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EFFECT OF FINITE CONDUCTIVITY ON DISPERSION 

CHARACTERISTICS OF GRATING WAVEGUIDE 

C. M. Shiao and S. T. Peng 

National Chiao Tung University 

Department of Communication Engineering 

Hsinchu, Taiwan, ROC 

Abstract-We present here a systematic investigation of dielectric wave- 

guide loaded with a metal-strip grating which is realistically characterized 

by a complex dielectric constant with a negative imaginary part to account 
for the finite conductivity of the metal strips. The method of mode match- 

ing is employed to solve such a boundary-value problem, and the effects 
of the structure parameters on the dispersion characteristics are critically 
examined, with a particular attention directed toward the attenuation con- 
stant due to the Bragg reflection, radiation and absorption of the grating 
waveguide. 

1. INTRODUCTION 

We present here a new approach to the analysis of dielectric waveguides 
loaded with a metal-strip grating. The main objective of this work is to 

evaluate critically the effect of finite conductivity and non-vanishing thick- 

ness of the metal strips on the dispersion characteristics of this class of 

waveguides. The metal strips are realistically characterized by a complex 
dielectric constant with a large imaginary part to account for the finite con- 

ductivity, so that the metal-strip grating may be treated as a dielectric one 

in which the electromagnetic fields everywhere can be determined. Thus, 
the effect of the finite conductivity can be explored to the full extent. 

In the literature, grating waveguides have been a subject of continuing 
interest for their various applications, such as the design of the input/output 
couplers and beam splitters for optical applications, and leaky wave antennas 

and polarization converters for microwave and millimeter-wave applications 

[1-3]. This class of structures offers many advantages, such as: the beam 

steering capability by frequency variation, the ease of flush-mount to form 

integrated-circuit systems. The strip-loaded structure has been a subject 
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of experimental and theoretical studies [5-14]; in the past, the theoretical 

analysis had been mostly restricted to small-obstacle or small-aperture ap- 

proximation, corresponding to the width of metal strips much smaller or 

much larger than that of the air grooves [5-7]. Nevertheless, they had laid a 

theoretical foundation for the analysis of dispersion characteristics of grating 

waveguides. Subsequently, many rigorous methods have been introduced, 
such as: the spectral domain method [10, 11], the method of multimode 

transverse equivalent network [12], the method of mode matching [13], and 

the method of boundary-integral-equation [14]; however, they are limited by 
the assumption of perfectly conducting metal strips, often with infinitesimal 

thickness. 

The grating waveguide under consideration is a multilayer structure which 

is assumed to be infinite in extent. For simplicity, we restrict ourselves to 

the special case where the guiding direction is assumed to be normal to 

the metal strips. For such a two-dimensional boundary-value problem, we 

employ the method of mode matching to treat rigorously the TE- and TM- 

modes guided by the structure [1]. A unique feature of our analysis is to 

divide the Floquet modes into two subsets: air modes and metal modes 

[15, 16]. Specifically, the modes supported by the air spacing between two 

neighboring metal strips are the "perturbed parallel-plate waveguide modes" 

due to the finite conductivity of the metal strips, and they will be referred 

to as the air modes for simplicity. In addition, there exists another set of 

modes residing inside the metal strips, which are called the metal modes, 
and it takes the two subsets together to form a judicial representation for 

the fields inside the grating layer. It had been shown [16] that the air modes 

are responsible for the edge-current distribution, while the metal modes are 

responsible for the surface-current distribution. With such a new approach, 
we have carried out numerical simulations to demonstrate the effects of the 

conductivity and thickness of the grating on the dispersion characteristics 

in terms of ko-(3 and ko-a diagrams, including the separate evaluations of 

the attenuation constant due to the Bragg phenomenon, the energy leakage, 
and power dissipation within the lossy metal. In this way, a physical pic- 
ture of the loss mechanism within the structure is clearly established, and 

suggestions are made to take advantage of these parameters for the design 
of grating waveguides. 

2. FORMULATION 

Figure 1 shows the geometry of the waveguide structure under consideration, 

together with the coordinate system indicated. It consists of a guiding film 

supported by a large substrate and is loaded with a metal grating. The 
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Figure 1. Geometry of metal grating waveguide. 

guiding film has a dielectric constant ef , and a thickness t f . The grating 
is composed of metal strips that are periodically deposited with a period 
d and a finite thickness tg. The spacings between two neighboring metal 

strips of the grating are filled with air, and will be refereed to as the air 

grooves. The upper half space covering the grating is assumed to be air, 
with the dielectric constant Ea. The substrate is semi-infinite in extent, 
with the dielectric constant Es. In the present analysis, every dielectric 

constant may be taken as a complex quantity with an imaginary part to 

account for the absorption effect of the medium. In particular, a metal of 

finite conductivity Q may be characterized by a complex dielectric constant 

with a large imaginary part, as: 

where A is the operating wavelength. It is noted that the negative sign in 

the last equation reflects the fact that the time dependence of the form ejwt 

has been assumed and suppressed. Furthermore, the dielectric substrate 

may be replaced by a ground plane, with a complex dielectric constant, as 

described above. In this way, the structure under consideration may be 

regarded as a dielectric one which had been extensively investigated in the 

literature [1]. 
Following the formulation previously developed [17], the tangential field 

components with respect to the z -direction may be denoted by: E(x, z) = 
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Ey (x, z) and H(x, z) = Hx (x, z) for TE mode, and E(x, z) = Ez(z, z) and 

H(x, z) = Hy(x, z) for TM mode. These field components in the grating 

region may be represented in the form: 

where Fi (x) is the ith Floquet mode function of the grating and can be 

expressed in terms of the Fourier series, as: 

with 

For the guiding problem under consideration, K is the propagation constant 

in the x -direction to be determined from the boundary-value problem of 

the grating waveguide, while Kn is related to K for every integer n. For 

a given value of K, a set of the space harmonics, can readily be 

determined. Furthermore, V (z) and Ii (z) stand for the vertical variations 

of the tangential electric and magnetic fields, respectively, and they satisfy 
the transmission line equations: 

where kzi is the transverse propagation constant (in the z -direction) of the 

ith mode, and Zi and Y are the impedance and admittance of the trans- 

mission line. These transmission-line parameters are determined through 
the dispersion relation [17]: 

with the 
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for the air region, and similarly for the set with the subscript a replaced by 
m for the metal region. Evidently, the dispersion relation is a transcendental 

equation to determine the transverse propagation constant kzi , for a given 
r,. Thus, the electromagnetic fields in the grating region are completely 
determined. 

Outside the grating region, we have all uniform media where every space 
harmonic is a plane wave, regardless of its polarization. The complex am- 

plitudes of space harmonics in each region are determined by the method 

of mode matching, that is, requiring the continuity of the tangential field 

components across the interfaces at z = tg , 0, and -tj . This results in 

a set of homogeneous system of linear equations, for which the condition 

for the existence of a nontrivial solution leads to the dispersion relation in 

the form of an infinite determinant to determine the complex propagation 
constant K = /3 - ja for the grating waveguide [17]. 

3. NUMERICAL RESULTS 

For the numerical analysis to follow, we shall choose copper for the metal 

strips, with the conductivity a = 5.8 x 104 S/mm, unless otherwise specified. 

Furthermore, the infinite systems of linear equations for the space harmonics 

have to be truncated to finite ones for an approximate analysis; in most 

cases, 60 space harmonics are included. It is noted that analogous to the 

relative convergence in the case of bifurcated waveguide, the ratio between 

the numbers of air and metal modes must be about the same as the ratio 

between the widths of air spacings and the metal strips. 
To check the accuracy of the present method, we compare our results 

to those obtained by the numerical boundary-integral-equation method [14] 
for thick strip grating structure with the assumption of perfect conductor. 

Fig. 2 shows the dependence of the propagation and decay constants on the 

grating thickness by the two methods, for both TE- and TM- polarization. 

Evidently the results of the two methods agree quite well with each other, 

particularly for the case of TE polarization. Physically, for the structure 

parameters chosen, all air modes are below cutoff, except for the TEM mode; 

thus, the phase and decay constants tend monotonically to a limit for the 

TE case, but not for the TM case, as expected. 

Figure 3 shows the Brillouin diagram for a dielectric waveguide loaded 
with metal grating, for the case of TM-polarization. The dispersion charac- 

teristics are expressed in terms of the k,,-,3 and ko-a diagrams. The guiding 
film has the dielectric constant ? f = 12 and thickness t f = 0.22 mm. The 
metal grating has an very small thickness tg = 0.001 mm., while the widths 

of air spacing and metal strip are: da = dm = 0.2 mm. Also shown are the 
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Figure 2. Comparison between the results of mode matching method and 

that of Ref. [14]. The structure parameters are: da = dm = 1 mm, tf = 1 

mm, kod = = 11.8, and e, = 1. 

Figure 3. The Brillouin diagram for metal grating waveguide. The structure 

parameters are: da = dm = 0.2 mm, t f = 0.22 mm, tg = 10-3 mm, and 
= 12. 
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unperturbed dispersion curves for the structure in the absence of the grating 
and the bound- wave triangles, in the dotted and thin solid lines, respec- 

tively. It is observed that the real part of the dispersion curve varies only 

slightly from the unperturbed one, except in some small frequency ranges, 
to be elaborated below. 

The Brillouin diagram is divided by the bound-wave triangle into two 

types of region, the slow-wave or bound-wave region and the fast-wave or 

leaky-wave region. For a lossless periodic structure, the propagation con- 

stant of a slow wave is purely real in the passband and complex with a 

fixed real part in the stop band [4-12]. In contrast, our analysis includes 

the finite conductivity of the metal, so that the structure is now lossy and 

the propagation constant is generally complex at any frequency, with the 

real part for the phase constant and the imaginary part for the attenua- 

tion constant. Evidently, the attenuation constant is rather small, except 
in some frequency ranges where spikes occur, as labeled by A, B, C, and 

so on. The spike A represents the first stopband with the peak at around 

kod/21r = 0.17. Since the first stopband is in the bound-wave region, the 

real part of the propagation constant has roughly the value: = 0.5. 

As the frequency is increased, the guided wave enters into the fast-wave 

region at about k,d/27r = 0.24, with the radiation direction starting in 

backward endfire direction. Here, the spike B corresponds to the on-set 

of such a backward endfire radiation. By increasing the frequency further, 
the radiation direction sweeps from the backward endfire to the broadside 

direction; in the small range of frequency around the value kod/21r = 0.3, 
we have another spike labeled by C, which corresponds to the second stop- 
band where = 1. With the frequency further increased slightly, the 

forward radiation begins at around the frequency kod /2Jr = 0.31 and ends 

at the frequency around kod/21r = 0.425. In this frequency range, we have 

two spikes labeled by D and E; the former is the largest and represents the 

strongest radiation, while the latter corresponds to the forward endfire ra- 

diation. Finally, spike F represent the third stopband. An overall feature 

of this structure is that the backward radiation is rather weak, as the de- 

cay constant remains quite small over its entire range of operation; on the 

other hand, the forward radiation appears very strong, particularly near the 

broadside direction, as exemplified by the spike labeled by D. To see the 

effect of the film thickness, Fig. 4 shows the Brillouin diagram for the case 

t f = 0.27 mm. The general behaviors of the curves stay the same as those 
in Fig. 3, except that the radiation is strong in the backward but not the 

forward direction. 

Fig. 5 shows the Brillouin diagram for a case of narrow metal strips, corre- 

sponding to a perturbation of small obstacles, for three different values of the 
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Figure 4. The Brillouin diagram for metal grating waveguide. The param- 
eters are the same as Fig. 3 except t f = 0.27 mm. 

conductivity. It is noted that the phase constant follows closely the unper- 
turbed line, as expected for a small perturbation to the dielectric waveguide. 

Looking at the solid curve for the case of good conductor = 5.8 x 104 

S/mm), the ohmic loss is small and the attenuation constant is attributed 

mainly to the radiation or the stopband behavior. Comparing the curves 

for the phase constant, we observe that the stopbands are not appreciably 
affected by the value of the conductivity. On the other hand, outside the 

stopbands, the attenuation-constant curves for three different values of con- 

ductivity deviate from one another substantially; for the frequency range 

investigated, the normalized attenuation constant, is increased by 
about 4 x 10-3 for every decade of decreasing conductivity. Furthermore, by 

inspection of each attenuation curve, the portion in the bound-wave region 
is mainly due to the ground plane, while the jump at around kod /2Jr = 0.29 

is obviously due to the radiation effect. Again, comparing the three atten- 

uation curves, we may assert that the radiation characteristics of the the 

leaky-wave antenna is not affected appreciably by the conductivity of the 

metal. 

While the effect of the grating thickness on the guiding characteristics is 

shown in Fig. 2 at a single frequency, Fig. 6 demonstrates the effect over 
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Figure 5. The effect of finite conductivity on the dispersion characteristics 

of narrow metal-strip grating waveguide. The structure parameters are: 

da = 0.3 mm, dm = 0.1 mm, tf = 0.12 mm, tg = 10-3 mm, and c/ = 12. 

Figure 6. The effect of finite strip thickness on the dispersion characteristics 

of metal strip grating waveguide. The structure parameters are: t f = 0.12 

mm, da = dm = 0.2 mm, and éj = 12. 
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Figure 7. The effect of aspect ratio of metal grating on the propagation and 

leakage constant. The second ordinate inside the plot is the corresponding 

angle of radiation. The structure parameters are: d = 0.4 mum, = 1.11 

mm, t f = 0.1 mm, tg = 10-3 mm, and ef = 12. 

a frequency band of practical interest for the fundamental TM mode of a 

structure with the parameters indicated. It is interesting to observe in this 

case of low loss structure that as the thickness is increased, the stopband 
is reduced but the backward radiation is increased. Evidently, the grating 
thickness is an important factor to consider for both filter and antenna 

designs. 

Fig. 7 shows the dependence of the normalized phase and leakage con- 

stant, Olk,, and a/ko, on the variation of grating aspect ratio, da/d . Also 

indicated on the vertical axis are the radiation angles. For the frequency cho- 

sen, À =. I . l l mm, the main radiating beam sweeps through the broadside 

direction, as the aspect ratio is changed. Since the leakage constant vanishes 

at the broadside radiation, the attenuation shows the dip at da/d = 0.5 . 

This means physically that the aspect ratio may affect the phase constant of 

the waveguide and cause the drastic change in the radiation characteristics. 

4. CONCLUSION 

The dispersion characteristics of dielectric waveguides loaded with a metal- 

strip grating are analyzed by the method of mode matching. Within the 

metal-strip grating, the complete set of the Floquet modes are divided into 
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two subsets of air modes and metal modes, so that the electromagnetic 
fields are represented judicially in terms of the two subsets. This approach 

permits the evaluation of the attenuation constant separately due to the 

Bragg reflection, the leakage of energy, and power dissipation in the lossy 
metal. The dispersion characteristics of the grating waveguide is displayed in 

the form of ko-(3 and ko-a diagrams. It is shown that the finite conductivity 
and non-vanishing thickness of the metal strips have profound effects on the 

dispersion behavior of the guided waves and may be used to advantage for 

the design of leaky-wave antennas and band-reject filters using this type of 

structures. 
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