行政院國家科學委員會專題研究計劃成果報告

碳基發藍至紫外光新材料之奈米結構合成技術及性質分析 計劃編號:NSC 90-2216-E009-040 執行期限:90 年 8 月 1 日至 91 年 7 月 31 日 主持人:郭正次 國立交通大學材料科學與工程系

摘要

為了增加奈米結構材料之應用範圍,例如製作磁記憶媒體,本研究以觸媒輔助電子迴旋共振化學氣相 沉積法(ECR-CVD)利用 CH4及 H2為反應氣源,於矽基材 上成功的合成鑲埋有磁性顆粒的碳奈米材料。所使用 之磁性觸媒是先以 PVD 於矽基材上沉積 FePt, CoPt, Nd2Fe14B, Fe 和 FeNi 等薄膜,並緊接著施以氫電漿前 處理以形成奈米顆粒。主要之製程參數包括觸媒材 料、氣源中之氫氣含量、氫電漿前處理、基材偏壓、 沉積溫度以及電漿導流板之施加。

關於磁記憶媒體之運用方面,本製程提供了以下 之優點: CNTs 之準 、形成包裹於碳管頂端之獨 立 且 均 匀 分 散 之 磁 性 顆 粒 、 高 管 數 密 度 (134 Gtubes/inch²,以 Fe 觸媒輔助成長之 CNTs)、高 度之磁異向性(形狀異向性和誘發異向性)以及高度 的矯頑磁力。而鑲埋於碳管中之觸媒顆粒直徑(35 nm, or 10 ~ 100 nm)僅略大於單磁域晶粒尺寸(接近單磁 域晶粒尺寸時將獲得較佳之矯頑磁力),目前以在 715℃下利用鐵為觸媒輔助成長之碳管具有最佳之矯 頑磁力(750 0e),且在碳管徑向與軸向之矯頑力最 高也高達 300 0e,這樣的結果已高於文獻中的結果 了。

Abstract

The nano-sized magnetic particles were successfully used as the catalysts to synthesize the magnetic metalencapsulated carbon nanotubes (CNTs) or nao-particles on Si wafers by a microwave plasma electron cyclotron resonance chemical vapor deposition (ECR-CVD) system with CH₄ and/or H₂ as source gases. The magnetic catalyst materials, including FePt, CoPt, Nd₂Fe₁₄B, Fe and FeNi, were first deposited on Si wafers by PVD method and followed by plasma pretreatment to become nano-particles. The main process parameters include catalyst materials, hydrogen plasma catalyst pretreatment and deposition temperature.

From applications in magnetic media, the process takes the following advantages: the perpendicularly-aligned CNTs or nano-particles, the tipgrowth CNTs, the well distributed magnetic particles, the detectable magnetic fields of each particle, high tube number density (up to 134 Gtubes/inch² for Fe-assisted CNTs), favorable catalyst size, higher shape and induced anisotropy, and manipulatable nanostructures. The catalyst particle sizes (35 nm, or $10 \sim 100$ nm in diameter) are greater than but close to the critical optimum size or single domain size, which favor a higher coercive force. The greatest coercive force can go up to 750 Oe for Feassisted CNTs at 715°C deposition temperature, which is comparable with the reported values in the literature. The coercive force difference between vertical and horizontal direction can reach 300 Oe in the present conditions.

1. 導論

隨著高記錄硬碟容量之持續增加。當面記錄密度 由 0.1 Gbit/in² 增加到 100 Gbit/in²時,水平記錄 媒體將因熱不穩定性(Thermal instability) 或稱 超順磁極限(Superparamagnetic limit),而面臨 物理上之極限。這是因為目前所有的磁記錄系統均採 用水平記錄方式[1]。亦即每一位元之磁化方向均平 行於基材方向。目前的記錄媒體之矯頑磁場強度, Hc,約在2000-3000 0e 之範圍[2],媒體材料以連續 多晶薄膜呈現。為了突破此物理極限,S. Iwasaki 教 授在1975年提出垂直記錄媒體之概念[3]。這種「非 連續性磁性薄膜」革命性的論點及技術將可大大的提 升磁記憶密度。目前製作非連續性磁性薄膜之方法多 以微影製程為主,但由於成本過高,目前僅有學術研 究價值。而以 ECR-CVD 所成長之碳奈米管中所包覆之 磁性粒子,正屬於非連續性磁膜的一種。因此,本實 驗特別對奈米碳管之磁性質做研究,並且利用 ECR-CVD 及磁性退火之製程大幅的提升了碳奈米管之中之 金屬顆粒之磁異向性,增加了將碳奈米管應用在磁紀 憶媒體之可行性。

2. 實驗方法

實驗使用 ECR-CVD 系統,並探討沉積溫度、電 漿方向、試片偏壓以及氫氣流量對碳奈米管之成長與 性質之影響。

基材:矽晶圓 Si(100)

反應氣體及原料:H₂、CH₄。

觸媒:Fe, FePt, Nb₂Fe₁₄B, CoPt 薄膜及 FeNi 厚膜。 前處理:H₂ 電漿蝕刻 15 min。

3. 結果與討論

3.1 磁性觸媒金屬材料之影響

以磁性金屬輔助成長之碳奈米管之形貌特性,附 著性及磁性質詳列於表 1。圖 1(a), 1(b), 1(c)及 1(d),..., 1(i)及 1(j)為相對應之側視圖及頂視 圖,依序為 Fe, FePt, CoPt, Nb2Fe14B及 FeNi 為觸 媒成長之碳奈米結構的 SEM 微觀照片。由應用於垂直 記錄媒體的觀點來看,用 ECR-CVD 方法成長的碳奈米 管具有垂直基材方向(Vertically aligned)且觸媒

在碳管頂端成長(Tip-growth)的優點。此外,實驗 結果顯示不同的觸媒材料在相同的沉積條件下,會產 出不同形貌特性及性質的碳奈米管,如不同的管數密 度、管長、碳膜生成量、成長機制、碳管種類、以及 碳管與觸媒之附著性等。這些結構上或性質上之差異 可能與碳在觸媒中的溶解度、觸媒與基材的交互作 用、以及碳奈米管與碳膜在氫電漿下之被蝕刻率差異 有關。例如,非鐵金屬鉑(Pt)溶碳量相當小,因此 使得 Fe 及 Co 的碳溶解度比 FePt 及 CoPt 高出許多, 結果顯示 Fe 及 Co 觸媒成長的碳奈米管的管數密度及 管長均較 FePt 及 CoPt 觸媒成長的高。在目前的條件 下,以 Fe 觸媒成長的碳奈米管最大管數密度可達到 134 Gtubes/inch² 左右。而管數密度將是決定媒體之 記錄密度的主要因子。另外,在 15 分鐘的沉積時間 下,以 Nd2Fe14B 觸媒可以成長出最長的管長達 2100 nm。在磁性質方面,以 Fe 觸媒成長的碳奈米管可以 得到最大的矯頑磁力~750 Oe。另一個有趣的現象 是在 ECR-CVD 的環境下不需使用氮氣即可成長竹節狀 的碳奈米管(Bamboo-like CNTs),雖然氮被認為是 形成竹節狀碳奈米管的主要因素[4,5]。在某些應用 方面,如果將觸媒顆粒由碳奈米管中移除是必要時, 則可以選擇適當之觸媒如 FePt 及 CoPt 來成長,然 後將之置於丙酮溶液中加以超因波震盪即可達成。

觸媒種類	FePt	CoPt	$Nd_2Fe_{14}B$	Fe	FeNi
管長 (nm)	170	170	2100	1500	600
管徑(nm)	50	60~180	60	60	50~120
管數密度	77	16	71	134	39
(Gtubes/in ²)					
觸媒直	40	20~120	35	35	10~100
徑 (nm)					
石墨層	差	-	佳	-	佳
準直性					
附著性	佳	佳	佳	差	差
矯頑磁	-	-	600	750	250
カ (Oe)					
碳管準直性	很直	很直	直	直	直
碳管型態	中空	中空	竹結狀	竹結	竹結狀
				狀	

表 1: 各種觸媒輔助成長之 CNTs 之形貌和性質比較 表。

3.2 氫電漿前處理的影響

圖 1(a)與 2(a),1(c)與 2(b),1(e)與 2(c)為 分別以 Fe,FePt 及 CoPt 觸媒在有氫電漿前處理及 無氫電漿前處理兩種情形下,所成長的碳奈米管或奈 米顆粒的 SEM 照片。這些照片可以很明顯的顯示當省 去氫電漿前處理的步驟時,所成長的碳奈米結構會由 管狀改變成顆粒狀。由記錄媒體應用之觀點來看,顆 粒狀之奈米結構具有短而穩固之優點。但相對的也可 能會較易形成等軸向之晶粒,而失去高長細比 (Aspect ratio)所產生之形狀異向性(Shape anisotropy),以提高垂直基材方向之矯頑磁力之優點。

圖 1: SEM 不同觸媒輔助成長之 CNTs 形貌(a) Fe, 側 視圖,(b) Fe, 上視圖,(c) FePt, 側視圖,(d) FePt, 上 視圖,(e) CoPt, 側 視圖,(f) CoPt, 上 視圖,(g) Nd₂Fe₁₄B, 側視圖,(h) Nd₂Fe₁₄B, 上視圖,(i) FeNi, 側 視圖,(j) FeNi, 上視圖。

圖 2: 省略氫電漿前處理後不同觸媒輔助成長之 CNTs 的 SEM 形貌(a) Fe,(b) FePt and (c) CoPt。 3.3 觸媒顆粒形狀

典型的晶格影像或高解析度穿透是電子顯微鏡 (HRTEM)影像如圖 3 及圖 4 所示,分別為以 FeNi

及 Fe 觸媒輔助成長的碳奈米管,在觸媒顆粒及其周 圍的影像。ECR-CVD 成長的奈米碳管除了具有高度垂 直基材方向之優點外,在碳奈米管頂端之觸媒顆粒的 形狀大部分呈現倒梨形 (pear-like),對於提高磁 性的形狀異向性有很大的貢獻。而在製程中為產生 ECR 條件的 875 Gauss 磁場,在冷卻過程亦持續保 持,希望能達到磁性退火效應(magnetic annealing effect) 以提高磁晶異向性。表 2 所示為磁性觸媒輔 助成長之碳奈米管的磁性質與結構特性。表 2 亦比較 在成長溫度相近下(705℃~717℃),以 Nd2Fe14B、 FeNi 和 Fe 所成長之碳奈米管之觸媒顆粒的矯頑磁力 及異向性。它顯示 NdaFei4B 觸媒顆粒之矯頑磁力(He= 705 0e) 還比以 Fe 觸媒(He = 750 0e) 略低, 但異向性 較大。而 FeNi 觸媒顆粒之矯頑磁力較弱(He = 300 0e),且在此製程下幾乎不具有異向性。這些矯頑磁 力之大小可能和下列因素相關:如觸媒顆粒之成份變 化及氧化情況、觸媒顆粒的形狀和尺寸、碳管之準直 性、以及碳管之管數密度、等等。

(圖 3)
(圖 4)
圖 3:以 FeNi 厚膜輔助成長 CNT 之觸媒端的晶格影像。

圖 4:以 Fe 薄膜輔助成長 CNT 之觸媒端 HRTEM 影像。

觸媒	觸媒直	CNTs	管數密度	H_c , v^1	H_c , H^2
種類	徑	準直	(Gtubes/in ²)	(0e)	(0e)
	(nm)	性			
FePt	40	Very	77	_	_
		high			
CoPt	20 ~	Very	16	-	-
	120	high			
$Nd_2Fe_{14}B$	35	high	71	705	350
Fe	35	high	134	750	450
FeNi	10~100	high	39	300	300

表 2: 磁性觸媒所輔助成長之碳奈米管之磁性質與結 構特性比較表。

3.4 沉積溫度的影響

兩條以 Nd2Fe14B 觸媒成長之碳奈米管在垂直與平 行基材方向測得之磁滯曲線示於圖 5 中。圖 6 所示為 Nd2Fe14B 觸媒成長之碳奈米管其垂直與平行基材方向 之矯頑磁力與沉積溫度之間的變化曲線。很明顯的當 較高的沉積溫度下,會得到較高的矯頑磁力及較大的 磁異向性。當沉積溫度大於 700℃時磁異向性會明顯 變化且提高,其成因尚未完全明瞭。可能是因為在此 溫度下可以強化磁性退火效應。

圖 5: 使用 VSM 所量測到觸媒(NdzFei4B)在垂直和水平 於基材方向的磁滯曲線。

圖 6:觸媒顆粒(NdzFei4B)在垂直和水平於基材方向的 矯頑磁力隨不同沉積溫度之變化關係。

3.5 AFM 及 MFM 影像

以 Fe, FePt 及 CoPt 觸媒成長之碳奈米管或奈 米顆粒之 AFM, MFM 及 MFM 線掃描磁力變化曲線分別 對應到圖 7(a) 至 7(c),圖 7(d) 至 7(f),及圖 7(g) 至 7(i)。在 MFM 影像圖中較亮及較暗之區域分 別代表與 MFM 探針作用之磁力方向為相斥或相吸之作 用力。 圖中顯示磁性顆粒分佈均勻,而且每一顆粒 之磁場可以被偵測或讀取。

圖 7: 碳奈米管或奈米顆粒之 AFM 影像, MFM 影像和 MFM 影像所相對應的 line scan, (a),(b)和(c)為以 Fe 為觸媒;(d),(e)和(f)為以 FePt 為觸媒以及(g),(h) 和 (i) 為以 CoPt 為觸媒輔助成長之碳奈米顆粒

4. 結論

成功地使用五種不同磁性材料做為觸媒,在矽晶 片上成長鑲埋磁性金屬顆粒之碳奈米管或碳奈米顆 粒,並研究其運用於垂直磁記錄媒體之可行性。結果 顯示利用 ECR-CVD 系統可以沉積垂直配向,大面積, 均勻長度且頂端鑲埋磁性金屬顆粒之碳奈米管或碳奈 米顆粒。這些特性相當適合於應用在垂直記錄媒體。 選擇不同觸媒材料或前處理條件可以控制沉積之碳奈 米材料具有不同的管數密度、管長、碳膜生成量、成 積物在結構上或性質上之差異可能與碳在觸媒中的溶 解度、觸媒與基材的交互作用、以及碳奈米管與碳膜 在氫電漿下之被蝕刻率差異有關。管數密度將是決定 媒體之記錄密度的主要因子。在目前的條件下,以Fe 觸媒成長的碳奈米管最大管數密度可達到 134 Gtubes/inch² 左右。

在鑲埋磁性金屬顆粒之碳奈米管或碳奈米顆粒之 磁性質方面,磁性金屬顆粒之尺寸(直徑~35 nm, or 10 ~ 100 nm)稍大於但很接近具有最高矯頑磁 力的最佳臨界尺寸(Critical optimum size)或單 磁區尺寸(Single domain size)[6]。較高沉積溫 度成長的碳奈米管具有較高的矯頑磁力,其原因可能 是較高溫度下觸媒金屬黏度降低,成長時可以被拉得 較長而提高其長細比,直徑方向的尺度也可能進一步 減小,這些形狀及尺寸因素都可以提高進一步提高磁 性顆粒之磁異向性與矯頑磁力。本研究結果顯示以Fe 觸媒在 715℃沉積的碳奈米管可得到最大的矯頑磁力 達 750 Oe , 已與目前發表之文獻數據相當 [7,8,9,10]。本製程之優點是因觸媒顆粒有較高的長 細比以及磁性退火效應,而擁有較高的形狀及感應磁 異向性。在目前的條件下,垂直基材及平行基材方向 的矯頑磁力差異最高可達 355 Oe。由 MFM 之微觀影像 可以證明這種獨立且分佈均勻之磁性顆粒,在應用於 磁記錄媒體上具有很高之潛力。

5. 參考文獻

[[1] K. O'Grady, and H. Laidler, J. of Magnetism and

Magnetic Materials 200 (1999) 616-633.

[2] R. L. White, J. of Magnetism and Magnetic Materials 209 (2000) 1-5.

[[3] S. Iwasaki, and K. Takemura, IEEE Transactions on Magnetics, MAG-11 (5) (1975) 1173-1175.

[4] X. Ma, E. Wang, D. A. Jefferson, J. Chen, S. Deng, N. Xu and J. Yuan, Appl. Phys. Lett., 75 (1999) 3105.

[5] H. L. Chang, C. H. Lin, C. T. Kuo, Diamond and Related Materials, 11 (3-6) (2002) 793-798.

[6] D. L. Leslie-Pelecky and R. D. Rieke, Chem. Mater. 8 (1996) 1770.

[7] X.X. Zhang, G. H. Wen, S. Huang, L. Dai, R. Gao, Z.

L. Wang, J. Mag. and Mag. Mater. 231 (2001) L9.

[8] N. Grobert, , W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W.

Kroto, D. R. M. Waltona), M. Terrones, H Terrones, Ph.

Redlich, M. Ruehle, R. Escudero and F. Morales , Appl. Phys. Lett., 75 (1999) 3363-3365.

[9] X. Sun, Gutierrez, A.; Yacaman, M. Jose; Dong,

Xinglong; and Jin, Shouri, Materials Science and

Engineering: A 286 (2000) 157 - 160.

[10] T. Hayashi, S. Hirono, M. Tomita and S. Umemura, Nature 381 (1996) 772.