without being stalled by unsolved stores.

3.1.3 Dependency/Forwarding Prediction

We choose the store-load pair scheme in 
[5] as the base to develop our dependency 
prediction for its accuracy and reasonable 
implement cost. By adding the forwarding 
prediction scheme to predict if the value can 
be forwarded from the unified memory 
access buffer (UMAB), the dependency 
prediction becomes the 
dependency/forwarding prediction (DP). DP 
predicts the dependency using a store-load 
pair predictor shown in Figure 2, whose 
dependency/forwarding prediction table 
(DPT) stores the information generated by 
previous loads as a set-associative cache. 
DPT is indexed by the PC of the encountered 
load.



Figure 2 The block diagram of store-load pair predictor.

3.1.4 Counter -based Dependency
/Forwarding Prediction

To improve the accuracy of DP, we 
refine DP to become the counter-based 
dependency/forwarding prediction (CDP). 
CDP predicts the dependency using a 
counter-based store-load pair predictor 
shown in Figure 3 whose counter-based DPT 
(CDPT) is modified from DPT by adding a 
classify counter field. The classify counter 
field is a 2-bit saturation counter to keep the 
tendency of independence of a load.

Figure 3. The block diagram of counter-based store-load pair 
predictor.

3.1.5 Selective Dependency/Forwarding 
Prediction

To further improve the accuracy of CDP, 
we refine CDP to become the selective
dependency/forwarding prediction (SDP). 
The empirical observations of [4] notify that 
relatively few loads cause most of the 
miss-predictions, and filter out these loads 
will increase prediction accuracy. SDP
predicts the dependency using a 
counter-based store-load pair predictor with 
filter shown in Figure 4 whose selective DPT
(SDPT) is modified from CDPT by adding a 
filter counter field. The filter counter is a 
2-bit saturation counter to keep the tendency 
of miss prediction.

Figure 4. Block diagram of the counter-based store-load pair 
predictor with filter.

3.2 Predictive Models of Loads

To reduce the miss-penalty of prediction, 
we consider different prediction stage and 
send –back strategies.

3.2.1 Prediction at Different Stages

Traditionally, the predictions are made 
at fetch cycle as show in Figure 5(a) because 
it is the first cycle the PC of a load can be 
obtained. However, in the lengthen pipeline 
of x86, the miss-penalty is large enough to 
cancel out the advantage from prediction 
early. A delayed prediction as show in Figure 
5(b) is developed by delaying the prediction 
until an instruction has been decoded and
dispatched to reduce the miss-penalty. When 
predicting at front-end, all the predicted loads 
must stores in prediction validation buffer 
(PVB). By delaying the prediction after 
instruction dispatch, these predicted loads be 
stored in UMAB thus saving the hardware 
cost. The delayed prediction also let the 
prediction work only on loads and the 
prediction information can be validated in 
time thus slightly increases the prediction 
accuracy.

3.2.2 Send-back Strategies of Loaded Data

In general case, data loaded by a 
predicted load may be used immediately 
without verification by the succeeding 
operations. Then, once a miss prediction is 
detected, the miss-predicted load and all its 
succeeding operations must be recovered. We 
call this an aggressive send-back strategy of 
loaded data (ASB). However, we found that 
no verification of loaded data is too 
aggressive for some aggressive prediction 
policies. Thus, we develop a conservative 
send-back strategy (CSB) to check the 



accuracy of load prediction before the loaded 
data is used in order to eliminate the recovery 
penalty.

Figure 5. Prediction at different stages.

3.3 Performance Analysis

The prediction policies PL, DP, CDP, 
and SDP can all combine with AP and 
become new policies PL_AP, DP_AP, 
CDP_AP, and SDP_AP. The prediction 
stages, front end (F) or delayed (D), and 
send-back strategies, aggressive (A) or 
conservative (C), can be combined to form
four predictive models: F_A, D_A, F_C, and 
D_C. The average speedups of the prediction 
policies and the predictive models over the 
load forwarding policy are shown in Figure 6. 
The average speedups are the harmonic 
means of the speedups of the eight 
SPECint95 benchmarks. The prediction 
policies are distinguished by the predictive 
model. The APT, DPT, and SDPT are all 
4K-entry and 4-way associative, which are 
chosen for performance saturation.

Figure 6. Performance comparison of various prediction policies 
and predictive models.

四、計畫成果自評

We have examined the address and the 
dependency prediction policies, prediction 
stage, and send-back strategies for memory 

accesses in x86 superscalar processors. The 
traditional prediction techniques developed 
on RISC cannot work effectively on x86 
because of the lengthen penalty of prediction 
misses. However, combine the address and 
the dependency prediction can achieve good 
performance. Furthermore, we develop CDP 
and SDP to increase the prediction accuracy,
and develop the delayed prediction and CSB
to reduce the miss-penalty. The delayed 
prediction would not decrease the 
performance but can reduce hardware cost. 
CSB eliminates the penalties of 
miss-predicted loads and the recovery 
mechanism; thus let AP become a 
cost-effective selection. While a carefully 
designed SDP with ASB can achieve the 
highest performance. Simulation results show 
that SDP_AP can achieve 1.33 speedup over
the traditional load-forwarding policy under 
commercial programs and next generation 
designs.
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