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Abstract

Unwarping an omni-directional image into a perspective-view one is easy for a single-viewpoint (SVP) designed catadioptric omni-
directional camera. But misalignment between the components (such as the mirror and the lens) of this kind of camera creates multiple
viewpoints and distorts the unwarped image if the SVP constraint is assumed. The SVP constraint is relaxed in this study and a system-
atic method is proposed to derive a set of new and general analytic equations for unwarping images taken from an omni-directional cam-
era with a hyperbolic-shaped mirror (called a hypercatadioptric camera). The derivation is made possible by careful investigation on the
system configuration and precise calibration of involved system parameters. As a verification of the correctness of the derived equations,
some of the system parameters are adjusted to fit the SVP constraint, and unwarped images using the resulting simplified camera model
are shown to be of no difference from those obtained by a method based on the SVP model. The generality of the proposed method so
has extended the image-unwarping capability of the existing methods for the hypercatadioptric camera to tolerate lens/mirror assembly
imprecision, which is difficult to overcome in most real applications. Some experimental results of image unwarping are also included to
show the effectiveness of the proposed method.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known in the computer vision field that enlarg-
ing the field of view (FOV) of a camera enhances the visual
coverage, reduces the blind area, and saves the computa-
tion time, of the camera system, especially in applications
like visual surveillance and vision-based robot or autono-
mous vehicle navigation.

There are many ways to design a camera system consist-
ing of CCD sensors, lenses, and mirrors to increase the
FOV of the system [1]. An extreme way is to expand the
0262-8856/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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FOV to a full hemisphere by the use of a catadioptric cam-

era, which is an integration of a CCD sensor chip, a convex
reflection mirror, and a projection lens. A popular name
for this kind of camera is omni-directional camera, or sim-
ply omni-camera, and that for an image taken by it is omni-

directional image, or simply omni-image. The surface curve
of the reflection mirror in such a kind of camera may be
conical, spherical, parabolic, or hyperbolic, and the lens
may be of the type of orthographic or perspective projec-
tion. To simplify the process for unwarping omni-images
into perspective ones, it is usually desired to design an
omni-camera in such a way that the single-viewpoint

(SVP) constraint is satisfied [2].
Only some of the possible mirror/lens combinations can

fit the SVP constraint, for examples, a combination of a
parabolic mirror and an orthographic lens or that of a
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Fig. 1. An SVP hypercatadioptric camera where Ow is the origin of the
world coordinate system (also one focus of the hyperbolic curve), and Oc is
the optical center (another focus of the hyperbolic curve).
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hyperbolic mirror and a perspective lens [2]. However,
because of the difficulty in the alignment of the mirror
and the camera lens, many commercial products do not sat-
isfy the SVP constraint. When this case occurs, the resulting
locus of viewpoints will form a so-called caustic curve [3]
and the corresponding image unwarping work becomes
very complicated. On the other hand, when the parabolic
mirror/orthographic lens combination is used, the resulting
system is called a paracatadioptric camera [8]. Following
this idea of naming the camera system, when the hyperbolic
mirror/perspective lens combination is used, the resulting
system is called a hypercatadioptric camera in this paper.
In this study, we deal with the image-unwarping problem
for a hypercatadioptric camera in a non-SVP system.

More specifically, we propose in this study a systematic
method to calibrate the system parameters of a hypercata-
dioptric camera and derive accordingly a set of equations
for accurate image unwarping. In the proposed camera cal-
ibration process, a calibration pattern of the shape of a thin
ring is designed and attached at the border of the mirror as
an aid. Next, mirror reflection laws as well as system geom-
etry constraints are utilized to derive a set of mapping
equations between a pixel in the image coordinate system
and a point in the world space. The calibrated system
parameters are used as known parameters in the deriva-
tion. The derived equations are then used to unwarp accu-
rately an omni-image taken by a hypercatadioptric camera
into a perspective-view image from any viewpoint.

Several contributions are made by the proposed method.
The first is that the derived image-unwarping equations are
analytic. This is achieved for the first time, and the compu-
tation involved in the image unwarping work will so
become faster. Another contribution is that unwarping of
omni-images taken by a hypercatadioptric camera into per-
spective-view images will not be confined to the SVP con-
straint. And this makes the applicability of the
hypercatadioptric camera much wider to various computer
vision problems. Finally, the generality of the proposed
method for non-SVP cameras has extended the image-
unwarping capability of the existing methods for the hyper-
catadioptric camera to tolerate lens/mirror assembly
imprecision, which is difficult to overcome in most real
applications.

The remainder of this paper is organized as follows. In
Section 2, we review the basic concepts about SVP omni-
cameras and some previous works for omni-camera cali-
bration. The camera calibration process proposed in this
study is described in Section 3. In Section 4, the corre-
sponding analytic image-unwarping equations are derived.
In Section 5, some experimental results using simulation
data as well as real images are given. Finally, some conclu-
sions are made in Section 6.

2. Review of previous works

For an SVP catadioptric camera, unwarping an omni-
image into a perspective version is a process of forward
projection from a point Xp on a certain perspective-view
plane in the world space to an omni-image point Xi, which
can be described by Xi = h(Xp) with h being a one-to-one

mapping function from the world space to the omni-image
plane [4,5]. For example, for an SVP hypercatadioptric
camera, the mapping relation between a point Xp(x,y,z)
in a world space and its projection point Xi(u,v) in the
image plane, as illustrated in Fig. 1, is as follows:

u ¼ f ðb2 � c2Þx
ðb2 þ c2Þz� 2bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ;

v ¼ f ðb2 � c2Þy
ðb2 þ c2Þz� 2bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ; ð1Þ

where f is the focal length of the camera lens, and a, b, and
c are the parameters of the hyperbolic curve of the mirror
surface described as follows:

z ¼ �cþ b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

a2

r
; r2 ¼ x2 þ y2 ð2Þ

with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
.

In practical situations, because of the existence of the
geometric lens distortion, the projection point I(u,v) in
the image plane might be shifted erroneously. So, the real
position of the point I in the image coordinate system
should be calibrated by proper geometric correction for
accurate image unwarping even in the SVP case. Some
techniques for this purpose can be found in [6,7] and are
followed in this study. The details are omitted.

On the other hand, to estimate the intrinsic parameters
of a paracatadioptric omni-camera system, a calibration
procedure should be performed before unwarping omni-
images into perspective-view ones. In [8,9], using a single
view of three lines, Geyer et al. derived analytic calibration
solutions for the focal length, the image center, and the
aspect ratio of a paracatadioptric camera. In [10], Kang
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Fig. 2. The configuration of a hypercatadioptric camera used in this
study.
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used the consistency condition of pair-wise tracked point
features across a sequence of paracatadioptric images to
calibrate the same parameters. These approaches basically
deal with the calibration problem of an SVP paracatadiop-
tric camera, and misalignment between the mirror and the
camera components (including the lens and the CCD sen-
sor) was not considered. That is, the image plane was
assumed to be parallel to the base plane of the mirror in
these approaches, and only the intrinsic parameters of the
cameras were taken into account in the calibration. The
quality of the unwarped image is severely degraded when
equations derived from a system configuration not meeting
such an SVP assumption are used in the unwarping pro-
cess, even when the intrinsic parameters of the camera have
been calibrated.

On the contrary, when a non-SVP camera is used, for
example, for the reason to increase the FOV, the system
configuration parameters related to the pose of the mirror
relative to that of the camera, in addition to the intrinsic
camera parameters, need be calibrated. In [11], Aliaga
developed a calibration model using a beacon-based pose
estimation algorithm for a catadioptric camera which
includes a parabolic mirror and a perspective lens. This
mirror/lens combination is a non-SVP design, and the
adopted camera model, like Tsai’s [6], has eleven parame-
ters, five intrinsic and six extrinsic. But the physical mean-
ings of Aliaga’s extrinsic parameters are different from
those of Tsai’s, with the translation vector representing
the offset between the center point of the mirror base plane
and that of the image plane, and the rotation vector repre-
senting the orientation of the mirror base plane with
respect to a world space system. Also, the mirror base
plane is assumed to be parallel to the image plane. The cal-
ibrated data were used to estimate the pose of the camera
with respect to the world space system.

A more complete calibration procedure for a catadiop-
tric camera with a parabolic mirror and a perspective lens,
which estimates the intrinsic camera parameters and the
pose of the mirror relative to the camera, appeared in Fab-
rizio et al. [12]. The images of two circles on two planes
existing in the mirror were used to calibrate the intrinsic
camera parameters and the system configuration parame-
ters. But no discussion was made about how to use the cal-
ibrated parameters to modify the mapping described by
Eqs. (1) to get an accurate unwarped perspective-view
image from an omni-image.

3. Proposed method for calibrating camera pose with respect

to mirror

In this section, the proposed method for calibrating the
camera pose with respect to the mirror of a hypercatadioptric
camera system is described. The system configuration and
the relationships among the involved coordinate systems
are described first, and the proposed calibration process is
presented next. The camera pose with respect to the mirror
is derived finally, using the calibrated system parameters.
3.1. System configuration and coordinate system

relationships

The configuration of a hypercatadioptric camera and
the related coordinate systems used in this study are
depicted in Fig. 2. First, we define a world coordinate sys-
tem with its origin W taken to be the middle point between
the foci of the two arms of the hyperbolic curve defined by
the mirror surface. Let b be the distance from W to the tip
Tm of the mirror, c the distance from W to a focus Om of an
arm of the hyperbolic curve, h the height of the mirror
(measured at Tm), and m the radius of the circular-shaped
mirror base. Then, a point M(xm,ym,zm) on the mirror sur-
face with respect to W can be described by the following
equations according to Eq. (2):

zm ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

m

a2

r
; r2

m ¼ x2
m þ y2

m; ð3Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � b2
p

. The optical center Oc of the camera
lens is taken to be the origin of the 3D camera coordinate
system, and the optical axis of the camera is assumed to
align with the z-axis of the world coordinate system.
Accordingly, the center Oi(u0,v0) of the 2D image coordi-
nate system, which is the projection point of the optical
axis on the image plane described by z = f, is (0, 0). The
mirror parameters a, b, h, and m, and the physical size of
the CCD sensor may be obtained from the specifications
of the hypercatadioptric camera.

Next, we define a base coordinate system on the mirror
with its origin taken to be the center C of the bottom circle
of the mirror. The base plane of the mirror is located at the
plane z = 0 of the base coordinate system. A point
P(xb,yb,zb) on the ring-shaped calibration pattern on the
base plane with respect to the origin of the camera coordi-
nate system can be expressed as follows:

½x y z�T ¼ R½xb yb zb�T þ T ; ð4Þ



Fig. 3. The calibration pattern designed for use in this study.

Fig. 4. An omni-image of the calibration pattern.
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where R is a 3 · 3 rotation matrix with three rotation an-
gles / (pitch), h (yaw), and w (tilt) around the x-, y-, and
z-axes of the base coordinate system, respectively, and T

is a translation vector described by T = [Tx Ty Tz]
T. Eq.

(4) respresents a relationship from the base coordinte sys-
tem to the camera coordinate system. We will transform
the relationship into one from the camera coordinate sys-
tem to the base coordinte system in Section 3.3, which rep-
resents the pose of the camera with respect to the mirror.

On the other hand, the location of the projection point
I(u,v) in the image plane of a point P(x,y,z) in the camera
coordinate system can be described as follows:

u ¼ f
x
z
; v ¼ f

y
z
: ð5Þ

To correct possible geometric distortion of the lens in the
radial direction, the following distortion model [6] is
adopted in this study:

ud ¼ uþ Dx; vd ¼ vþ Dy ;

where ud and vd are the shifted versions of u and v in the
image coordinate system, and Dx and Dy are the amounts
of distortion estimated, according to [6], by

Dx ¼ judr2; Dy ¼ jvdr2

with r2 ¼ u2
d þ v2

d and j being the radial distortion factor of
the lens. Combining the above equations, we get the fol-
lowing equations:

u ¼ ð1� jr2Þud; v ¼ ð1� jr2Þvd: ð6Þ

In the sequel, (u,v) will be called ideal image coordinates,
and (ud,vd) distorted image coordinates. Finally, since the
unit of the image coordinates (uf,vf) used in the computer,
called computer image coordinates hereafter, is ‘‘pixel’’ for
discrete images kept in the computer, additional relations
between the distorted image coordinates (ud,vd) and the
computer image coordinates (uf,vf) must be specified,
which may be described by:

uf ¼ Sxud þ Cx; vf ¼ Syvd þ Cy ; ð7Þ

where Sx and Sy are the coordinate scaling factors for the x

and y directions, respectively, and (Cx,Cy) are the coordi-
nates of the origin of the computer image coordinate sys-
tem. Here, Sx and Sy, and (Cx,Cy) are some parameters
related to the physical properties of the CCD sensors and
the computer memory, respectively.

3.2. Proposed calibration process for estimating pose

parameters with respect to camera

As mentioned previously, we draw a calibration pattern
on a paper ring and attach the ring on the mirror mount
around the mirror border for use in the subsequent calibra-
tion process. The shape of the calibration pattern consists
of an inner circle with a diameter equal to that of the mir-
ror, as well as 16 black marks of short line segments evenly
distributed around the circle border. Each short line seg-
ment has an end point on the inner circle of the ring, which
we call a calibration point. The configuration is shown in
Fig. 3. An image of this calibration pattern is shown in
Fig. 4. It is noted that only 12 marks are visible in the
FOV of the camera.

The proposed calibration process in this study includes
the following major steps.

(1) Acquisition of calibration pattern images At the begin-
ning of the calibration process, an image of the cali-
bration pattern is taken. An example of calibration
pattern images is shown in Fig. 4.

(2) Identification of calibration points The calibration
points on the base plane of the calibration pattern
are then identified in the image. Let the coordinates
of their projection points in the computer image coor-
dinate system be denoted as (ufi,vfi), i = 0, 1, . . .,n. On
the other hand, the base coordinates (xbi,ybi,zbi) of
the calibration points are known in advance, with
all the values of zbi being equal to zeros because the
points are located on the base plane.



Fig. 5. The calibration result of a hypercataoptric camera used in this
study.
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(3) Computation of physical parameters Let the image size
in the computer image coordinate system be wi · hi

and the CCD sensor size be ws · hs. Then the param-
eters Sx, Sy and (Cx,Cy) in Eqs. (7) are calculated in
this study in the following way:

Sx ¼
wi

ws

; Sy ¼
hi

hs

; Cx ¼
wi

2
; Cy ¼

hi

2
:

(4) Computation of intrinsic and extrinsic parameters The
extrinsic parameters R and T in Eq. (4), the intrinsic
parameters f in Eqs. (5), and the radial distortion fac-
tor j in Eqs. (6) should be estimated by a certain cal-
ibration method. This is accomplished in this study
according to the method proposed in [6]. The steps
are sketched here. First, from Eqs. (7) we get the dis-
torted image coordinates (udi, vdi) of a calibration
point in the computer image coordinate system as
follows:

udi ¼
ufi � Cx

Sx
; vdi ¼

vf i � Cy

Sy
; ð8Þ

where (ufi,vfi) are the corresponding computer image coor-
dinates. Next, we combine Eqs. (4)–(8) to derive the follow-
ing equations:

udið1þ jr2
i Þ ¼

ðr11xbi þ r12ybi þ r13zbi þ T xÞf
r31xbi þ r32ybi þ r33zbi þ T z

;

vdið1þ jr2
i Þ ¼

ðr21xbi þ r22ybi þ r23zbi þ T yÞf
r31xbi þ r32ybi þ r33zbi þ T z

; ð9Þ

where r2
i ¼ u2

di þ v2
di. With sufficient known pairs of (udi,vdi)

and (xbi,ybi,zbi), i = 0, 1, . . .,n, we can solve R, T, j from
Eqs. (9) by Tsai’s single view coplanar calibration method
[6]. The parameter f is assumed available from the camera
specifications.

Fig. 5 shows a calibration result of the pose of the base
plane with respect to the camera, which includes the values
(�2.99, 0.96,88.67) of the translation vector T in the unit of
mm and the values (0.013, 0.035, 0.007) of the three rota-
tion angles /, h, and w of the rotation matrix R in the unit
of radian. The real coordinates of the 12 calibration points
are described by the square-bracketed coordinates [xi,yi] in
Fig. 5. After calibration, the detected image coordinates of
the calibration points are back-projected onto the base
plane, and the results are described by the angle-bracketed
coordinates Æxi,yiæ, which are also shown in Fig. 5.
3.3. Proposed calibration process for deriving pose parameters

with respect to mirror

The pose of the base plane with respect to the camera is
composed of the rotation matrix R and the translation vec-
tor T derived above. To obtain the pose of the camera with
respect to the mirror, we have to transform Eq. (4) into a
form similar to those specified in Eqs. (1). The origin of
the mirror coordinate system is defined at one focus of
the hyperbolic mirror surface (denoted by Om in Fig. 2).
The mirror plane z = 0 is taken to be parallel to the base
plane at a distance of d = (b + h) � c. The z-axis of the mir-
ror coordinate system is aligned with the z-axis of the base
coordinate system.

It is known that R has the rotation angles (/,h,w) with
respect to the x-, y-, and z-axes respectively, and T has the
values (Tx,Ty,Tz). To map a point (x,y,z) in the camera
coordinate system into a point (xb,yb,zb) in the base coor-
dinate system, the following equation may be applied:

xb

yb

zb

2
64

3
75 ¼

r011 r012 r013

r021 r022 r023

r031 r032 r033

2
64

3
75

x

y

z

2
64
3
75�

T x

T y

T z

2
64

3
75;

where the new rotation matrix

R0 ¼
r011 r012 r013

r021 r022 r023

r031 r032 r033

2
64

3
75

is obtained by reversing the signs of (/,h,w) in Eq. (4).
Because the base plane and the mirror plane are apart

with a distance of d, the coordinates (xb,yb,zb) of a point
in the base coordinate system with origin C are related to
the coordinates (xw,yw,zw) of a point in the mirror coordi-
nate system with origin Om by the following equalities:

xw ¼ xb ¼ xr011 þ yr012 þ zr013 � T x;

yw ¼ yb ¼ xr021 þ yr022 þ zr023 � T y ; ð10Þ
zw ¼ zb þ d ¼ xr031 þ yr032 þ zr033 � T z þ ðbþ hÞ � c:

So, the position (xcw,ycw,zcw) of the camera origin Oc in
the mirror coordinate system may be derived from that of
the mirror origin Om by setting (x,y,z) in Eqs. (10) to be
(0,0,0):

xcw ¼ �T x; ycw ¼ �T y ; zcw ¼ �T z þ ðbþ hÞ � c: ð11Þ
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Finally, given the coordinates (u,v, f) of a point I in the
camera coordinate system where (u,v) is the ideal image
coordinates of I, the corresponding coordinates (xi,yi,zi)
of I in the mirror coordinate system, according to Eqs.
(10), may be derived to be:

xi ¼ ur011 þ vr012 þ fr013 � T x;

yi ¼ ur021 þ vr022 þ fr023 � T y ; ð12Þ
zi ¼ ur031 þ vr032 þ fr033 � T z þ ðbþ hÞ � c:
4. Back-projection of image point

As a summary of the discussions in Section 3, we redraw
the camera model as shown in Fig. 6 from the viewpoint of
image projection. In Fig. 6, the angles of pitch /c, yaw hc,
and tilt wc are respectively the negative values of the cali-
brated rotation angles in Eq. (4). When the pose of the
camera with respect to the mirror is determined in a way
as described in Section 3.3, a point I(u,v) in the image plane
can uniquely determine a reflective ray Rr from the mirror
surface and so a corresponding mirror surface point
M(xm,ym,zm). In turn, at point M there will be an incident
ray Ri corresponding to Rr with its incident orientation
being determined by the mirror surface geometry. Let the
direction of Ri be specified by a unit vector denoted by
~wu ¼ ½wxwywz�T. In this section, we will derive a set of equa-
tions to specify a mapping F from the coordinates (u,v) of
point I to the elements (wx,wy,wz) of the unit vector ~wu. To
be simple, we denote this mapping as ~wu ¼ FðIÞ. This map-
ping is constrained, according to the optical reflection prin-
ciple, by the following two rules.
Optical center 
O(xcw, ycw, zcw)

I(u, v) → (xi, yi, zi)

pitch φc

yaw θc

tilt ψc

P(xw, yw, zw)

M(xm, ym, zm)
base plane Ob

W

Om

image plane (CCD) 

d

c

Ri

Rr

Fig. 6. The image projection model where Om is the origin of the mirror
coordinate system, and Ob is the origin of the base coordinate system.
(1) Co-planarity constraint: the unit normal~n of the mir-
ror surface at point M and the two rays, Ri and Rr,
are co-planar.

(2) Reflection constraint: the incident angle of Ri is equal
to the reflection angle of Rr.

In the sequel, all the derived formulas are based on the
mirror coordinate system.

4.1. Derivation of unit normal vector ~n

Fig. 7 depicts the unit normal vector ~n at point
M(xm,ym,zm) on a plane passing through the z-axis of
the mirror coordinate system with the tilt angle u, denoted
as Pn. The vector ~n can be decomposed into two orthogo-
nal vectors~nm and~nz, where the vector~nm is on a plane PM

perpendicular to Pn located at z = zm and ~nz is parallel to
the z-axis of the mirror coordinate system. The tilt angle
by definition is equal to

u ¼ tan�1 ym

xm

: ð13Þ

On the other hand, we want to derive the equation of the
mirror surface in the mirror coordinate system. Eqs. (3) de-
scribes the mirror surface in the world coordinate system.
So, a shift �c should be added to the z-value in Eqs. (3),
resulting in

zm ¼ �cþ b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

m

a2

r
; r2

m ¼ x2
m þ y2

m; ð14Þ

where rm may be regarded as a polar coordinate composed
of the coordinates of xm and ym.

Because the mirror surface is rotationally symmetric in
the x- and y-directions, we can consider the polar coordi-

nates (rm,zm) only, i.e., point M may be thought to be
n

δrm
2 = xm

2 + ym
2

Om

ϕ

M(xm, ym, zm)
zn

TM

Pn

mn
PM

PT

Fig. 7. The unit normal vector ~n.
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located at (rm,zm). Also, let the tangent plane at point M
perpendicular to ~n be denoted as PT, and let the intersec-
tion line of PT and Pn be denoted as TM. Now, the value
of the angle d of TM with respect to the plane PM at point
M with polar coordinates (rm,zm) on the mirror surface
may be derived, by taking the inverse tangent value of a
partial derivative of zm in (14) with respect to rm, to be

d ¼ tan�1 @zm

@rm

¼ tan�1 brm

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m þ a2
p ¼ tan�1 b2rm

a2zm

: ð15Þ

Accordingly, we can derive the values sind and cosd as
follows:

sin d ¼ brmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ c2r2

m

p ; cos d ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ c2r2

m

p : ð16Þ

Finally, it is not difficult to derive the unit normal vector at
point M(xm,ym,zm) to be~n ¼ ½sin d cos u sin d sin u� cos d�T
according to the geometry shown in Fig. 7.

4.2. Use of co-planarity constraint

The co-planarity constraint on the unit normal ~n of the
mirror surface at point M and the two rays, Ri and Rr, is
shown in Fig. 8, and can be described by the following
equality according to vector analysis:

ð~o�~nÞ �~w ¼ 0;

or equivalently,

i j k

ðxcw � xmÞ ðycw � ymÞ ðzcw � zmÞ
sin d cos u sin d sin u � cos d

2
64

3
75
ðxw � xmÞ
ðyw � ymÞ
ðzw � zmÞ

2
64

3
75 ¼ 0;

where ‘‘·’’ and ‘‘Æ’’ denote the cross and inner product oper-
ators for vectors, respectively; ~w ¼ ½ðxw � xmÞ ðyw � ymÞ
ðzw � zmÞ�T specifies the direction of the incident ray Ri;
[i j k]T is a unit vector; and ~o ¼ ½ðxcw � xmÞðycw � ymÞ
ðzcw � zmÞ�T specifies the direction of the reflection ray Rr.
By computing the above matrix product and substituting
the result with the following notations
w (Ri)

o (Rr)
o × n

ρρ
P(xw, yw, zw)

O(xcw, ycw, zcw)
n

M(xm, ym, zm)

ϕ

Fig. 8. The co-planar vectors and the cross product.
Km1 ¼ ðym � ycwÞ cos dþ ðzm � zcwÞ sin d sin u;

Km2 ¼ ðxm � xcwÞ cos dþ ðzm � zcwÞ sin d cos u;

Km3 ¼ ðxcw � xmÞ sin d sin u� ðycw � ymÞ sin d cos u;

xn ¼ ðxw � xmÞ; yn ¼ ðyw � ymÞ; zn ¼ ðzw � zmÞ;

we get

Km1xn � Km2yn þ Km3zn ¼ 0: ð17Þ
4.3. Use of reflection constraint

The aforementioned reflection constraint, which indi-
cates the identicalness of the incident angle to the reflection
angle, may be expressed by the following equalities:

~w �~n
k~wkk~nk ¼ cos q; cos q ¼ o

* �~n
k o
* kk~nk

; ð18Þ

where q denotes the two identical angles. The second equal-
ity in Eqs. (18) may be expanded to be

cos q ¼ ðxcw � xmÞ sin d cos uþ ðycw � ymÞ sin d sin u� ðzcw � zmÞ cos dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxcw � xmÞ2 þ ðycw � ymÞ

2 þ ðzcw � zmÞ2
q :

ð19Þ
On the other hand, the three components of the unit vector
~wu ¼ ~w

k~wk ¼ ½wxwywz�T, by definition, can be calculated as
follows:

wx ¼
xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
n þ y2

n þ z2
n

p ; wy ¼
ynffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
n þ y2

n þ z2
n

p ;

wz ¼
znffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
n þ y2

n þ z2
n

p :

Then, the first equality in Eqs. (18) can be derived to be as
follows:

~w �~n
k~wkk~nk ¼ ~wu �~n;

¼ ½wxwywz�T � ½sin d cos u sin d sin u � cos d�T;
¼ wx sin d cos uþ wy sin d sin u� wz cos d;

¼ cos q; ð20Þ

where cosq can be computed by Eq. (19) above.

4.4. Calculating direction of incident ray

If the values (xn,yn,zn) are not equal to (0,0,0), Eq. (17)
may be rewritten as

Km1

xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

nþ y2
nþ z2

n

p �Km2

ynffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

nþ y2
nþ z2

n

p þKm3

znffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

nþ y2
nþ z2

n

p ¼ 0;

which is equivalent to

Km1wx � Km2wy þ Km3wz ¼ 0: ð21Þ

On another hand, the norm of the unit vector ~wu is equal to
1, i.e.,

w2
x þ w2

y þ w2
z ¼ 1: ð22Þ
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Using Eqs. (20)–(22), we can solve the three unknown
parameters wx, wy, and wz in the following way.

First, we eliminate the unknown wz in Eqs. (20) and (21)
to get

wy ¼ Amwx þ Bm; ð23Þ

where

Am ¼
Km1 cos dþ Km3 sin d cos u
Km2 cos d� Km3 sin d sin u

;

Bm ¼
�Km3 cos q

Km2 cos d� Km3 sin d sin u
:

Next, we eliminate the unknown wy in Eqs. (20) and (21) to
get

wz ¼ Cmwx þ Dm; ð24Þ

where

Cm ¼
ðKm sin uþ Km2 cos uÞ sin d
Km2 cos d� Km3 sin d sin u

;

Dm ¼
�Km2 cos q

Km2 cos d� Km3 sin d sin u
:

Finally, substituting Eqs. (23) and (24) into Eq. (22) and
reducing the result, we get

wx ¼
�ðAmBm þ CmDmÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAmBm þ CmDmÞ2 � ð1þ A2

m þ C2
mÞðB2

m þ D2
m � 1Þ

q
ð1þ A2

m þ C2
mÞ

:

ð25Þ

There are two possible solutions for wx, and using the rela-
tionship between the coordinates (xi,yi,zi) of the image
point and the coordinates (xcw,ycw,zcw) of the optical cen-
ter, all in the mirror coordinate system, we can determine
one of them as the correct solution. The details are omitted
here. After wx is obtained, wy and wz can be computed
accordingly by Eqs. (23) and (24).

4.5. Calculating coordinates of mirror surface point in terms
of image point coordinates

In Sections 4.1–4.4, we have derived the elements
(wx,wy,wz) of the unit vector ~wu in terms of the coordinates
(xm,ym,zm) of the mirror surface point M. Here, we further
want to derive (xm,ym,zm) in terms of the coordinates (u,v)
of the image point I to complete the derivations of the for-
mulas for specifying the mapping ~wu ¼ FðIÞ. The coordi-
nates (u,v) can be calculated from a point (uf,vf) in the
computer image coordinate system by Eqs. (8) and (6).
Also, the coordinates (xi,yi,zi) of the image point I in the
mirror coordinate system can be calculated from Eqs.
(12) which are repeated in the following:

xi ¼ ur011 þ vr012 þ fr013 � T x;

y i ¼ ur021 þ vr022 þ fr023 � T y ;

zi ¼ ur031 þ vr032 þ fr033 � T z þ ðbþ hÞ � c:

Now, referring to Fig. 8, we see that both the tilt angle of
the point I and that of its back-projection point M on the
mirror surface relative to the camera coordinate system are
equal. Let both angles be denoted by /. Then, it is easy to
see from the geometry in the figure that

tan / ¼ yi � ycw

xi � xcw

¼ ym � ycw

xm � xcw

;

or equivalently, that

ym ¼ ycw � xcw tan /þ xm tan /: ð26Þ

Combining Eqs. (12) and (26) and using the following
notations

K1 ¼ ycw � xcw tan /;

K2 ¼
ðzi � zcwÞ
xi � xcw

;

K3 ¼ zcw þ c� xcwK2;

K4 ¼ b2ð1þ tan2 /Þ � a2K2
2;

K5 ¼ b2K1 tan /� a2K2K3;

K6 ¼ a2b2 þ b2K2
1 � a2K2

3;

we get, after some derivations and reductions, the follow-
ing result for xm:

xm ¼
�K5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

5 � K4K6

q
K4

: ð27Þ

There are two possible solutions for xm in the above equa-
tion, and we can get the correct one by checking the condi-
tion that xm and xi are at the same side with respect to xcw,
or equivalently, that the value of the product (xm � xcw)
(xi � xcw) is larger than or equal to zero. Also, using Eq.
(26), we can get ym. And finally the value of zm can be cal-
culated from Eqs. (14) which are repeated as follows:

zm ¼ �cþ b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

m

a2

r
; r2

m ¼ x2
m þ y2

m: ð28Þ
5. Experimental results

We show in this section the experimental results of two
unwarping cases with two different omni-images as inputs,
one being a pseudo-image and the other a real image taken
by our hypercatadioptric camera.
5.1. Unwarping of a pseudo-image into perspective views

We first describe how we create the pseudo-image for
the first unwarping experiment. For this purpose, we used
the calibration data obtained in Section 3, which include
the translation parameters (�2.99, 0.96, 88.67) (in the unit
of mm); the rotation angles (0.013,0.035,0.007) (in the unit
of radian); the radial distortion factor j = 0.0; and the
focal length f = 2.9 mm. Then, we used the mapping equa-
tions obtained in Section 4 to warp a pseudo target as
shown in Fig. 9 into the image plane to get the desired
pseudo omni-image as shown in Fig. 10. The procedure
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Fig. 11. View planes defined in the real world for unwarped images.
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was mentioned in Section 5.2, and the details are described
in the following.

The pseudo target includes two parts, namely, a ground
region with the area of 20 · 20 m2 and consisting of 400
grids with each being of the size of 1 · 1 m2, as well as an
L-shaped wall with the height of 1.0 m and a side width
of 2.8 m. The L-shaped wall is placed near the center of
the ground region. In simulating the image taking work,
the target was laid under our hypercatadioptric camera
and the normal vector of the ground region at the region
center aligns with the z-axis of the mirror coordinate sys-
tem. The distance of the region center from the origin of
the mirror coordinate system is 2 m. The resulting
pseudo-image of Fig. 10 is of the size of 640 · 480 pixels.

We then describe how we unwarped the pseudo-image
into perspective-view images. We selected two perspec-
tive-view planes, one being from a side view and the other
from the top view. As shown in Fig. 11, each perspective-
view plane is a rectangular region, which was used to cap-
ture the rays back-projected from the image plane. Each
rectangular region was divided into 320 · 240 units repre-
senting a 320 · 240 image.
Fig. 10. The warped image of the pseudo target in Fig. 9.

20m

20m

Fig. 9. A pseudo target of size 20 · 20 m with an L-shaped wall at the
center position.
The top-view region RT is 4 · 4 m2 in size, parallel to
the x–y plane of the mirror coordinate system. The nor-
mal vector of RT at the center CT of RT aligns with the
z-axis of the mirror coordinate system, and CT is 2 m
below the origin of the mirror coordinate system.
Fig. 12(a–c) are the unwarping results in RT with different
calibration parameter settings. Here, Fig. 12(a) was pro-
duced using the same translation and rotation parameters
as those used in yielding Fig. 10. In Fig. 12(b), the three
rotation angles were all set to be zero. And in Fig. 12(c),
we further set the two translation parameters Tx and Ty

to be zero (meaning perfect alignment of the camera with
respect to the mirror). We can see in Fig. 12(a) that our
derived equations can be used to unwarp the pseudo-
image of Fig. 10 perfectly within the top-view region
RT. Fig. 12(b) and (c) tell us that insufficient calibration
of the hypercatadioptric camera will produce distorted
unwarping results.

On the other hand, we show some results coming from
inappropriate unwarping of the input pseudo-image
Fig. 10 using Eqs. (1) under the erroneous assumption that
the camera is an SVP system. They are shown in Fig. 12(d–
f), which are the results coming from the uses of three dif-
ferent CCD sensors of sizes 3.2 · 2.4, 1.6 · 1.2, and
0.8 · 0.6 mm2, respectively. The actual size of our CCD
camera sensor is the first one, namely, 3.2 · 2.4 mm2 and
the corresponding unwarping result is the image shown in
Fig. 12(d). But the visible scope of the image region in
the figure is too small to show the entire unwarping result.
For the reason of comparison, we therefore assume the
other two sensor sizes for our camera to yield Fig. 12(e)
and (f) for the purpose of showing the unwarping results
more clearly. Note that the sensor size settings of
Fig. 12(e) and (f) are unreasonable for a real CCD sensor.
From Fig. 12(f), it is obviously seen that the result is worse
than the perfect one shown in Fig. 12(a).

Fig. 13(a) through (d) show the unwarping results on
four perspective-view planes. Each perspective-view plane



Fig. 12. Unwarped images of Fig. 10 (top view), (a) has the same T(Tx,Ty,Tz) and R(Rx,Ry,Rz) as those for yielding Fig. 10, (b) has the setting
Rx = Ry = Rz = 0, and (c) has the further setting Tx = Ty = 0, (d–f) Results using Eq. (1) with different CCD sensor sizes of 3.2 · 2.4, 1.6 · 1.2, and
0.8 · 0.6, respectively.

Fig. 13. Unwarped images of Fig. 10 from 4 side views. (a–d) Results using the proposed method with the same T and R as those for yielding Fig. 10. (a–d)
Results with different span of view angle, 1.5p � 2.0p, 1.0p � 1.5p, 0.5p � 1.0p, and 0.0p � 0.5p, respectively. (e) and (f) Results using Eqs. (1) with
different spans of viewing angle, as (b) and (c), respectively.
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is set parallel to the z-axis of the mirror coordinate sys-
tem with a view-angle span of 90� in the x–y plane and
at a distance of

ffiffiffi
2
p

m from the z-axis of the mirror coor-
dinate system. The unwarping result is projected into a
region in each perspective-view plane with a height of
2 m and a width of 2

ffiffiffi
2
p

m. Fig. 13(a) through (d) are
the unwarping results using our derived equations in
the four perspective-view planes. The settings of the
translation parameters and the rotation angles are the
same as those for Fig. 12(a) through (d). Fig. 13(e)
and (f) are the unwarping results by Eqs. (1) in the same
perspective-view planes as those used for Fig. 13(b) and
(c) but under the SVP assumption and with the CCD
sensor size of 0.8 · 0.6 mm2. Note especially that the ver-
tical lines in Fig. 13(e) and (f) can be seen to be slanted
erroneously.
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5.2. Unwarping of a real image into perspective views

Figs. 14 and 15 are the unwarping results of a real image
shown previously in Fig. 4 taken by our camera. The
parameter settings used for computing Figs. 14 and 15 are
the same as those used to produce Figs. 12 and 13, except
that the pseudo-image is now replaced by the real image.
Or more specifically, Fig. 14(a) through (f) correspond to
Fig. 12(a) through (f), respectively, and Fig. 15(a) through
Fig. 14. Unwarped images of a real scene in Fig. 4 (top view), (a) has the T(Tx,
the setting Rx = Ry = Rz = 0, and (c) has the further setting Tx = Ty = 0. (d–f)
and 0.8 · 0.6 mm2, respectively.

Fig. 15. Unwarped images of a real scene in Fig. 4 (Side view). (a–d) Results
Fig. 2.14. (a–d) Results with different span of view angle, 1.5p � 2.0p, 1.0p � 1.
(1) with different span of viewing angle as (b) and (c), respectively.
(f) to Fig. 13(a) through (f), respectively. Comparing
Fig. 14(a) with (f), and Fig. 15(b) and (c) with Fig. 15(e)
and (f), respectively, we can see that the unwarping results
obtained by our methods are better than those obtained
under the SVP assumption. Especially, the vertical lines in
Fig. 15(e) and (f) as well can be seen to be slanted. Such sit-
uations are not seen in our results in Fig. 15(b) and (c).

It is noted that the images of the above-mentioned
experiments were obtained using some methods proposed
Ty,Tz) and R(Rx,Ry,Rz) mentioned in Section 3.2 after calibration, (b) has
Results using Eq. (1) with different CCD sensor size of 3.2 · 2.4, 1.6 · 1.2,

using the proposed method with the same T and R as those for yielding
5p, 0.5p � 1.0p, and 0.0p � 0.5p, respectively. (e) and (f) Results using Eqs.
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in our previous paper [13], and the details are omitted
here.

6. Conclusions

An approach to systematic calibration and analytic
image unwarping for omni-directional non-SVP hypercata-
dioptric cameras with hyperbolic-shaped mirrors has been
proposed. We used the calibrated parameters of the camera
to derive precise unwarping equations. The derived equa-
tions have been validated to yield the same unwarping
results as those yielded by a perfectly designed SVP camera
by adjusting the calibrated parameters to fit the SVP con-
straint. Furthermore, we have shown the advantages of
our method over the SVP-constrained method for real
cameras by some simulation and experimental results. It
is mentioned by the way that the resulting image quality
of the unwarped perspective-view image is decided by the
structure of the omni-camera, the number of grids placed
in the defined perspective-view plane in the world space,
as well as the location of the view plane with respect to
the omni-camera. Future studies may be directed to
enhancing the quality of the images according to the
above-mentioned three factors as well as employing the
unwarping results for real applications.
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