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transform of a block may depend not only on
that block but also on its neighboring blocks.

In the DMT system, the modulation is a QAM.
However, designing a DWMT waveform for a
QAM modulation will face more constraints
than for an offset QAM modulation [2].
Therefore, we discuss only the OQAM case. The
M -band OQAM-OFDM system can be seen as
applying M OQAM to a set of adjacent
frequencies. The carrier frequencies are

1.
separated by T where T is the symbol
period. This is to say that the bandwidth of each

tone is F . So, the effective baseband

bandwidth is 1/2(1/T). This is the Nyquist
bandwidth.

Denote ¢,, as the complex symbol

transmitted in the 7 th band at time ¢ =kT .
The real and imaginary parts of ¢, are

T
separated in time by half a symbol interval, -2— .

Denote C,, as the cormresponding received

symbol and h(t),g(t) the impulse responses
of the transmitting and receiving filters
respectively. Note that they are real functions
and FIR. Also to be noted is that the carriers

b/
have a phase difference of -5 between adjacent

tones. The point is how to design the
transmitting and receiving filters such that the
individual symbols in the receivers will not
interfere with each others.
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To derive the conditions for zero
inter-channel and inter-symbol interference,
consider the signal path from channel m'+n to
channel n of the OQAM-OFDM system. For
the orthogonal condition, we represent the
relations by the four following equations.

e{h(t kD)e’ S (t)} =&(m' k)

L =0

{mt—kri)e‘? g )} -

=0

In{h(t-kz)e"%”%’"' *g(t--g)} -0

[In{ﬂ(t-kﬂ—g)e"%”‘;’"' *g(t—g)}] =& k)

where m'=0,1,2,...,M . For simplicity, we
choose g(t) as the time reverse version of
h(t), the matched filter, and restricting A(z)

to be real and symmetric. Then for the above
equations, only the following one is needed to be

concerned with m'=2m.

G,.= Ll(t-kl)l(t)cosghnbdh&ni,k) )

where m'= 2m and m=0,1,2,...,[%] .

With the above orthogonality requirement, the
goal of the design is to concentrate the energy of
the waveform to derive a good low-pass filter.

Assuming J being the energy of h(t) within

27 2
the bandwidth [ T” , ;] In time domain,

it extends within (-L,L). That is

2 r
s= 0T, |H (o ) do
- i
or
81n2—(t—s)
J = j j HOhGs )~—T——-)—dtds

Now our goal is to maximize J under-the .-
constraints of Eq(1). To solve this problem, we
first discretize the wavefoxm—ﬁ(t) such that J

is decided by h(td), t, € [— L,L]. We can

‘regard J is a function with variables A(z,).

Then we form the following equation

J (h(td » =J (h(td )) +
[ He-kDh) cos&;—ert)dt
|- samk)

To maximize the above equation, we derive

aJ(h(td)) ah(t [IlH(w] dw]

oh (t

P




Hft )[ j}a(t—kz)h(t)co(%"l’ t—5(2m,k)]

=[n(e, + &T)+ Az, —kT)]-cos(%mﬁt,j

Therefore, the constraint equation differentiated
by hlt,) isequalsto

That is

Z‘ﬂw [(e+k,)+ h(t—td)].cos(47”mtd)

where A, , =— Tk t: [— L, L]
/4
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The waveform is set to be a linear combination
of a set of cibic splines. We compress a cubic

spline whose length is 4 into [0, X ] and
sample it with nine points including the two ends.
The interval between the adjacent samples is

X
— . A cubic spline is defined as

r

t3
— 0<t<1

s
-3t +126 -12t+4 1<t<2

\Il tl= 3__ 2 _
H(0)=1 3 —24° +6(r 44 2<r<3
6 3

(4—t) J3<t<4

6
| 0 ,otherwis

and "I’,(t) = lI’o(t —i)

Assuming the corresponding weighting for @,

is a, , we then represent h(k) as

h(k)=Zai(Di(k) where k=%d+£
16
,deZ.

The result with two spans is shown in Fig.1 with
M=8,16,24 and filter length 32,64,96. The result
with three spans is shown in Fig.2 with
M=9,15,21 and filter length 54,90,126. As can
be seen that the frequency responses of these
filters are all better than that of the rectangular
filter and also the side lobes are almost 40db
below the main lobe. '

We have tested these waveforms in a simulated
DMT system with perfect channel and the result
is as expected that no ICI and ISI occurs. For a
no ideal channel, the result of the ICI and ISI is
seen to be less than the case with the rectangular
waveform. The cost of such improvement is the
increase of the modulation complexity
associated with a LOT or ELT transform. When
the time comes where channel bandwidth
efficiency is more valuable than the computing
power, this scheme will prove useful.
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Fig. 1 Filter with 2 spans

in

feqeroy

fedmnan

1.5--———1————-1————-1-

M9 lagh&4

P R B

L L

0

PR R o

ine(H?a'n

M2 legh-a®

15—

Fig. 2 Filter with 3 spans




