
行政院國家科學委員會專題研究計畫成果報告

※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ 三層應用程式的測試工具之研製 ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：V 個別型計畫 □整合型計畫

計畫編號：90-2213-E-009-147-

執行期間：90 年 8 月 1 日至 91 年 7 月 31 日

計畫主持人：王豐堅

共同主持人：

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程系

中 華 民 國 91 年 12 月 19 日

行政院國家科學委員會專題研究計畫成果報告
計畫編號：90-2213-E-009-147-

執行期限：90 年 8 月 1 日至 91 年 7 月 31 日
主持人：王豐堅 國立交通大學資訊工程系

計畫參與人員：許嘉麟等研究生
摘 要

許多三層式軟體均為流程為基的應用軟
體。舉例來說，辦公室自動化軟體、物流
控制軟體、ERP、等。這些流程為基的控管
軟體之開發有的來自於自動化的發展環
境，有的則利用傳統程式技巧、網路技
術、以及資料庫相關技術。由於它們是三
層式與流程為基的軟體，它們的開發與傳
統軟體的開發方式不同，因此，他們的測
試技巧自然也與其他軟體的方法大不相
同，本研究成果敘述此類軟體測試的過
程，包括相關工具的研發。

Abstract

Many three-tier programs are workflow-
based application software. Examples are
office automation software, ERP software
and etc. These integrated software systems,
founded on Workflow Management
System (WfMS), can be developed in a
generation environment associated
environment with database. They can also
be coded with conventional techniques
including object-oriented programming,
web-techniques and database. Or, to be
more effectively, these two approaches are
adopted at the same times. However, due
to the characteristics of three-tier and
workflow architectures, the development
processes of this kind of software are
different from others. So are the testing
processes. The report presents the testing
process of this kind of software, including
the development of related tools.

Keywords: Workflow, WfMS, Three-tier
Application, Software Testing

1. Introduction
Many three-tier application software

contains workflow, the automation of a
business process in whole or in part,
during which documents, information, or

tasks are passed from one participant to
another for action, according to a set of
procedural rules [1]. With the growing
complexity of business processes, different
WfMSs have evolved [2] for example,
FlowMark/IBM[3], Staffware/Staffware
Corp.[4], InConcert/TIBCO Software
Inc.[5], Ultimus/Ultimus Inc.[6],
AgentFlow/FlowRing Tech.[7], to help
organizations define, execute, monitor and
manage processes in various product areas.

Most WfMSs provide test tools to assist
in testing workflow processes, and these
tools are developed from capture/playback
techniques [8], for example,
FlowMark/IBM [9]. However, these tools
are concentrated on simulation and little
on the automation of testing to facilitate
the construction of workflow applications.
Quality Software Testing Solutions [10]
provides testing solution to EAI-based
workflow applications, such as iPlanet
integration server and Microsoft BizTalk
server. [11] discusses the concept of
analyzing workflow application based on
the process state transition during the
process life-cycle.

Figure 1. Three-tier architecture in generic
WfMSs

According to Fig. 1, WfMSs are
developed to comply with a three-tier
software architecture: (1) workflow
applications for the client tier; (2) the
workflow enactment service for the
business-rules tier; (3) and

audit/application data repositories for the
database server tier. [12] presents a testing
framework to test three-tier Web
applications. The framework extends the
architecture proposed in [13] and
comprehensively evaluated [14] for
traditional software test environments. The
testing framework is also based on the
architecture to enable the test designs to be
reused. Therefore, this report presents a
testing framework, based upon test designs
for a three-tier software architecture, not
only to test workflow processes, but also
to automate the tests with little effort.

Workflow layer

Behavior Script
layer

Integration layer

Components layer

Testing workflow-
specific characteristics

Node-level GUI &
behavior testing

Integration testing

Traditional unit-testing
on library/components

Figure 2. The layered structures of
workflow application design.

As shown in Fig. 2, most of the
integrated development environments for
constructing workflow applications
support the layered design structures. In
the layered design structure, the workflow
application designers model the business
process in the top-down manner. The first
one is workflow layer. In the layer, the
developers draw the process flow diagram
to denote the sequences, branch judgment
or iteration of business processes. The
second layer is about behavior scripting. In
the layer, developers describe the work
items for human or computer participants
to perform on each process node. In the
integration layer, the workflow application
may interact with external application
system through API-level integration. In
the component layer, the developers reuse
off-the-shelf software components or
libraries to reduce the developing efforts.
The correctness and reliability of the
components or libraries are usually
verified during their unit test phase.

In this testing framework, most of the
features of workflow applications to be

tested are only concentrated on the
workflow layer and behavior script layer
since the testing requirement in the
integration and component layers are
covered by traditional testing tools.
Therefore, the testing framework is
centered on an experiment on the behavior
of workflow application with respect to
their requirements, as for example on the
workflow participant assignment.

Section 3 of this paper presents the
testing framework and introduces the
background and issues of testing workflow
applications in Section 2. Section 4
describes the prototype implementation.
Section 5 demonstrates a test experiment
that uses the prototype. Section 6
concludes.

2. Background

2.1 General Concept of
Software Testing

Traditional application development
environments often provide a suit of
typical test tools. Consider TestStudio, a
suite of testing tools developed by
Rational Software Corp., as for example in
[15] and [8]. TestStudio supports
implementation, execution, and evaluation
of tests. The tools in TestStudio enable
testers to create and execute GUI-based
test scripts, focusing on the quality
dimensions of reliability, function, and
performance. TestStudio includes the
following tools.

- Robot supports the
implementation and execution
of tests by enabling testers to
create and play back GUI test
scripts and compare actual
results with expected results.

- LogViewer compares test results
with expected results and
presents reports to evaluate the
test's execution.

- TestManager supports test
planning, design, and evaluation
and provides requirements-
based test coverage and test

status reports.

- TestFactory supports reliability
testing by automatically
generating and executing test
scripts and reporting on code-
based test coverage.

2.2 Issues of Workflow
Applications Testing

Compared with testing traditional
application software, when testing a
workflow applications, a testing engineers
may perform the following steps:

(1) Select a process, instantiate the
workflow process to be tested.

(2) Following the instruction of the
test cases, perform the process-
node-level testing. The work
items defined in each process
nodes may be performed
through form-filling within a
GUI screen. Therefore, testing
in the step is just like testing
traditional GUI application’s
operation.

(3) Complete the work items in a
workflow node by submitting
the task.

(4) Expect the occurrences of
subsequent tasks caused by the
task submission.

(5) Pick up the subsequent tasks to
perform process-node-level
testing.

In workflow application, the unit test of
program behavior inside one workflow
node may follow the strategy of that of
conventional programs. However, in
higher-level view, the goal of the
workflow application testing aims to
explore all of the task nodes or paths in the
business process diagram.

3. The Testing Framework

Figure 3. Dataflow in the testing
framework

According to Fig. 3, the test suite
management subsystem provides a
warehouse to keep all test artifacts, and
includes facilities to enable other
subsystems to manipulate these
artifacts. In the test execution
subsystem, a test driver is constructed
to drive process execution according to
test scripts. In the test oracle subsystem,
the test driver is equipped with several
oracle functions to validate the test
results at run time. These oracle
functions can retrieve test results by
querying the workflow engine via a
workflow API, and compare them with
expectations specified in the test
scripts. The workflow API supported
by the workflow engine includes many
command sets, such as for session
establishment, process control, process
status, and data handling. Among the
API, process status functions and data
handling functions can be utilized to
retrieve most test results, such as the
details of a current process/activity
instance, and application data. In the
test development subsystem, engineers
develop their test scripts and test cases
according to the requirements to be
assured in a workflow process. After
test scripts are executed, the test driver
validates the test results for test failure
analysis. The test failure analysis
subsystem will summarize the test
results, and highlight detected errors in
a test report. In the test measurement
subsystem, path coverage is adapted to
measure tests of workflow processes.
In addition to these six subsystems,

this framework includes a subsection,
suggested for generating test sequences
according to the model-based test
automation [16]. Herein, a test
sequence refers to a series of defined
test actions with test data and
expectations to be executed in a
workflow process. Such a set of test
data and expectations will be referred
to as a test case in the framework.

3.1 Test Execution Subsystem

In the test execution subsystem,
engineers focus on implementing
automation, and the construction of test
tools to drive process execution. The
critical problem lies in how to automate
activities that involve human resources. As
presented in Fig. 4, in such activities,
workflow participants interact with
workflow applications, each of which is
specialized to assist participants to
perform a specific task, such as accounting,
inventory management, invoicing, or
delivery scheduling.

Figure 4. Scenario of activities that
involve human resources

In test automation, human behavior in
these activities is often simulated, and test
tools have been developed to reproduce
user interaction with tested applications
according to test scripts, and have
recorded pre-captured user operations,
such as keystrokes and mouse activities.
However, when tested applications change
due to the addition of new features, the
captured and associated test cases
frequently fail. At this point, the tests are
thrown into disarray and the capture must
be performed again. Unlike such test tools,

the test execution subsystem demands that
workflow applications be scriptable, so
that engineers have more flexibility in
scripting their actions, and can more easily
maintain test scripts, especially when
requirements in workflow processes are
frequently changed. Unfortunately, making
ready-made workflow applications
scriptable is hard, due to their GUI and
redundancies. Engineers must implement a
surrogate, referred to as a shell in the
testing framework, for their workflow
applications, and bind the surrogate with a
script engine ensure its scriptability.

Figure 5. Relationships between
components in the test execution

subsystem

As discussed above and presented in Fig.
5, the test execution subsystem includes
five components. From bottom to top, they
are test scripts, script engine, shell,
workflow applications, and worklist
handler. Apart from the test scripts which
were described under the test development
system, other components are detailed in
the following.

Before engineers construct such a
test execution subsystem, they must
prepare their experimental environment
first. Engineers must add virtual members
and virtual departments into their existent
organizational model, or create a new
organizational model, since interfering
with the work of real users is unacceptable.
According to Fig. 6, the API can be
classified into two types - workflow API
and application API. The former, offered
by the workflow engines, supports access
by workflow applications, and includes
many sets of commands for operations on
individual or collective process/activity

instances, and for manipulating
worklists[2]. For example, process control
functions enable the shell to create, start,
and terminate an individual process. Many
state-of-the-art WfMSs, including
FlowMark and InConcert, have a complete
application programming interface (APIs)
[17][18] which allows everything that can
be done through the user interface also to
be done via an API: the API can be used to
introduce tools that meet specific
application requirements, for example the
test-specific application.

Figure 6. Application integration through
application programming interface

Workflow applications can be driven
without a front-end user in charge, simply
by binding the shell with an instruction
interpreter and defining a set of
instructions and requisite arguments, each
of which is mapped to a method of the
shell. Given a text file that includes rows
of instructions and arguments, the
interpreter will drive workflow
applications to request facilities and
services from a workflow engine as usual.

However, the command-line mode of an
interpreter is not flexible and is far from
the control logic required to handle
intricate or unexpected conditions
encountered in process execution, so the
instruction interpreter is replaced with an
object-based script engine such as the
JavaScript engine. Besides interpreting
and running a script, the script engine can
wrap an arbitrary object or class in a
scriptable object with its fields and
methods reflected as properties of the
scriptable object.

There are two scenarios encountered
in test execution and associated test
strategies.

Scenario 1. As presented in Fig. 7,
tested workflow process involves
concurrent or parallel activities.

Figure 7. Part of a workflow process with
concurrent activities

Process status functions, a command
set in the workflow API, can be employed
to query details of a process/activity
instance, and can be used in the shell well.
During test execution, engineers may
query the workflow engine about which
activities are successful after an activity is
completed, and determine which is to be
conducted first. Notably, the workflow
engine can keep waiting activities in a
stack or a queue. In any case, engineers
have many strategies to determine which
activity is to be exercised, such as always
taking the one at the top of the waiting list,
or performing a depth-first search.
Alternatively, engineers can
simultaneously drive multiple workflow
applications to handle parallel activities.

Scenario 2. Tested workflow process
involves an activity, which is randomly
assigned to a participant.

Similar to scenario.1, during test
execution, engineers may query the
workflow engine, via process/activity
status functions, to find out who is the
chosen workflow participant for the
selected activity, and may then begin this
activity with the participant’s
identification. At this point, to facilitate
test execution, engineers should unify the
passwords of members in the experimental
organization model.

3.2 Test Development
Subsystem

In the test development subsystem,
the primary task of engineers is to prepare
test cases according to the requirements to
be assured in a workflow process. During
test automation, a common approach is to
abstract test cases from test scripts, and
articulate both only when test tools are
executing tests. In script languages, a
multi-dimensional array is well suited to
keeping a test case, since its value
assignment can be postponed until the test
begins to be executed.

3.3 Test Oracle Subsystem

Automating the test actions is only half
the battle. Engineers also require an
automated method to determine whether
the application works correctly. A test
oracle is a method involving a function
that determines whether the tested
application has behaved correctly in
response to a test action [16].

A test execution subsystem is
constructed according to the shell;
likewise, a test oracle subsystem can be
constructed with the shell. Oracle
functions must be added to the shell so
that the shell can be used as engineers’
eyes. Each oracle function specially
examines the results or effects one
particular action, such as the signing on or
out of workflow participants, or the
completion of an activity. Oracle functions
may request the workflow engine,
workflow applications, or even the
organizational model via workflow API or
application API, to retrieve adequate data,
and determine whether these data are as
expected. For example, data handling
functions help engineers to retrieve
workflow relevant data or application data
from the workflow engine, and workflow
relevant data are the most important data
because they are used to determine the
behavior of workflow processes.

3.4 Test Suite Management
Subsystem

The test suite management subsystem

stores and manages test cases, execution
paths, test results, test reports, and other
items. This subsystem also provides
engineers with access interfaces and other
subsystems to create, manipulate, query, or
delete the above items. Now that WfMSs
have collected information on the state
transitions of a process instance into their
audit data repositories for historical
records, the test suite management
subsystem needs only take care of the
management of test scripts, test cases, test
logs, and test reports. Restated, a test
script with all its associated test cases, test
logs, and test reports may be regarded as a
test suite for a workflow process.

Figure 8. Test artifacts and their relational
structure in the test suite management

subsystem

According to Fig. 8, the test suite
management subsystem can be simply
implemented using a particular directory
as a warehouse, and the test-related
artifacts can be categorized into
subdirectories according to their target
workflow processes and their relationships.
Engineers can specify an input directory to
test the execution subsystem and an output
directory to test the oracle subsystem. Test
cases in the input directory will be
exercised with the designated test script,
and their test logs will be put into the
output directory for test failure analysis.

3.5 Test Failure Analysis
Subsystem

The test failure analysis subsystem, or
the test failure analyzer, analyzes test logs,
and then generates a test failure report for
engineers, not only to determine the
fraction of test cases that pass the test

oracle, but also to summarize which test
cases or which test data failed in the test
oracle.

Initially, the test failure analyzer
requests test logs from the test suite
management subsystem. Test failure
analysis is easy because a test log is
programmed in a tabular format. A simple
approach is to check the validation column
in the test logs. Based on these
summarized errors, engineers can amend
their workflow processes and proceed to
subsequent test cycle.

3.6 Test Measurement
Subsystem

The test measurement subsystem
includes test coverage measurement and
analysis. Each test coverage measure
reports whether and how much a test
criterion is adequately satisfied [8]. For
example, the coverage is the percentage of
statements covered by a set of test cases if
the statement coverage and all-statements
criterion are applied.

Path coverage must be altered to fit
into the particularities of workflow. The
workflow transition includes four routing
confunctions such as the parallel routing
that typically commences with an AND-
Split and concludes with an AND-Join,
and the sequential routing that typically
commences with an OR-Split and
concludes with an OR-Join. These four
terms are outlined below and illustrated in
Fig. 9.

Figure 9. Simple flow diagrams of AND-
Split, AND-Join, OR-Split, and OR-Join

1. AND-Split is a point in the workflow
where a single thread of control splits

into two or more threads, which are
executed in parallel. Restated, AND-
Split allows multiple activities to be
executed simultaneously.

2. AND-Join is a point in the workflow
where two or more parallel executing
activities converge into a single
common thread of control.

3. OR-Split is a point in the workflow
where a single thread of control
makes a decision regarding which
branch to take when multiple
alternative workflow branches are
encountered.

4. OR-Join is a point in the workflow
where two or more alternative
workflow branches re-converge to a
single common activity as the next
step in the workflow.

Except the two conjunctions
described above, the third conjunction that
commences with an OR-Split but
concludes with an AND-Join will certainly
end with a fault in the process execution,
reported to engineers in the test failure
analysis subsystem. However, the fourth
conjunction that commences with an
AND-Split but concludes with an OR-Join
will not be detected by most WfMSs.
Although harmless to the sequential
routing, the fourth conjunction will cause a
blind spot in the path coverage when the
processes involve the fourth routing rather
than the expected parallel routing. Imagine
that a process involved in an unwanted
fourth routing could be completed by
reporting one erroneous compound path,
and that 100% path coverage could be
mistakenly though to be satisfied since
possible paths are visited and reported.
This situation would clearly constitute a
severe fault in the path coverage, and
would be hard for engineers to detect.
From this point of view, the testing
framework refers to the fourth conjunction
as erroneous parallel routing, in the
remaining sections.

3.7 Generation of Test
Sequences

In contrast to the capture/playback a set
of test tools used to record test sequences

verbatim, model-based tests require testers
to identify the state model of the tested
application’s behavior, enabling test tools
to recognize the state in driving tested
application, and thus determine what test
actions are possible and what outcome is
expected. Consider files in a windows
folder as an example. Fig. 10 shows its
state model, which is tabulated in Table 1.

Figure 10. State model of files in a
windows folder

Table 1. State model of files in a windows
folder

Model-based tests can examine the
application’s behavior in relation to the
model's predictions. As the production
cycle proceeded, developers write new
features into the application. Testers can
quickly update the model, and the tests
continue to run.

Engineers need only to enact control
logic to generate possible human behavior
and test data/expectations in test scripts
because workflow processes, which
applications are being tested, are already
well-defined state models with pre-defined
transition sequences in WfMSs.

4. Exper iment with the Test
Framework

An intra-organization workflow process,
named vacation application, is tested to
show the feasibility of the testing
framework. As shown in Fig. 11, the

vacation application involves four
workflow branches and no parallel
routings, so that path coverage can be
adopted as test coverage. Four kinds of
participants are involved in the vacation
application. As shown in Table 2, they are
applicant, applicant’s deputy, department
manager, and personnel staff.

Workflow
Par ticipant

Activities

Applicant Applicant requests,
Rejection, Applicant
acknowledges

Applicant’s
deputy

Approval of Agent

Applicant’s
department
manager

Approval of Dept.
Manager

Staff of the
personnel
department

Approval of
Personnel Dept.

Table 2. Participant assignment for
vacation application

Figure 11. Transition graph of vacation
application

Fig. 12 shows the document template
for the vacation application. Tables 3 and 4
give test actions and expectations to be
enacted in test scripts, respectively.

Figure 12. Document template for
vacation application

Activity Test actions
Applicant
requests

1. The applicant gives
his name, the starting
and ending dates, the
number of off-days, and
reasons for vacation.
2. If the number of off-
days > 5, the applicant
needs to select a
colleague as his agent.

Approval of
Agent

Agent agrees or not.

Approval of
Dept
Manager

Dept Manager agrees or
not.

Approval of
Personnel
Dept

Personnel Dept agrees
or not.

Rejection Do nothing.
Applicant
acknowledg
es

The applicant
acknowledges.

Table 3. Test actions to be enacted in test
scripts for vacation application

Activity Expectations
Applicant
requests 3 Check data

integr ity

Approval of
Agent

1. Check data
integrity

2. If the number of
off-days > 5, check
whether participant
assignment is in
accordance with the
field of agent’s
name in the
document.

field of agent’s
name in the
document.

Approval of
Dept
Manager

1. Check data
integrity

2. Check whether
participant
assignment is in
accordance with the
field of manager’s
name in the
document.

Approval of
Personnel
Dept

1. Check data
integrity

2. Check whether
participant
assignment is in
accordance with
procedural rules in
vacation
application.

Rejection Nothing to do
Applicant
acknowledge
s

Check data integrity

Table 4. The expectations to be enacted
for test actions in Table 3

In the test experiment, a test script,
enacted to generate test sequences
randomly, achieves 100% path coverage in
6 minutes after being executed over 50
iterations. For large and complicated
workflow processes, engineers may make
test scripts generate test sequences
according to the situations encountered
during process execution, such as passed
activities, or they may use test scripts with
more client terminals to improve
performance. As shown in Fig. 13, a test
tool for path coverage reports the
thoroughness of the tests of vacation
application and tabulates the execution
path of the selected process instances.

 Figure 13. Path coverage of tests of
vacation application

5. Conclusion
This report presents a testing framework

for workflow processes based upon test
designs for three-tier software architecture.
The testing framework utilizes the
properties of workflow processes, the
resources supported by WfMSs, the
facilities of the script engine, and the
script language to automate the tests with
little effort. The framework also helps
engineers to maintain test artifacts
especially when the requirements of the
workflow processes frequently is changed.
Besides, an experiment with the
framework was done to indicate its
feasibility. Moreover, based upon the
testing framework, engineers can develop
other test tools for performance testing and
stress testing, which development left to
future work.

[1] The Workflow Management Coalition
Specification, “Workflow Management
Coalition Terminology & Glossary,”
Workflow Management Coalition, Feb
1999.
[2] The Workflow Management Coalition
Specification, “Workflow Management
Coalition The Workflow Reference
Model,” Workflow Management Coalition,
Jan 1995.
[3] F. Leymann, D. Roller, “Workflow-
based applications,” IBM Systems Journal
- Application Development, Vol. 36, No.1,
pp. 102, 1997,
http://researchweb.watson.ibm.com/journa
l/sj36-1.html
[4] Staffware Corp.,
http://staffware://www.staffware.com/.
[5] TIBCO Software Inc.,
http://www.tibco.com/.
[6] Ultimus Inc., http://www.ultimus.com/.
[7] Flowring Technology Corp.,
http://www.flowring.com/
[8] P. Kruchten, “The Rational Unified
Process: An Introduction,” 2nd ed.,
Addison Wesley, 2000, pp. 205 – 206.
[9] F. Leymann, D. Roller, “Workflow-
based applications,” IBM Systems Journal
- Application Development, Vol. 36, No.1,
pp. 102, 1997,

http://researchweb.watson.ibm.com/journa
l/sj36-1.html
[10] Quality Software Testing
Solutions. http://www.classiq.com/
[11] T. Andersson, A. Andersson-
Ceder, and I. Bider, “State Flow as a
Wbay of Analyzing Business Processes -
Case Studies.”
(http://www.ibissoft.se/English/ExpReport
.htm). Will appear in Logistics
Information Management, Vol. 14, MSB
University Press, 2002.
[12] J.-L. Huang, “An Architecture for
Web Application Testing Environment,”
National Chiao-Tung University, Master
Thesis, 1999.
[13] D.J. Richardson, “TAOS: Testing
with Analysis and Oracle Support,”
International Symposium on Software
Testing and Analysis, March 1994, pp.
138— 153.
[14] N.S. Eickelmann, D.J. Richardson,
“An Evaluation of Software Test
Environment Architectures,” International
Conference on Software Engineering,
March 1996, pp. 353— 364.
[15] Rational Software White Paper,
“The Rational Approach to automated
Testing,” Rational Software Corp.,
http://www.rational.com/products/whitepa
pers/100581.jsp
[16] H. Robinson, “Intelligent Test
Automation,” Software Testing & Quality
Engineering Magazine
(http://www.stqemagazine.com), Sep/Oct
2000,
http://www.geocities.com/harry_robinson_
testing/Intelligent_Test_Automation.htm
&
http://www.io.com/~wazmo/qa/#test_auto
mation
[17] A. Dogac, L. Kalinichenko, M. T.
Qzsu, A. Sheth, “Workflow Management
Systems and Interoperability,” the first
edition, NATO ASI Series, 1998, pp.
384— 385.
[18] L. Fischer, “Workflow Handbook
2001,” 1st ed., Future Strategies Inc., 2001,
pp. 225— 240.
Acknowledgment: The authors would
like to thank the National Science Council
of the Republic of China for financially
supporting this research under Contract No.
NSC 90 – 2213 – E – 009 – 147.

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11

