
行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ X86 超純量處理器之預測性記憶體存取單元設計 ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別： 個別型計畫 □整合型計畫

計畫編號：NSC89－2213－E－009－205

執行期間：89 年 8月 1日至 90 年 7月 31 日

計畫主持人：單智君 博士

共同主持人：鍾崇斌 博士

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程學系

中 華 民 國 89 年 10 月 31 日

X86 超純量處理器之預測性記憶體存取單元設計
Design a speculative memory access unit of x86 superscalar processor

計畫編號：NSC-89-2213-E-009-205
執行期限：89 年 8月 1日至 90 年 7月 31 日
主持人：單智君 博士
共同主持人：鍾崇斌 博士
計畫參與人員：徐日明、邱日清、蔣昆成、劉嘉修

一、中文摘要

x86 指令集有複雜的記憶體定址模
式，為了配合高時脈的要求，必須克服其
冗長的位址轉換計算。除此之外，其記憶
體存取的頻率很高，特別需要開發高效能
的記憶體存取技術，來提供足夠的記憶體
存取頻寬，以配合多重執行單元的運算能
力。本計畫研究各種記憶體存取位址與相
依性的預測策略，來克服 x86 指令集冗長
的位址計算等待延遲，設計出適合下一代
高派發率 x86 超純量處理器的預測性記憶
體存取單元。並提出一個測試原型，以驗
證設計的效率與可行性。

我們提出的預測性記憶體存取，主要
是將不需等待運算元的預測機制與傳統的
有效位址計算機制並行處理。為了增加預
測正確率，我們發展新的位址及相依性預
測。加上回送預測能力、2 位元計數器細
緻化預測、及以 2 位元計數器過濾預測等
方法，加強相依性預測。為了減小預測錯
誤處罰，我們考慮預測的時機與讀出資料
的送回策略等問題。實驗結果顯示，透過
增加預測正確率及減小預測錯誤處罰，我
們提出的預測性排程可以有效增加效能。

關鍵詞：x86 指令集、超純量架構、記憶體
資料存取、預測執行、位址預測、相依性
預測

Abstract
X86 instruction set has complex

memory addressing modes and address
calculations, and thus become difficult to
achieve high clock rate. Moreover, with
high memory access frequency, x86
superscalar processors especially need
parallel memory access techniques to

support enough data bandwidth. In this
project, we design the address and
dependence prediction strategies for
memory accessing of high-issue-rate x86
superscalar processors, and build a
prototype of our speculative memory access
unit to evaluate the performance and
feasibility of the design.

Our speculative memory access
strategies handle the address and dependency
prediction mechanism in parallel with the
traditional address calculation mechanism.
To increasing the prediction accuracy, we
develop new address and dependency
prediction policies. We improve the
dependency prediction by adding forwarding
prediction ability, refining the predictions
with 2-bit counter, and filtering out the
error-like predictions with another 2-bit
counter. To reduce the miss-penalty, we
consider the prediction stage and the
strategies for handling loaded data.
Experiment results show that, by reducing
the miss-penalty and increasing the
prediction accuracy, the predictive
scheduling proposed in this work can
significantly improve the performance.

Keywords：x86 instruction set, superscalar,
memory access, speculative execution,
address prediction, dependency prediction

二、緣由與目的

For x86 program, the proportion of
memory access instructions is relatively
high and a specific address is likely to be
accessed repeatedly in a short period
because of their register-to-memory or
memory-to-memory instruction set

architectures and limited register sets. For
the consistency of memory, stores are
executed in the original program order.
However, loads can be executed without
obeying the original program order, and thus
several scheduling policies of memory
accesses such as load bypassing and load
forwarding have been developed [1].
However, in these conservative scheduling
policies, a load cannot be issued or
forwarded if any addresses of its previous
stores is unsolved, i.e. has not been
generated. This problem becomes much
severer in an x86 superscalar
microprocessor because the pipeline is
lengthen for address calculation.

Many prediction techniques, such as
address prediction, dependency prediction,
and value prediction, have been developed
on RISC for resolving the unsolved address
problem [2][3]. These techniques predict the
addresses, dependencies, or even data of
loads at the fetch stage. However, when
applying to x86 processors, which generally
have longer pipelines than RISC
microprocessors, all these techniques have
to suffer the lengthen penalty of prediction
errors and thus cannot work effectively.
Therefore, we enhance these prediction
techniques by increasing the prediction
accuracy and reducing the miss-penalty.

To increasing the prediction accuracy,
we develop new address and dependency
prediction policies. We choose the 2-stride
scheme in [3] as our address prediction, and
choose the store-load pair scheme in [5] to
develop our dependency prediction. To
reduce the miss-penalty, we consider the
prediction stage and the strategies for
handling loaded data.

三、結果與討論

3.1 Prediction Policies of Loads

We develop the prediction policies,
including address prediction, pre-load, and
three dependence/forwarding predictions, to
increase the prediction accuracy.

3.1.1 Address Prediction

We choose the 2-stride scheme in [4] as
our address prediction (AP) because its
outstanding accuracy and reasonable
implement cost. AP predicts the data
addresses of loads using a 2-stride address
predictor shown in Figure 1, whose address
prediction table (APT) stores the information
generated by previous loads as a
set-associative cache.

Figure 1. Block diagram of 2-stride address predictor

3.1.2 Pre-Load

Pre-load (PL) is the simplest
dependency prediction policy that predicts
every load as non-dependent. In PL, loads
can be issued to the data cache without the
address conflict check once its data address is
calculated or predicted by AP. PL delays the
address conflict checking after the data cache
access, and thus loads can be executed
without being stalled by unsolved stores.

3.1.3 Dependency/Forwarding Prediction

We choose the store-load pair scheme in
[5] as the base to develop our dependency
prediction for its accuracy and reasonable
implement cost. By adding the forwarding
prediction scheme to predict if the value can
be forwarded from the unified memory
access buffer (UMAB), the dependency
prediction becomes the
dependency/forwarding prediction (DP). DP
predicts the dependency using a store-load
pair predictor shown in Figure 2, whose
dependency/forwarding prediction table
(DPT) stores the information generated by
previous loads as a set-associative cache.
DPT is indexed by the PC of the encountered
load.

Figure 2 The block diagram of store-load pair predictor.

3.1.4 Counter -based Dependency
/Forwarding Prediction

To improve the accuracy of DP, we
refine DP to become the counter-based
dependency/forwarding prediction (CDP).
CDP predicts the dependency using a
counter-based store-load pair predictor
shown in Figure 3 whose counter-based DPT
(CDPT) is modified from DPT by adding a
classify counter field. The classify counter
field is a 2-bit saturation counter to keep the
tendency of independence of a load.

Figure 3. The block diagram of counter-based store-load pair
predictor.

3.1.5 Selective Dependency/Forwarding
Prediction

To further improve the accuracy of CDP,
we refine CDP to become the selective
dependency/forwarding prediction (SDP).
The empirical observations of [4] notify that
relatively few loads cause most of the
miss-predictions, and filter out these loads
will increase prediction accuracy. SDP
predicts the dependency using a
counter-based store-load pair predictor with
filter shown in Figure 4 whose selective DPT
(SDPT) is modified from CDPT by adding a
filter counter field. The filter counter is a
2-bit saturation counter to keep the tendency
of miss prediction.

Figure 4. Block diagram of the counter-based store-load pair
predictor with filter.

3.2 Predictive Models of Loads

To reduce the miss-penalty of prediction,
we consider different prediction stage and
send –back strategies.

3.2.1 Prediction at Different Stages

Traditionally, the predictions are made
at fetch cycle as show in Figure 5(a) because
it is the first cycle the PC of a load can be
obtained. However, in the lengthen pipeline
of x86, the miss-penalty is large enough to
cancel out the advantage from prediction
early. A delayed prediction as show in Figure
5(b) is developed by delaying the prediction
until an instruction has been decoded and
dispatched to reduce the miss-penalty. When
predicting at front-end, all the predicted loads
must stores in prediction validation buffer
(PVB). By delaying the prediction after
instruction dispatch, these predicted loads be
stored in UMAB thus saving the hardware
cost. The delayed prediction also let the
prediction work only on loads and the
prediction information can be validated in
time thus slightly increases the prediction
accuracy.

3.2.2 Send-back Strategies of Loaded Data

In general case, data loaded by a
predicted load may be used immediately
without verification by the succeeding
operations. Then, once a miss prediction is
detected, the miss-predicted load and all its
succeeding operations must be recovered. We
call this an aggressive send-back strategy of
loaded data (ASB). However, we found that
no verification of loaded data is too
aggressive for some aggressive prediction
policies. Thus, we develop a conservative
send-back strategy (CSB) to check the

accuracy of load prediction before the loaded
data is used in order to eliminate the recovery
penalty.

Figure 5. Prediction at different stages.

3.3 Performance Analysis

The prediction policies PL, DP, CDP,
and SDP can all combine with AP and
become new policies PL_AP, DP_AP,
CDP_AP, and SDP_AP. The prediction
stages, front end (F) or delayed (D), and
send-back strategies, aggressive (A) or
conservative (C), can be combined to form
four predictive models: F_A, D_A, F_C, and
D_C. The average speedups of the prediction
policies and the predictive models over the
load forwarding policy are shown in Figure 6.
The average speedups are the harmonic
means of the speedups of the eight
SPECint95 benchmarks. The prediction
policies are distinguished by the predictive
model. The APT, DPT, and SDPT are all
4K-entry and 4-way associative, which are
chosen for performance saturation.

Figure 6. Performance comparison of various prediction policies
and predictive models.

四、計畫成果自評

We have examined the address and the
dependency prediction policies, prediction
stage, and send-back strategies for memory

accesses in x86 superscalar processors. The
traditional prediction techniques developed
on RISC cannot work effectively on x86
because of the lengthen penalty of prediction
misses. However, combine the address and
the dependency prediction can achieve good
performance. Furthermore, we develop CDP
and SDP to increase the prediction accuracy,
and develop the delayed prediction and CSB
to reduce the miss-penalty. The delayed
prediction would not decrease the
performance but can reduce hardware cost.
CSB eliminates the penalties of
miss-predicted loads and the recovery
mechanism; thus let AP become a
cost-effective selection. While a carefully
designed SDP with ASB can achieve the
highest performance. Simulation results show
that SDP_AP can achieve 1.33 speedup over
the traditional load-forwarding policy under
commercial programs and next generation
designs.

五、參考文獻

[1] M. Johnson, Superscalar
Microprocessor Design, Prentice Hall,
1991.

[2] R. J. Eickemeyer and S. Vassiliadis: ‘A
load instruction unit for pipeline
processors,’ IBM Journal of Research
and Development, vol. 37, 1993,
pp.547-564.

[3] G. Z. Chrysos and J. S. Emer, "Memory
Dependency Prediction using Store
Sets," ISCA-25, 1998.

[4] Y. Sazeides and J. E. Smith, "The
Predictability of Data Values," In the
Proceeding of Micro-30, December
1997.

[5] A. Moshovos, S. E. Breach, T. N.
Vijaykumar, and G. S. Sohi, "Dynamic
Speculation and Synchronization of
Data Dependences," In Proc. of the 24th
Annual International Symposium on
Computer Architecture, 1997.

	page1
	page2
	page3
	page4
	page5

