
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 140.113.38.11

This content was downloaded on 25/04/2014 at 16:19

Please note that terms and conditions apply.

Chaotic difference equations in two variables and their multidimensional perturbations

View the table of contents for this issue, or go to the journal homepage for more

2008 Nonlinearity 21 1019

(http://iopscience.iop.org/0951-7715/21/5/007)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0951-7715/21/5
http://iopscience.iop.org/0951-7715
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING NONLINEARITY

Nonlinearity 21 (2008) 1019–1040 doi:10.1088/0951-7715/21/5/007

Chaotic difference equations in two variables and their
multidimensional perturbations

Jonq Juang1, Ming-Chia Li1 and Mikhail Malkin2

1 Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
2 Department of Mathematics, Nizhny Novgorod State University, Nizhny Novgorod, Russia

E-mail: jjuang@math.nctu.edu.tw, mcli@math.nctu.edu.tw and malkin@unn.ru

Received 6 September 2007, in final form 10 March 2008
Published 8 April 2008
Online at stacks.iop.org/Non/21/1019

Recommended by L Bunimovich

Abstract
We consider difference equations �λ(yn, yn+1, . . . , yn+m) = 0, n ∈ Z, of
order m with parameter λ close to that exceptional value λ0 for which the
function � depends on two variables: �λ0(x0, . . . , xm) = ξ(xN, xN+L) with
0 � N, N + L � m. It is also assumed that for the equation ξ(x, y) = 0,
there is a branch y = ϕ(x) with positive topological entropy htop(ϕ).
Under these assumptions we prove that in the set of bi-infinite solutions of
the difference equation with λ in some neighbourhood of λ0, there is a closed
(in the product topology) invariant set to which the restriction of the shift
map has topological entropy arbitrarily close to htop(ϕ)/|L|, and moreover,
orbits of this invariant set depend continuously on λ not only in the product
topology but also in the uniform topology. We then apply this result to establish
chaotic behaviour for Arneodo–Coullet–Tresser maps near degenerate ones, for
quadratic volume preserving automorphisms of R

3 and for several lattice models
including the generalized cellular neural networks (CNNs), the time discrete
version of the CNNs and coupled Chua’s circuit.

Mathematics Subject Classification: 39A05, 37B45, 37B10, 54F15, 54H20

1. Introduction

In this paper, we continue the study from [13] on the chaotic behaviour of solutions for perturbed
singular difference equations. Consider a family of difference equations of the form

�λ(yn, yn+1, . . . , yn+m) = 0, n ∈ Z, (1)

where λ is a parameter from some metric space. In [13], we assumed that at an exceptional
value of the parameter, say λ0, the difference equation depends on only one variable, i.e.

�λ0(x0, . . . , xm) = ϕ(xN),
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where 0 � N � m, and we showed that among solutions for perturbed difference equation (1)
with λ close to λ0, there are topological k-horseshoes (full Bernoulli shifts with k symbols),
provided that ϕ has k � 2 simple zeros; moreover, we proved that orbits in these horseshoes
change continuously in the uniform topology as λ varies (see theorem 11 in the next section).
In this paper, we consider similar problems in the situation when the difference equation at the
exceptional value of the parameter depends on two variables, i.e.

�λ0(x0, . . . , xm) = ξ(xN, xN+L),

where N and N + L are two distinct integers between 0 and m, and ξ(x, y) is a function such
that for the equation ξ(x, y) = 0 there is a branch y = ϕ(x) with positive topological entropy,
i.e. ξ(x, ϕ(x)) = 0 and htop(ϕ) > 0. Notice that in the case when L = 1, the solutions of
difference equation (1) with λ = λ0 contain orbits of the one-dimensional map x �→ ϕ(x). On
the other hand, if L > 1, the solutions of (1) with λ = λ0 contain orbits of a generalized one-
dimensional transformation which can be regarded as the ‘Lth root’ of ϕ (see subsections 2.1
and 2.4 for details). For many cases, solutions of difference equations can be considered as
orbits of a high dimensional map.

In view of more applications, we allow the functions �λ and the local map ϕ to be not
defined in some regions; more precisely, we suppose that �λ and ϕ are defined on domains Q

and Qm+1, respectively, where Q = [s1, s2] \ V for some fixed real numbers s1, s2 and open
set V , the latter being the union of finitely many open intervals in [s1, s2]. Here s1 and s2 can
be regarded as some fixed bounds (from below and from above, respectively) for coordinate
projections of orbits we are interested in, while V stays for an escaping region which is never
visited by those interesting orbits (for example, if ϕ(x) = ax(1 − x) with a > 4 on the
interval [0; 1], then V could contain the escaping interval ( 1

2 −
√

a2−4a
2a

, 1
2 +

√
a2−4a
2a

)). Also,
one may include in V those intervals where the functions under consideration are nonsmooth
or discontinuous, whenever one is interested only in the orbits (solutions for (1)) which never
visit V . In this situation, the topological entropy for (1) (as a quantity to estimate chaotic
behaviour of solutions) is defined as htop(σ ) for the shift map σ restricted to the set of bi-infinite
solutions (xn)

∞
n=−∞ for (1) (with respect to the product topology) satisfying xn ∈ Q for all

n ∈ Z. Also, htop(ϕ) is meant as the topological entropy of ϕ restricted to
⋂∞

n=0 ϕ−n(Q) (see
the next section for more precise definitions and comments). Our main result shows that if
htop(ϕ) > 0, then for λ sufficiently close to λ0, one can find a closed σ -invariant subset �λ

of the set of solutions for (1) such that htop(σ |�λ
) is arbitrarily close to htop(ϕ)/|L|. Roughly

speaking, the perturbed multidimensional difference equations are chaotic provided that the
one-dimensional map at the unperturbed value of the parameter has enough chaotic orbits
which avoid prescribed regions. More precisely, we will prove the following.

Theorem 1. Consider a family of difference equations of the form

�λ(yn, yn+1, . . . , yn+m) = 0, n ∈ Z, (2)

with the function �λ : Qm+1 → R which is C1 for each λ and is continuous in λ along with
the partial derivatives ∂i�λ, i = 1, . . . , m + 1, Q = [s1, s2] \ V for some (fixed) real numbers
s1 < s2 and V is the union of finitely many open intervals in [s1, s2], while parameter λ is from
some neighbourhood of the unperturbed value λ0 in some metric space. Assume that at λ0,
the function � depends on exactly two variables:

�λ0(x0, x1, . . . , xm) = ξ(xN, xN+L),

0 � N, N + L � m. Assume, in addition, that for the equation ξ(x, y) = 0 there is a branch
y = ϕ(x) with positive topological entropy, where ϕ : Q → [s1, s2] is supposed to be a
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piecewise analytic function3. Then for any ε > 0 there exists δ > 0 such that for each λ in
the δ-neighbourhood of λ0, there is a closed (in the product topology) σ -invariant subset �λ

of the set of solutions for (1) with htop(σ |�λ
) > htop(ϕ)/|L| − ε. Moreover, solutions from �λ

depend continuously on λ both in the product and in the uniform topologies.

In comparison with the mentioned result from [13], which can be regarded as a
multidimensional perturbation of zero-dimensional systems, the presented result is in a sense
a multidimensional perturbation (in the difference equations settings) of generalized one-
dimensional maps (also see [18] for a topological approach to perturbations of one-dimensional
maps to multidimensional ones). To establish the persistence of chaotic behaviour from
low dimensional systems to perturbed high dimensional ones, we find a suitable hyperbolic
repelling invariant set4 carrying almost all topological entropy of the low dimensional system,
and we show how to ‘continue’ these hyperbolic orbits to orbits for the perturbed systems.

So the first problem that appears here is in dimension one. It is well known that in contrast
to higher dimensions, for smooth one-dimensional maps one has commonly axiom A and
hyperbolicity. In [15], Mañé showed that for a C2 interval map f whose periodic points are
hyperbolic, any compact f -invariant set away from critical points is hyperbolic repelling (see
proposition 3 in the next section for the case of piecewise C2 interval maps). Nevertheless,
given a C2 interval map, it is not easy to check the above assumption whether all the periodic
orbits are hyperbolic. Also, given a compact invariant set, in order to ensure its hyperbolicity,
one needs to check that this set is disjoint from some neighbourhood of the critical set. On
the other hand, if the map f has positive topological entropy, it is reasonable to ask whether
there is a compact f -invariant hyperbolic set whose topological entropy approximates htop(f )

with required accuracy (see similar problems in [26] for piecewise monotone piecewise C1

intervals maps without critical points and in [10] for C1+ε surface diffeomorphisms; let us
mention in this connection that for merely continuous surface homeomorphisms such an
approximation need not take place, because Rees in [23] has constructed a minimal positive
entropy homeomorphism of the 2-torus). In this context, we prove that given a piecewise
monotone piecewise continuous map f on the interval with htop(f ) > 0, for any ε > 0, there
exists a compact f -invariant set M = Mε away from some neighbourhood of critical points
and discontinuity points, such that htop(f |M) > htop(f ) − ε (see theorem 4). Then, with the
help of Mañé’s theorem, we can get rid of the redundant assumptions (both on the map and
on the orbits of points from the invariant set) to ensure hyperbolicity for the restriction of
a piecewise analytic map f to an appropriate set carrying entropy bigger than htop(f ) − ε.
Finally, by using our technique from [13], we are able to ‘continue’ this hyperbolic set for
perturbed difference equations.

In many applications, solutions of the difference equations for nonexceptional values of λ

are actually associated with orbits of well-defined maps on a high dimensional space; refer to
definition 3.1 of [13] and the appendix. For instance, polynomial maps on R

m, under generic
algebraic conditions, can be written as difference equations for xis in R. In [11], the description
of the elimination process for polynomial maps which leads to such difference equations is
given, and the problems on the uniqueness of the obtained difference equations are discussed
by using the algebraic hypersurface approach by Milnor [17]. In section 3, we apply theorem 1
to establish chaotic behaviour for Arneodo–Coullet–Tresser maps near degenerate ones and

3 The condition on piecewise analyticity of ϕ can be weakened to be piecewise C2 with piecewise monotone derivative;
but, for such an extension, some cumbersome techniques from [12] are needed because there might be an interval
consisting of nonhyperbolic periodic points for ϕ.
4 An invariant set J of an interval map f is said to be hyperbolic repelling if there exist constants C > 0 and µ > 1
such that |(f n)′(x)| > Cµn for all x ∈ J and n ∈ N.
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for quadratic volume preserving automorphisms of R
3 at anti-integrable limits5. We also apply

theorem 1 together with some results from [13] to study chaotic structures in stationary and
travelling waves of several models including the generalized cellular neural network (CNN),
the time discrete version of the CNNs, the coupled Chua’s circuit and lattice models of an
evolution equation.

The paper is organized as follows. In section 2, we prove our main result (theorem 1),
and along with the proof, in section 2.1, we recall some techniques from [13]. In sections 2.2
and 2.3, we prove proposition 3 and theorem 4, the important one-dimensional ingredients
for the main result. In section 2.4, we give a comparison of the continuation schemes for
perturbations of singular difference equations depending on one variable (as in [13]) with those
of two variables (as in this paper). Section 3 collects several applications. In the appendix, we
give some basic terminologies.

2. Perturbations of difference equations in one and two variables

2.1. Proof of theorem 1

First we introduce the necessary notation. Let �∞ denote the Banach space of bounded real
bi-sequences endowed with the norm ‖y‖ = supn∈Z

|yn|, where y = (yn)
∞
n=−∞ ∈ �∞. In what

follows, we will consider both �∞ and its subsets not only in the above (uniform) topology
but also in the product topology on R

Z, i.e. in the topology of pointwise convergence. In the
latter case, to avoid misunderstanding, we will sometimes supply the notation of appropriate
sets with the subscript prod, for example: �∞,prod and Bprod. Let σ denote the shift map on �∞,
i.e. σ(y) = y ′ with y ′

n = yn+1 and n ∈ Z, for any y ∈ �∞. We will denote by U(c, r) the open
ball of radius r centred at c in an appropriate metric space.

For each λ from the parameter space, let Yλ be the set of solutions of the difference
equation (2), i.e. the set of bi-sequences y = (yn)

∞
n=−∞ such that for any n ∈ Z, one has

yn ∈ Q and, moreover, (m + 1) consecutive components yn, yn+1, . . . , yn+m of y satisfy (2).
In [13], we have shown that Yλ is a σ -invariant closed subset of the space �∞ in the topology
of uniform convergence, Yλ,prod is compact as a closed subset of QZ

prod and the restriction
σ |Yλ,prod is a homeomorphism. Thus, one can define the topological entropy for solutions of the
difference equation (2) as htop(σ |Yλ,prod).

The following special version of the implicit function theorem is proved in [13]; it serves
as the main theoretical background for our construction of symbolic continuation both in [13]
and in this paper.

Theorem 2 ([13, theorems 2.1 and 2.5]). Let E be a metric space with metric ρ and let a

be a point in E. Let B be a σ -invariant compact subset of [s1, s2]Z

prod for some real numbers
s1 < s2. Denote V0 = U(a, δ0) and W0 = ⋃

b∈B U(b, η0) (the latter balls being with respect
to the �∞ metric) for some δ0 > 0 and η0 > 0 and assume that F : V0 × W0 → �∞ is a
function such that the following conditions hold:

(i) F (a, b) = 0 for all b ∈ B;
(ii) F is continuous and, moreover, the family of functions F(·, y) with the domain V0 and

parameter y ∈ W0 is equicontinuous, i.e. for any ε > 0 there is δ > 0 such that for any
y ∈ W0 one has ‖F(x1, y) − F(x2, y)‖ < ε whenever ρ(x1, x2) < δ;

5 The latter problem was motivated by a question posed to us in the referee report to our paper [13]. The referee asked
whether the results of [13] could apply for quadratic volume preserving automorphisms on R

3 in the generic form
at anti-integrable limits. Actually, the difference equations for such limits depend on two variables (see section 3.2),
and so, in order to establish chaotic behaviour in this situation, we have to use the presented new approach.
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(iii) the partial derivative operator with respect to the second variable, D2F(x, y), at any
point (x, y) ∈ V0 × W0 exists and is continuous at {a} × B uniformly in b ∈ B in
the following sense: for any ε > 0 there exist δ > 0 and η > 0 such that for any
b ∈ B, ‖D2F(x, y) − D2F(a, b)‖ < ε whenever x ∈ U(a, δ) and y ∈ U(b, η);

(iv) the operator D2F at any point (a, b) ∈ {a} × B is invertible, and the inverse,
(D2F)−1, is uniformly bounded, i.e. there is a constant M > 0 such that for any
b ∈ B, ‖(D2F(a, b))−1‖ � M and

(v) for any x ∈ U(a, δ0), the function F(x, ·) commutes with σ and is continuous with respect
to the product topologies on the domain W0 and codomain �∞.

Then there exist 0 < δ̂ < δ0 and 0 < η̂ < η0 such that for any x ∈ U(a, δ̂), there is a
map from B to U(b, η̂), given by b �→ ψ̄x(b) := ψb(x), which conjugates σ |Bprod to σ |ψ̄x (B)prod

.
Moreover, the conjugacy map depends continuously in x not only in the product topology but
also in the �∞ topology; more precisely, the family of maps x �→ ψb(x) from U(a, δ̂) to �∞
forms an equicontinuous family in b ∈ B.

In order to apply theorem 2, we consider E to be the parameter metric space and a to be
the unperturbed parameter value λ0 in theorem 1. Define F : E × QZ → �∞ by

F(λ, y) = (�λ(yn, yn+1, . . . , yn+m))∞n=−∞.

Then, Yλ is precisely the zero-set of F(λ, ·), i.e. Yλ is the set of bi-sequences y ∈ QZ satisfying
F(λ, y) = 0. Consider B to be a σ -invariant and compact subset of Yλ (in the product
topology), which will be specified later. Then assumption (i) of theorem 2 is satisfied. Since
E × Qm+1 is compact, both F(λ, y) and D2F(λ, y) are uniformly continuous on E × QZ.

Therefore assumptions (ii), (iii) and (v) of theorem 2 are also satisfied. As for the most
delicate assumption (iv), we need to specify a suitable subset B of Yλ in order to guarantee
this assumption.

Given y = (yn) ∈ QZ, λ ∈ E, and integers n ∈ Z, 1 � i � m + 1, we denote for brevity
∂i�λ(ỹn) = ∂i�λ(yn, yn+1, . . . , yn+m). Then by our assumptions on �λ, we have that the
partial derivative operator D2F(λ, y) exists at any point (λ, y) ∈ E × QZ and is represented
by the following bi-infinite band matrix.

D2F(λ, y)

=




· · · ...
...

...
...

...
... · · ·

· · · ∂1�λ(ỹn) ∂2�λ(ỹn) · · · · ∂m+1�λ(ỹn) 0 · · ·
· · · 0 ∂1�λ(ỹn+1) ∂2�λ(ỹn+1) · · · · ∂m+1�λ(ỹn+1) · · ·

· · · ...
...

...
...

...
... · · ·




the

← nth.

row

↑
the nth column

Without loss of generality, we assume that L > 0, the case when L < 0 needs no
additional treatment, because σ is a homeomorphism on the compact space Yλ,prod and
htop(σ |S) = htop(σ

−1|S) for any compact invariant set S ⊂ Yλ,prod. Note that under our
assumption on the branch y = ϕ(x) of the equation ξ(x, y) = 0, at the exceptional value of
the parameter, the difference equation (2) reads yn+L = ϕ(yn), n ∈ Z. Hence the difference
equation at λ = λ0 corresponds to the map fλ0 : QL → [s1, s2]L of the form

fλ0(x1, x2, . . . , xL−1, xL) = (x2, x3, . . . , xL, ϕ(x1));
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see the appendix for what we mean by ‘a difference equation corresponds to a map’. So fλ0

can be regarded as the ‘Lth root’ (or ‘1/Lth iterate’) of the one-dimensional map ϕ. Also, it
is easy to see that for each k ∈ N, the iterate f kL

λ0
of fλ0 is of the form

f kL
λ0

(x1, x2, . . . , xL−1, xL) = (ϕk(x1), ϕ
k(x2), . . . , ϕ

k(xL))

and corresponds to the difference equation

ykL+n − ϕk(yn) = 0, n ∈ Z. (3)

To guarantee assumption (iv) of theorem 2, we need a uniform estimate of the inverse of
D2F(λ0, y) on a suitable σ -invariant and compact subset B of Yλ. To this end, we shall find
a compact ϕ-invariant hyperbolic set (carrying enough topological entropy) which should be
‘continued’ by orbits of difference equation (2 ) for λ close to λ0.

To estimate the topological entropy carried by such orbits, we will need some general
results on the entropy of piecewise monotone (possibly discontinuous) maps. Let us give
certain definitions and agreements about piecewise monotone maps on the interval. Without
loss of generality, we put I = [0, 1] for the interval. Let f : I → I be a piecewise monotone
piecewise continuous map and let Z be its partition, i.e. I = ⋃

Z∈Z Z̄ and Z consists of finitely
many, say k, disjoint open intervals, denoted by (0, d1), (d1, d2), . . . , (dk−1, 1), on each of
which the restriction of f is monotone and continuous. It is also assumed that a piecewise
monotone map can have only finitely many constancy intervals, i.e. maximal subintervals at
which f takes a constant value. Let us remark that the map f need not be strictly monotone
on each interval in Z and moreover dis need not be critical or discontinuity points. We say
that a piecewise monotone map g : I → I is piecewise C2 (respectively, piecewise analytic)
if its partition can be chosen so that on each interval of the partition, g is C2 (respectively,
analytic). We will refer to the intervals of such a partition simply as monotonicity intervals.
We will need the following lemma whose proof is given in section 2.2.

Proposition 3. Let g : I → I be piecewise C2 and let U be a neighbourhood of the set which
consists of all critical points of g and all endpoints of monotonicity intervals. Then

1. all periodic orbits of g contained in I\U of sufficiently large periods are hyperbolic
repelling,

2. if M ⊂ I is a compact forward invariant set which contains neither attracting nor
nonhyperbolic periodic points of g and is disjoint from U , then M is a hyperbolic
repelling set.

To define the topological entropy for piecewise continuous piecewise monotone maps, we
use here the approach by doubling points construction, as in [19]; see section 2.3 for details.
There are other definitions of topological entropy for these maps (via separated or spanned
sets and also by counting the growth number for preturning points) and they are equivalent, as
shown in [20].

The following result is an important ingredient for the proof of theorem 1. In its statement,
by strict f -invariance of a set M we mean the equality f (M) = M .

Theorem 4. Let f be a piecewise monotone piecewise continuous map on I with the partition
Z = {(0, d1), (d1, d2), . . . , (dk−1, 1)}. If htop(f ) > 0 then for any ε > 0 there is a
compact strictly f -invariant set M ⊂ I and an open set J ⊃ {0, d1, . . . , dk−1, 1} such that
htop(f |M) > htop(f ) − ε and M ∩ J = ∅.

The proof of theorem 4 is postponed to section 2.3. We continue the proof of theorem 1.
Without loss of generality, we assume that the interval [s1, s2] in theorem 1 is I = [0, 1]. Since
we allowed the local map ϕ : I \ V → I to be not defined on V , which consists of finitely
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many open intervals, let us extend ϕ to become a self-map ϕ : I → I by taking at those
‘exceptional’ intervals the constant value equal to 1, the right endpoint of I (it is easily seen
that this extension does not influence the value of the topological entropy of ϕ, see also [20]).
We may apply theorem 4 to our piecewise analytic self-map ϕ : I → I because it is surely
piecewise monotone and has only finitely many constancy intervals. Since ϕ has only finitely
many critical points away from constancy intervals, we may include these points into the set
D of endpoints of monotonicity and constancy intervals. Finally, let us agree that the (finitely
many) values which ϕ takes at constancy intervals are also included in D. Then D induces a
partition consisting of finitely many disjoint open intervals, on each of which the restriction of
ϕ is monotone and continuous.

Given any small ε > 0, by theorem 4, one gets a compact strictly ϕ-invariant set, which is
denoted now by M̄ε , and an open set J ⊃ D such that the ϕ-orbits of M̄ε are disjoint from J ,
and htop(ϕ|M̄ε

) > htop(ϕ)− ε/2. Note that the ϕ-orbits of M̄ε are disjoint from each constancy
interval for ϕ (if it exists). For convenience, redenote the open set J by adding all constancy
open intervals. Then htop(ϕ|I\J ) � htop(ϕ|M̄ε

) > htop(ϕ) − ε/2. By applying proposition 3
to ϕ with the neighbourhood J of the set of all critical points and endpoints of monotonicity
intervals, one gets that all attracting and nonhyperbolic periodic points in I \ J have bounded
periods, say k0. Thus, ϕ has finitely many attracting and nonhyperbolic periodic points in I \J .
Redenote the partition D by adding those attracting and nonhyperbolic periodic points in I \J .
Modify ϕ to get a new map ϕ̃ on I by taking the value 1 on the set J. Then ϕ̃|I\J = ϕ|I\J and
htop(ϕ̃) = htop(ϕ|I\J ). By applying theorem 4 to ϕ̃ with the new partition D, we get a compact
ϕ̃-invariant set M and an open set J̃ ⊃ D such that the ϕ̃-orbits of M are disjoint from J̃ , and
htop(ϕ̃|M) > htop(ϕ̃) − ε/2. Then M is ϕ-invariant, the ϕ-orbits of M are disjoint from J̃ and

htop(ϕ|M) = htop(ϕ̃|M) > htop(ϕ̃) − ε/2 = htop(ϕ|I\J ) − ε/2 > htop(ϕ) − ε.

By the second item of proposition 3, M is a hyperbolic repelling set. Moreover, it can be
shown (see lemma 2.1 of chapter III in [16]) that there is an integer k1 > k0 and a real number
η > 0 such that ‖Dϕk1(x)‖ > 1 + η for all x ∈ M .

Now that we have found the set Mε := M , we are in a position to check assumption (iv)
of theorem 2. Let B = lim←−(M, ϕ) = {(xn)

∞
n=−∞ : xn+1 = ϕ(xn) and xn ∈ M for all n ∈ Z}.

By replacing ϕ by ϕk1 and the difference equation (2) at λ0 by (3) with ϕk1 , we get that the
partial derivative operator D2F(λ0, y) for all y ∈ B has the matrix of the form σ k1L ◦ (I + �),
where σ is the matrix of the shift operator, I is the identity matrix and � is a (shifted) one-
diagonal matrix with entries bigger than 1+η in absolute value. By using the following lemma
on the norm of two-diagonal infinite matrices, assumption (iv) of theorem 2 will be satisfied.

Lemma 5. Let A : �∞ → �∞ be a linear operator given by A = σ k ◦ (I + �), where k ∈ Z,
σ is the shift operator and � is associated with matrix of the form

�ij =
{

qi, if j = i + L,

0, otherwise,

for some sequence (qi)
∞
i=−∞ satisfying q := inf i∈Z |qi | > 1. Then A is invertible and

‖A−1‖ < 1/(q − 1).

Proof. Note that the operator � is invertible, and its inverse is represented by the matrix of
the form

�−1
ij =

{
1/qi−1, if j = i − L,

0, otherwise.
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Hence ‖�−1‖ � 1
q

< 1. Then

A−1 = (I + �)−1 ◦ σ−k = �−1 ◦ (I + �−1)−1 ◦ σ−k = �−1 ◦
( ∞∑

i=0

(−1)i�−i

)
◦ σ−k.

Since the shift operator σ is invariant with respect to the �∞-norm, i.e. ‖σ ◦T ‖ = ‖T ◦σ−1‖ =
‖T ‖ for any T , and since ‖�−1‖ < 1, it follows that the last series converges in the operator
norm. So we have

‖A−1‖ = ‖�−1 ◦
( ∞∑

i=0

(−1)i�−i

)
◦ σ−k‖ � ‖�−1‖ ·

( ∞∑
i=0

‖�−1‖i

)

� 1

q
· 1

1 − q−1
= 1

q − 1
.

The proof of the lemma is completed. �

Hence, theorem 2 implies that we may use the conjugacy ψ̄λ|B to get a closed σ -invariant
subset �λ := ψ̄λ(B) of Yλ,prod such that σ |B is topologically conjugate to σL|�λ

(both in the
product topology). For details about the conjugacy map ψ̄λ and its properties see section 2.4,
especially diagram (15). Therefore, htop(σ |�λ

) = htop(σ |B)/|L| = htop(ϕ|M)/|L|, which is
arbitrarily close to htop(ϕ)/|L|. This completes the proof of theorem 1.

2.2. Proof of proposition 3

Proposition 3 itself and its proof are adapted from the following results by Mañé.

Theorem 6 ([15], see also [16]). Let I be a compact interval in R and g : I → I be a C2

map. Let U be a neighbourhood of the set of critical points of g. Then

1. all periodic orbits of g contained in I\U of sufficiently large periods are hyperbolic
repelling,

2. if all the periodic orbits of g contained in I\U are hyperbolic repelling, then there exist
C > 0 and µ > 1 such that ‖Dgn(x)‖ � Cµn, whenever gi(x) ∈ I\(U ∪ B0) for all
0 � i � n − 1, where B0 is the union of the immediate basins of the attracting periodic
orbits of g contained in I\U .

The above theorem implies the following important corollary.

Corollary 7 ([16, corollary III.5.1]). Let I be a compact interval in R, g : I → I be a C2

map and M ⊂ I be a compact forward invariant set. If M does not contain critical points,
attracting periodic points and nonhyperbolic periodic points of g, then it is a hyperbolic
repelling set.

Let us prove proposition 3 by applying theorem 6 and corollary 7 as follows. In order
to obtain a C2 map, we can modify the map g inside small neighbourhoods of endpoints of
monotonicity intervals so that such neighbourhoods are contained in U . Denote the obtained
map by G. By applying theorem 6 to G, we get that any periodic orbit of G contained in I \U

of sufficiently large period is hyperbolic repelling. On the other hand, by the construction of
G, any g-periodic orbit contained in I \ U coincides with the G-periodic orbit and is away
from U . This proves the first item. The second item follows from corollary 7 being applied
for G, because here we use again that G and g coincide on I\U .
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2.3. Proof of theorem 4

The proof of theorem 4 contains several lemmas. We will need the so-called doubling points
construction (see [19] for instance). Let I = [0, 1] and D = {d1, d2, . . . , dk−1}. Let us
emphasize that we do not care about values of f at the points from D because only one-sided
limits of f at these points are of use (see also [20], where the authors proved that the values of
the map at the endpoints of intervals of continuity are irrelevant for calculation of topological
entropy). Define the set

W :=
( ∞⋃

i=0

f −i (D)

)
\ {0, 1}

(which could be thought of as ‘the set of preturning points’). Now consider the following set
Î which contains ‘doubling preturning points’ rather than single ones:

Î := (I \ W) ∪ {w−, w+ : w ∈ W }.
This means that we have doubled (i.e. separated by moving apart) all points of D along with
all their inverse images; the order and the topology in this new set are as follows. The set
Î = Î (f ) is endowed with the natural (full) order so that if y < w < z in I and w ∈ W , then
y < w− < w+ < z. Then it is supposed that Î is endowed with the order topology (note that Î

is a totally disconnected space provided f has no homtervals). It is also convenient sometimes
to include the points {0, 1} in D, in which case the (‘half-open’) intervals [0, 0+) and (1−, 1]
are included in Î . We will call Î the doubling construction space for f .

Let π : Î → I denote the map by

π(y) = w for y ∈ {w−, w+} with w ∈ W and π(y) = y for y ∈ I \ W. (4)

For a subset A ⊂ I , let closÎ A denote the closure of π−1(A \ W) in Î . Let
Ẑ = {closÎ A : A ∈ Z}. The restriction f |I\W can be uniquely extended to a continuous
piecewise monotone map f̂ : Î → Î . We will call f̂ the doubling extension of f .

For x, y ∈ Î , let �(x, y) be the minimal nonnegative integer � such that f̂ �(x) and f̂ �(y)

belong to different elements of Ẑ , and set �(x, y) = +∞ if for any n, f̂ n(x) and f̂ n(y) belong
to the same element (depending on n) of Ẑ . Then the order topology on Î is induced by the
metric ρ̂ on Î defined by the formula

ρ̂(x, y) := 1

�(x, y) + 1
+ |π(x) − π(y)|. (5)

We remark that ρ̂(d−, d+) = 1 for any d ∈ D (even in the case when f is continuous at d).
The map π is continuous on Î and it is a semiconjugacy from f̂ to f in the following sense:
f ◦π(x) = π ◦ f̂ (x) for all x ∈ Î \{d−, d+ : d ∈ D}, and if x = d+ (respectively, x = d−) for
some d ∈ D, then π ◦ f̂ (x) = limy↘d f ◦ π(y) (respectively, π ◦ f̂ (x) = limy↗d f ◦ π(y)).
So, if P is an f̂ -invariant set disjoint from {w−, w+ : w ∈ W } then π conjugates f̂ |P to f |π(P ).

According to the full order in Î , we can consider intervals in Î of the form (a, b), (a, b],
[a, b), or [a, b] (the latter possibly with a = b), a, b ∈ Î . Let c ∈ Î , ε > 0 and let Uε(c)

denote the open ball of radius ε centred at c : Uε(c) = {x ∈ Î : ρ̂(x, c) < ε}. Note that Uε(c)

is an interval in Î which might have any of the four above forms, and π(Uε(c)) is an interval
in I which contains π(c), but π(c) need not be the middle point of this interval. Nevertheless,
it is easily seen that π(Uε(c)) tends to {c} as ε → 0.

Following [19], we define the topological entropy, htop(f ), of the initial map f to be
htop(f̂ ), the usual topological entropy of the continuous map f̂ on the compact space Î . Given
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an ε > 0 and a ∈ Î , let Mε,a denote the set

Mε,a := Î \
∞⋃

n=0

f̂ −n(Uε(a)). (6)

So Mε,a is a compact f̂ -invariant subset of Î (in the order topology), and f̂ -orbits of points
from Mε,a never visit Uε(a). Let us fix (for a while) an ε with

0 < ε < min{1, min{|d − d ′|/2 : d, d ′ ∈ D, d �= d ′}} (7)

and take a point a ∈ {d−, d+} for some d ∈ D. We now consider, without loss of generality, the
case when a = d−. Then, because of (7), the subinterval Uε(a) of Î is of the form either (y, d−]
with y ∈ I \ W or [y, d−] with y = w+ for some w ∈ W . We denote such a left endpoint y

by d−
ε . Note that (7) also implies that these 2(m − 1) subintervals {Uε(d

−), Uε(d
+) : d ∈ D}

are disjoint (because the distance ρ̂ between points on Î is bigger than or equal to the distance
on I between the π -image of these points).

Define the following map f̃ε,d− on Î by

f̃ε,d−(x) =
{

f̂ (x), if x /∈ Uε(d
−),

f̂ (d−
ε ), otherwise,

(8)

and call it the left ε-truncation of f̂ at d .

Lemma 8. The map f̃ε,d− : Î → Î is continuous and htop(f̃ε,d−) = htop(f̃ε,d−|Mε,d− ) =
htop(f̂ |Mε,d− ).

Proof. The map f̃ε,d− differs from f̂ only in the interval Uε(d
−), which equals either (d−

ε , d−]
or [d−

ε , d−]. Since f̂ is continuous, it follows that in both cases f̃ε,d− is continuous at d−
ε

(because of the definition by (8)). Moreover, f̃ε,d− is continuous at d− because d− is isolated
in Î from the right.

Let �(f̃ε,d−) be the nonwandering set of f̃ε,d− . If f̂ n(d−
ε ) ∩ Uε(d

−) = ∅ for every
n � 1, then �(f̃ε,d−) ⊂ Mε,d− because Uε(d

−) consists of a wandering point for f̃ε,d− , and
if we suppose, in contrast, that there is a point in �(f̃ε,d−) \ Mε,d− , then we would have a
contradiction to the fact that the nonwandering set is invariant. Therefore,

htop(f̃ε,d−) = htop(f̃ε,d−|�(f̃ε,d− )) = htop(f̃ε,d−|Mε,d− ) = htop(f̂ |Mε,d− ), (9)

where the last equality holds because the restriction of f̂ to Mε,d− coincides with f̃ε,d− .
In the case when f̂ n0(d−

ε ) ∈ Uε(d
−) for some n0 � 1, it is easily seen that the set

�(f̃ε,d−) \ Mε,d− consists precisely of one periodic orbit of period n0. Thus we have as
before, htop(f̃ε,d−|�(f̃ε,d− )) = htop(f̃ε,d−|Mε,d− ) because the topological entropy on a finite set is
zero. So in this case the equalities in (9) are true. �

Similar to the left ε-truncation, we can consider the right ε-truncation, f̃ε,d+ , and get
htop(f̂ |Mε,d+ ) = htop(f̃ε,d+ |Mε,d+ ). Furthermore, we consider the ε-truncation for all d ∈ D

simultaneously. To do this, we define the map f̃ε on Î by

f̃ε(x) =




f̂ (x), if x /∈ Uε(d
−) ∪ Uε(d

+) for all d ∈ D,

f̂ (d−
ε ), if x ∈ Uε(d

−) with d ∈ D,

f̂ (d+
ε ), if x ∈ Uε(d

+) with d ∈ D.

(10)
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Also let M̃ε := ⋂
d∈D(Mε,d− ∩ Mε,d+). Then M̃ε is a compact f̂ -invariant subset of Î whose

f̂ -orbits never visit the ε-neighbourhood of the set
⋃

d∈D{d−, d+} . Since D is a finite set, a
result similar to lemma 8 readily follows.

Lemma 9. The map f̃ε : Î → Î is continuous and htop(f̃ε) = htop(f̃ε |M̃ε
) = htop(f̂ |M̃ε

).

In order to relate the above properties of continuous maps on Î to the properties of piecewise
continuous maps on I (in other words, ‘to project’ the constructed truncations to maps on I ),
we need to introduce an intermediate space. To do this, we identify those pairs of points
{w−, w+}, w ∈ W , which under some iterate of f̂ belong to the same ε-neighbourhood of either
d− or d+ for some d ∈ D. More precisely, consider the following equivalence relation ∼ on Î :

x ∼ y ⇐⇒ x = y or {x, y} = {w−, w+}, w ∈ W, and there exist

n � 0 and d̃ ∈ ⋃
d∈D{d−, d+}̇ such that {f̂ n(x), f̂ n(y)} ⊂ Uε(d̃).

Note that by the above definition, the relation ∼ is preserved by f̃ε , i.e. if x ∼ y then
f̃ε(x) ∼ f̃ε(y). Let Îε be the quotient space with respect to this relation ∼ and let π̂ε : Î → Îε

be the corresponding quotient map. Clearly, π̂ε is at most two-to-one, order preserving, and is
continuous with respect to the order topologies on Î and Îε . If two points w−, w+ are collapsed
by π̂ε (i.e. w− ∼ w+), we will denote their common image simply by w. Let Wε denote the
subset of W which consists of ‘noncollapsed’ points by π̂ε , i.e.

Wε = {w ∈ W : �{π̂−1
ε (w)} = 1}.

Then Îε can be represented as Îε = (I \ Wε) ∪ {w−, w+ : w ∈ Wε}. By the definition of π̂ε ,
one easily gets πε ◦ π̂ε = π , where πε : Îε → I is defined just as π by (4) (for πε we use the
subscript ε in order to mention that it acts on the space different from Î ).

Let g : Î → Î be a continuous map which preserves the relation ∼, i.e. g satisfies the
assumption that g(w−) = g(w+) for every w ∈ W with π̂ε(w

−) = π̂ε(w
+). Then g projects

to a continuous map on Îε . Indeed, consider the map g† : Îε → Îε defined by

g†(x) = π̂ε ◦ g(π̂−1
ε (x)),

where by π̂−1
ε (x) we mean the full preimage of x; note that although π̂−1

ε (x) may consist of
two points, g(π̂−1

ε (x)) is a single point because of the above assumption on g. By its definition,
g† is continuous and satisfies g† ◦ π̂ε = π̂ε ◦ g. We may apply the above construction to the
map g = f̃ε because it is continuous on Î and preserves the relation ∼; hence we have the
continuous map f̃ †

ε on Îε .
Now we return to the ‘initial phase space’ I . Let M

′
ε := π(M̃ε).

Lemma 10. The following statements hold:

1. the set M
′
ε is a compact f -invariant subset of I ;

2. there is a neighbourhood of D such that for any point x0 ∈ M
′
ε , its f -orbit is disjoint from

this neighbourhood.

Proof. Let us recall that π : Î → I is continuous and the restriction of π to any subset of Î

disjoint from {w−, w+ : w ∈ W } is a one-to-one map which satisfies f ◦ π(x) = π ◦ f̂ (x).
This implies the first statement of the lemma. Let

δ0 = min
d∈D

min{d − π(d−
ε ), π(d+

ε ) − d}.

Then the f -orbit of any initial point in M
′
ε is away from D by the distance of at least δ0. �
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0
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π(dε
+) π(dε

-) d' d"d

Figure 1. The graph of the ε-truncation map fε .

So, in particular, M
′
ε is disjoint from W and therefore, by notation in (4), M

′
ε is the same

as M̃
′
ε (they are homeomorphic metric spaces with respect to the usual length on Mε and the

metric ρ̂ on M̃ε). Next, we define the ε-truncation map fε : I → I by

fε(x) =




f (x), if x /∈ (π(d−
ε ), π(d+

ε )) for all d ∈ D,

f (π(d−
ε )), if x ∈ (π(d−

ε ), d) with d ∈ D,

f (π(d+
ε )), if x ∈ (d, π(d+

ε ))d with D

(11)

(see figure 1).
It is easily seen that fε is continuous at the points π(d−

ε ), π(d+
ε ) for any d ∈ D. Hence,

fε is a piecewise continuous and piecewise monotone map with the partition Z . Then it is
easily checked that the doubling construction space for fε is precisely Îε (i.e. if we consider
fε as the initial map then Îfε

, its doubling construction space, coincides with Îε), while the
doubling extension of fε is precisely f̃ †

ε , i.e. f̂ε = f̃ †
ε . So we have the following commutative

diagrams:

Î
π̂ε−−−−→ Îε

πε−−−−→ I

f̃ε

� f̃ †
ε

�f̂ε

�fε.

Î −−−−→
π̂ε

Îε −−−−→
πε

I

(12)

Now we are in position to prove theorem 4.

Proof. Since f̃ε is semiconjugate to f̂ε by the map π̂ε , which is at most two-to-one, we
have htop(f̃ε) = htop(f̂ε). Note that if we consider the restrictions f̃ε |M ′

ε
, f̂ε |π̂ε (M

′
ε )

and fε |M ′
ε

in diagram (12), then the semiconjugacies π̂ε and πε become in fact conjugacies. Hence
htop(f̃ε |M ′

ε
) = htop(fε |M ′

ε
). So by using lemma 9, we have

htop(f̂ε) = htop(f̃ε) = htop(f̃ε |M ′
ε
) = htop(fε |M ′

ε
).



Chaotic difference equations in two variables and their multidimensional perturbations 1031

Since f̂ε is the doubling extension of fε , it follows from the definition of topological
entropy for piecewise monotone maps that htop(fε) = htop(f̂ε) . Now, using the fact that the
restrictions to Mε of the maps f and fε coincide, we have

htop(fε) = htop(fε |M ′
ε
) = htop(f |M ′

ε
). (13)

Since each interval (π(d−
ε ), π(d+

ε )) tends to {d} as ε → 0, we have that the Hausdorff distance
between graphs of fε and f tends to zero. Thus by the lower semi-continuity property of the
topological entropy function on the set of piecewise monotone piecewise continuous maps with
the given number of monotone intervals (see [20]), we have lim infε→0 htop(fε) � htop(f ).
On the other hand, it is easily seen that for any ε > 0, htop(fε) � htop(f ). So we get
that limε→0 htop(f |M ′

ε
) = htop(f ) and thus, by (13), lim ε→0htop(f |M ′

ε
) = htop(f ). So,

given a δ > 0 we can find ε0 > 0 such that for 0 < ε < ε0, htop(f |M ′
ε
) > htop(f ) − δ.

Finally, we let M := ⋂∞
n=0 f n(M

′
ε) and J := ⋃

d∈D(π(d−
ε ), π(d+

ε )) according to notations
in the statement of theorem 4. Then the strict f -invariance of M follows from compactness
of M

′
ε and continuity of the restriction f |M ′

ε
. Thus, by corollary 8.6.1 of [25], we have

htop(f |M) = htop(f | ⋂∞
n=0 f n(M

′
ε)) = htop(f |M ′

ε
). �

2.4. Properties of the conjugacy ψ̄λ and comparison with the result in [13]

In [13], we considered the case when the unperturbed difference equation involved only one
variable: �λ0(x0, x1, . . . , xm) = ϕ(xN), and the local map ϕ had multiple simple zeros, say
{d1, . . . , dk} ∈ int Q. In this case, we let B = {d1, . . . , dk}Z, then the infinite matrix of
D2F(λ, y) for λ = λ0 and y ∈ B contains only one nonzero diagonal with finitely many
values of the form ϕ′(di). This implies that assumption (iv) of theorem 2 is satisfied. As a
result, we got the following (some terminologies used in the following statement are given in
the appendix).

Theorem 11 ([13]). Under the above assumptions, there exists δ̄ > 0 such that for any
λ ∈ U(λ0, δ̄) there is a closed (in the product topology) σ -invariant subset �λ ⊂ Yλ and
the following holds.

(i) σ |�λ
is topologically conjugate to σ |�k

by the conjugacy map ψ̄λ : �k → �λ, where ψ̄λ

is from theorem 2 and �k = {1, 2, . . . , k}Z; moreover, one has the commutative relations
in the first three columns in diagram (14).

(ii) The conjugacy map ψ̄λ is the identity map for λ = λ0 and is continuous in λ; moreover, the
map λ �→ ψ̄λ(x) from U(λ0, δ̄) to �∞ (in the uniform topology) forms an equicontinuous
family in x ∈ �k .

(iii) If, in addition, the difference equation (2) for given λ corresponds to a map fλ : Pλ → R
m,

then one has the following commutative diagram:

�k

ψ̄λ−−−−→ �λ

i
↪→ Yλ

Tλ−−−−→ P̃λ

π0−−−−→ Kλ

σ

� σ

� σ

� σm

� fλ

�,

�k −−−−→
ψ̄λ

�λ ↪→
i

Yλ −−−−→
Tλ

P̃λ −−−−→
π0

Kλ

(14)

where all the maps involved are continuous (in the product topology on the symbolic
spaces), ψ̄λ is injective, Tλ is bijective, the notation

i
↪→ denotes the embedding and π0

is a (surjective) projection which is entropy preserving and is bijective when restricted
to the set of periodic points; here P̃λ = {p = (pn)

∞
n=−∞ ∈ P Z

λ : pn+1 = fλ(pn)} and
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Kλ = ⋂∞
i=0 f i

λ(
⋂∞

n=0 f −n
λ (Pλ)). In particular, the map θλ := π0 ◦Tλ ◦ ψ̄λ semiconjugates

σ |�k
with the restriction of fλ to the closed fλ-invariant set �λ := θλ(�k). Moreover, the

inverse limit of fλ|�λ
is conjugate to σ |�k

. If fλ : Pλ → R
m is injective, then the above

semiconjugacy θλ|�k
is in fact a conjugacy.

In the settings of this paper, we show similar results using the same approach by theorem 2.
The only difference is that instead of the full horseshoe �k , we continue with an appropriate
hyperbolic, strictly ϕ-invariant set Mε (i.e. ϕ(Mε) = Mε) with enough entropy and consider the
set B in theorem 2 to be lim←−(Mε, ϕ), the inverse limit of ϕ|Mε

(rather than Mε itself); because,
by the definition of Yλ, it consists of bi-infinite sequences, i.e. we need to recover all preimages
inside Mε . Moreover, the set Mε is chosen so that it is away from some neighbourhood of
the intervals of V and endpoints of Q. It follows that, in terms of notations in theorem 2, the
function F is well defined in some uniform neighbourhood of λ0 × B, i.e. on the domain of
the form

⋃
b∈B U(λ0, δ0) × U(b, η0) for some fixed positive radii δ0 and η0. As a result we

will have, instead of (14 ), the following commutative diagram:

lim←−(Mε, ϕ)
ψ̄λ−−−−→ �λ

i
↪→ Yλ

Tλ−−−−→ P̃λ

π0−−−−→ Kλ

σ

� σ

� σ

� σm

� fλ

�,

lim←−(Mε, ϕ) −−−−→
ψ̄λ

�λ ↪→
i

Yλ −−−−→
Tλ

P̃λ −−−−→
π0

Kλ

(15)

where �λ ⊂ Yλ is a closed (in the product topology) σ -invariant set, which is a continuation
of B = lim←−(Mε, ϕ) for perturbations.

3. Applications

In this section, we apply our perturbation results to several families of maps. We also obtain
chaotic structures in stationary and travelling waves in lattice models and consider spatially
homogeneous solutions of these systems by checking their local maps6.

3.1. The Hénon map

First let us discuss a simple (and well known) example of the standard Hénon map H(x, y) =
(y, ay(1 − y) − bx); it has a corresponding difference equation of the form

xn+2 − axn+1(1 − xn+1) + bxn = 0.

In order to apply theorems 1 and 11, one can fix s1 � 0, s2 � 1 (and if the inequalities are
strict then the ‘exceptional’ set V must contain the intervals [s1, 0) and (1, s2]). Here, we give
two choices for the exceptional value of λ0 depending on how the values of a and b play the
role of a parameter.

First, in the case when b plays the role of the parameter λ with λ0 = 0, it is well
known that for small b the standard Hénon map behaves like the one-dimensional logistic
map ϕ(x) = ax(1 − x), which is precisely the local map in our notation. In particular, the
Hénon map is chaotic for a close to 4, and if a > 4, its nonwandering set is the Smale
horseshoe. This agrees with our results. Indeed, for a > 3.569 . . ., we may use theorem 1
to assure the chaotic behaviour of orbits for the Hénon map (with b small enough), because
htop(ϕ) > 0. Also, the statement of theorem 1 on the continuous dependence of perturbed
solutions in the uniform topology assures that the orbits starting in [0, 1]2 under H = Ha,b with

6 See also [4, 5] for applications to economic models.
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3.569 . . . < a < 4 and small b will stay infinite times in a narrow strip around the parabola
y = ax(1 − x), x ∈ [0, 1]. On the other hand, for a > 4 sufficiently big, in order to establish
a full 2-horseshoe structure we may use theorem 11 also (see [8] and [13] for more details on
generalized Hénon maps).

Next, consider other regions of parameters for the Hénon map. Let a and b be sufficiently
big. More precisely, let a and b tend to ∞ in such a way that a/b → λ0 for some constant
λ0 > 0. Then after dividing the difference equation by b, we will have the limit equation of
the form

xn − λ0xn+1(1 − xn+1) = 0.

Note that this equation corresponds to the value of delay L = −1 in our notation, and it is easy
to see that by reversing the time, we have again the same situation, with the roles of x and y

interchanged. So in the regions of parameters with a and b sufficiently big, we also have a
chaotic structure of orbits when a/b is bigger than 3.569 . . ., and for a/b > 4 we have again
the full 2-horseshoe.

3.2. The Arneodo–Coullet–Tresser maps

Consider the family of the so-called ACT maps f : R
3 → R

3 (due to Arneodo, Coullet and
Tresser; refer to [6]); they are of the form

f (x, y, z) = (ax − b(y − z), bx + a(y − z), cx − dxk + ez),

where a, b, c, d, e ∈ R are parameters and k � 2. If (a2 +b2)e �= 0, then f is a diffeomorphism
with the inverse

f −1(x, y, z) =
(

x̂,
−bx + ay

a2 + b2
+ ẑ, ẑ

)
, where x̂ = ax + by

a2 + b2
and ẑ = z − cx̂ + dx̂k

e
.

If bd �= 0, then there are interesting dynamical properties and bifurcations in several regions
of the parameter space; see [6]. For an initial point p = (x0, y0, z0), denote the nth iteration
of p under f by (xn, yn, zn). Then we have the following difference equation which in fact is
an equivalent form for defining the ACT map (see [7, 13]):

dxk
n+1 − a2e + b2e

b
xn +

a2 + b2 − bc + 2ae

b
xn+1 − 2a + e

b
xn+2 +

1

b
xn+3 = 0.

Now we consider the pair of coefficients (a, e) as the parameter λ, and for the singular
value λ0 = (0, 0) we have the difference equation in two variables with L = 2:

dxk
n+1 + (b − c)xn+1 +

1

b
xn+3 = 0.

At λ = λ0 = (0, 0) the ACT map fλ is not invertible and its Jacobian becomes zero,
while for small nonzero a, e, fλ is a diffeomorphism. So we are able to apply theorem 1 in
order to show chaotic behaviour of fλ for a, e small; namely, it is sufficient to check that the
one-dimensional map

ϕ(x) = (bc − b2)x − bdxk (16)

has positive topological entropy. In [6] and [7], sufficient conditions for the existence of full
horseshoes (Bernoulli shifts on two or three symbols depending on the evenness of k) for ACT
maps in the above situation, i.e. near degenerate ACT maps with a = e = 0, were obtained.
Now our result provides other regions of parameters in which one has a chaotic structure with
positive entropy, which need not be full horseshoe. For instance, it applies for small b whenever
c/b is rather big, while in [6,7], the condition |b| > 1 was needed. So the result may be regarded
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Figure 2. The graph of map (16) with k = 4, b = 2, d = 1 and c = 1.5b and the topological
entropy as a function of µ, when c = (1 + µ)b varies.

Figure 3. The graph of map (16) with k = 3, b = 2, d = 1 and c = 1.7b and its topological
entropy as a function of µ, when c = (1 + µ)b varies.

as a continuation of ‘finer horseshoes’ (actually, they are horseshoes under some iterates of the
map, and it is well known that such horseshoes are contained necessarily in the nonwandering
set of one-dimensional maps with positive topological entropy). See figures 2 and 3 which
show some regions of parameters with positive htop(ϕ); note that since L = 2, the topological
entropy of the perturbed ACT maps is bounded below approximately by htop(ϕ)/2.

3.3. Quadratic volume preserving maps

In this subsection, we consider the family of maps f : R
3 → R

3 defined by

f (x, y, z) = (η + αx + βy + z + Q(x, y), x, y), (17)

where η, α, β, γ are real parameters and Q(x, y) = ax2 + bxy + cy2 is a quadratic form. As
shown by Lomeli and Meiss in [14], generically every quadratic automorphism, i.e. volume
preserving diffeomorphism of R

3 which has a quadratic inverse, is topologically conjugate to
a map (17) with a + b + c = 1 (note that in [14], it is also shown that the parameter β can be
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eliminated by an appropriate change of coordinates; however, we do not assume β = 0 because
this parameter will be of use for our considerations). It is easily seen that the corresponding
difference equation for (17) is of the form

η + αxn + βxn−1 + xn−2 + ax2
n + bxnxn−1 + cx2

n−1 − xn+1 = 0.

By using theorem 11, we have proved in [13] that if the parameters η, β, b, c in (17) are fixed
while α → ∞ and a → ∞ in such a way that a/α = constant �= 0, then for |a| sufficiently
big, the map f = fa has a closed invariant set �a such that fa|�a

is conjugate to the full shift
on two symbols. (In fact, to have the same conclusion it is sufficient that all the parameters
η, β, b, c in (17) are o(α) while α → ∞ and a → ∞ in such a way that a/α → constant �= 0).

Note that theorem 11 does not apply to quadratic automorphisms in the generic form with
a + b + c = 1 because the latter equality implies that both coordinates xn and xn−1 should be
involved in the limit difference equation. But now by using theorem 1, we are able to get a
chaotic structure of quadratic automorphisms in the generic form. Indeed, for the case when
β �= 0, let the parameter β tend to ∞, b tend to 0 and a + c tend to 1 with a > 0, c > 0
and a + b + c = 1, while other parameters remain constant; or more generally, let us have
(as β → ∞) the following: b = o(1), α = o(β), η = o(β2) and a + c converges to 1 with
a > 0, c > 0 and a + b + c = 1. Then after scaling by β we get for the new coordinates
x̄n = −xn/β, the following difference equation at the limit as β → ∞ and b → 0:

(1 − c)x̄2
n + cx̄2

n−1 − x̄n−1 = 0, (18)

whose upper branch is the map

ϕ(x) =
√

1

4(1 − c)c
− c

1 − c

(
x − 1

2c

)2

. (19)

It is a unimodal map (with an upper semi-ellipse for the graph) and, thus, one has a positive
topological entropy whenever c is close to 0.8 (and also for c > 0.8, in which case we have
the full 2-horseshoe). In figure 4, it is shown that the topological entropy of the local map ϕ

becomes positive beginning with c ≈ 0.791. Therefore, by using theorem 1 with L = 1, the
system in (17) has chaotic dynamics for sufficiently large β and sufficiently small b.

Furthermore, we can consider the case when β = 0 in the generic form of quadratic
volume preserving automorphisms. Indeed, there is chaotic dynamics for sufficiently large α

and sufficiently small b by using theorem 1 with L = −1, because in the new coordinates
x̄n = −xn/α, we have at the limit as α → ∞ and b → 0, the following difference equation

(1 − a)x̄2
n−1 + ax̄2

n − x̄n = 0,

which is the same as (18) with only the roles of a and c and also the roles of x̄n−1 and x̄n

interchanged. So the chaotic dynamics here takes place for a near 0.8.

3.4. The generalized CNN models

We consider the one-dimensional generalized CNNs of the following form, which was
introduced by Itoh, Julián and Chua [9],

dx
dt

= −G(x) + AF(x) + Bu + z, (20)

where

x = (xi)i∈Z, G(x) = (g(xi))i∈Z, A = (a−m, . . . , a0, . . . , am),

F(x) = ((f (xi−m), . . . , f (xi), . . . , f (xi+m))T)i∈Z, B = (b−m, . . . , b0, . . . , bm),

u = ((ui−m, . . . , ui, . . . , ui+m)T)i∈Z, z = (zi)i∈Z.
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Figure 4. The graph of map (19) with c = 0.795 and its topological entropy as a function of c

(which is presumed to be continuous at finer scales of c).

Here, x denotes the state, G(x) denotes the v–i characteristic, F(x) denotes the output, A, B
and z denote the feedback, control and threshold template parameters, respectively, and m is
the neighbourhood radius of each cell. As usual, the output function F(x) is related through
the piecewise-linear saturation function

f (x) = 1
2 (|x + 1| − |x − 1|),

and the v–i characteristic function G(x) is related to the piecewise-linear function

g(x) = αx + γ (|x − Vp| − |x − Vv|) − γ (|x + Vp| − |x + Vv|),
where α and γ are constants and Vp and Vv are the peak and valley voltages.

Here, we will allow the output and v–i characteristic functions to have more deviations.
One can rewrite the generalized CNN model (20) as a system of state equations:

dxi

dt
= −g(xi) +

m∑
j=−m

ajf (xi+j ) +
m∑

−m

bjuj + zi .

Let h(x) = g(x) − a0f (x). Then we arrive at the form

dxi

dt
= −h(xi) +

m∑
j=−m,j �=0

ajf (xi+j ) +
m∑

j=−m

bjuj + zi . (21)

Standard CNNs and resonant tunnelling diode (RTD) based CNNs are special cases of
the generalized CNN model (21). For example, model (21) with h(x) = x − a0f (x) is
the original standard CNN model, with h(x) = x − a0f̃ (x) the modified standard CNN
model, with h(x) = g(x) − a0x and f (x) = x the original RTD-based CNN model and with
h(x) = g(x) − ax and f (x) = g(x) − αx − β the modified RTD-based CNN model. Circuit
implementations of these CNNs have been explicitly illustrated in [9].

Here, we assume that the template parameters have a common parameter λ; more precisely,
the generalized CNN model (21) becomes of the form

dxi

dt
= −h(xi) + λ


 m∑

j=−m,j �=0

ajf (xi+j ) +
m∑

j=−m

bjuj + zi


 . (22)

In order to demonstrate the spatial chaos phenomenon, we consider the set of stationary
solutions, i.e. solutions which do not depend on ‘time’: xi(t) = xi . Thus letting the right-hand
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side of (22) be zero (i.e. the exceptional value λ0 = 0), we have the stationary solutions of (22)
given by

h(xi) − λ


 m∑

j=−m,j �=0

ajf (xi+j ) +
m∑

j=−m

bjuj + zi


 = 0.

Thus, by using theorem 11, we have the following result on the chaotic structure of
stationary solutions.

Corollary 12. If h has k simple zeros and both f and h are C1 in a neighbourhood U of
these zeros, then for any sufficiently small λ, there exists a closed (in the product topology)
σ -invariant sunset �λ of the set of stationary solutions for (22) such that σ |�λ

is topologically
conjugate to σ |�k

, the full shift on k symbols and the conjugacy map can be chosen to be
continuous in λ in the uniform topology.

3.5. Time discrete version of the CNN system

One can also consider the time discrete version of the CNN system introduced by Sbitnev and
Chua in [24] as follows

xn+1
i = xn

i − δh(xn
i ) + δλ


 m∑

j=−m,j �=0

ajf (xn
i+j ) +

m∑
j=−m

bju
n
j + zn

i


 , (23)

where δ and λ are nonzero constants. Stationary solutions do not depend on the ‘time’
coordinate n, i.e. xn

i = xi for these solutions. In this case, equation (23) is reduced to the
equalities

h(xi) + λ


 m∑

j=−m,j �=0

ajf (xi+j ) +
m∑

j=−m

bjuj + zi = 0


 .

Theorem 11 implies exactly the same result on the chaotic structure of stationary solutions for
(23) as corollary 12.

Let p, q ∈ Z with (p, q) = 1. A travelling wave solution with velocity q/p of
equation (23) is a solution of the form

xn
i = xpi+qn, where y : Z → R

k and write y� = y(�).

Let r = pi + qn + q be the travelling wave coordinate, i.e. set xn+1
i = yr = ypi+qn+q . Then the

travelling wave solutions are given by

yr = yr−q − δh(yr−q) + δλ


 m∑

j=−m,j �=0

ajf (yn
r−q−pj ) +

m∑
j=−m

bjur−q−pi+pj + zr−q


 .

Spatially homogeneous solutions do not depend on the ‘space’ coordinates i, i.e. xn
i = yn for

these solutions. In this case, equation (23) is reduced to the equalities:

yn+1 = yn − δh(yn) + δλ


 m∑

j=−m,j �=0

ajf (yn) +
m∑

j=−m

bjun + zn


 .

Thus, by theorem 1, we have the following result.

Corollary 13. Suppose that the function x �→ x − δh(x) from Q = [s1, s2]\V to [s1, s2],
for some s1 < s2 and V ⊂ [s1, s2] open, is piecewise analytic and has positive topological
entropy. If f is C1 on Q, then for any sufficiently small λ, there exists a subset �λ of travelling
wave solutions (or spatially homogeneous solutions) for (23) such that �λ is invariant under
the spatial translation σ and htop(σ |�λ

) > 0.
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3.6. Steady state of Chua’s circuit

The equations for the coupled Chua’s circuit in [21] are

ẋi = αyi − α(xi + g(xi)) + d(xi+1 − 2xi + xi−1),

ẏi = xi − yi + zi,

żi = −βyi − γ zi,

(24)

where α, β, γ, d are positive parameters and g(x) = m1x+ m0−m1
2 (|x+1|−|x−1|). Considering

the stationary solutions, equation (24) yields

− αβ

γ + β
xi − αg(xi) + d(xi+1 − 2xi + xi−1) = 0.

From theorem 11, we have the following corollary.

Corollary 14. If the function x �→ β

γ +β
x + g(x) has k simple zeros and g is C1 in a

neighbourhood U of these zeros, then for any sufficiently small d, there exists a closed (in the
product topology) σ -invariant sunset �d of the set of stationary solutions for (24) such that
σ |�d

is topologically conjugate to σ |�k
and the conjugacy map is continuous in d in the uniform

topology.

3.7. Lattice models of an evolution equation

Finally, we consider solutions in lattice models of an evolution equation of which some motions
can be described by discrete versions of reaction–diffusion equations (for lattice models and
their chaotic and stability properties see [1,2,3,22]). Consider the lattice models of an evolution
equation of the form

ut+1
n = f (ut

n) + εg(ut
n−s , u

t
n−s+1, . . . , u

t
n+s), (25)

where t ∈ Z is the time variable, n ∈ Z is the space one and ε � 0 usually stands for the
diffusion coefficient. The function f is called the local map and g is called the interaction of
finite size s.

If we look for the steady state (or stationary) solutions ut
n of (25), then ut

n must be
independent of the time coordinate t , i.e. ut

n := xn for all t ∈ Z. In this case, equation (25)
can be reduced to the difference equation

xn = f (xn) + εg(xn−s , xn−s+1, . . . , xn+s), n ∈ Z.

Thus, by using theorem 11, we have the following result on the chaotic structure of steady
state solutions.

Corollary 15. Let the function x �→ x − f (x) have k simple zeros and be of class C1 in a
neighbourhood U of these zeros and let g be of class C1 in U 2s+1. Then for sufficiently small ε,
there exists a closed (in the product topology) σ -invariant subset �ε of the set of steady state
solutions for (25) such that σ |�ε

is topologically conjugate to σ |�k
and the conjugacy map is

continuous in ε in the uniform topology.

Let p, q ∈ Z with (p, q) = 1. A travelling wave solution with velocity q/p of
equation (25) is a solution of the form

un
m = xpm+qn, where x : Z → R

k and write x� = x(�).

Let i = pm + qn + q be the travelling wave coordinate, i.e. set un+1
m = xi = xpm+qn+q . Then

we obtain the following equation for xi :

xi = f (xi−q) + εg(xi−q−ps, xi−q−ps+p, . . . , xi−q+ps).
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Spatially homogeneous solutions do not depend on the ‘space’ coordinate m, i.e. un
m = xn

for these solutions. In this case, equation (25) is reduced to the equalities

xn+1 = f (xn) + εg(xn, xn, . . . , xn).

As a consequence of theorem 1, we have the following result.

Corollary 16. Suppose that f is a C2 map from Q = [s1, s2]\V to [s1, s2], where s1 < s2 and
V ⊂ [s1, s2] is open, such that f has no critical points and has positive entropy. If g is C1

on Q, then for any sufficiently small ε, there exists a subset �ε of travelling wave solutions
(or spatially homogeneous solutions) for (25) with parameter ε such that �ε is invariant under
the spatial translation σ and htop(σ |�ε

) > 0.

Let us remark that unlike in [2, 22] we do not require the functions f and g to be defined
and smooth on the whole R and R

2s+1, respectively, and to have bounded partial derivatives.

Appendix

In our applications, the difference equations for nonexceptional values of λ are actually
associated with well-defined maps. We say that for a given λ, the difference equation (2)
corresponds to a map fλ : Pλ → R

m, where Pλ is a compact subset of R
m and fλ is continuous,

if σ |Yλ,prod is conjugate to the restriction of the shift map σm : (Rm)Z → (Rm)Z to the space

P̃λ = {p = (pn)
∞
n=−∞ ∈ P Z

λ : pn+1 = fλ(pn) for all n ∈ Z} of full orbits under fλ contained
in Pλ with respect to the product topology.

In the case when the difference equation (1) corresponds to a map fλ : Pλ → R
m, the set

Pλ,prod is a compact, σm-invariant set, and if we denote K+
λ := ⋂∞

n=0 f −n
λ (Pλ), then K+

λ,prod
is compact and fλ-invariant, and the restriction σm|P̃λ,prod

can be regarded as the inverse limit
lim←−(K+

λ , fλ) by identifying points (. . . , p−2, p−1, p0) ∈ lim←−(K+
λ , fλ) with corresponding ones

(. . . , p−2, p−1, p0, fλ(p0), f
2
λ (p0), . . .) ∈ P̃λ. Put Kλ := π0(P̃λ), where π0 denotes the

projection to the 0th coordinate. Then Kλ = ⋂∞
n=0 f n

λ (K+
λ ) because of compactness of K+

λ

in the product topology. Obviously, π0 is a semiconjugacy map from σ |P̃λ
to fλ|Kλ

(here we
have omitted the subscript prod, and so we will do later if there are no doubts). It is easy to
see that if, in addition, fλ : Pλ → R

m is one-to-one then π0 is in fact a conjugacy. We have
the following commutative diagram:

Yλ
Tλ−−−−→ P̃λ

π0−−−−→ Kλ

σ

� σm

� fλ

�.

Yλ −−−−→
Tλ

P̃λ −−−−→
π0

Kλ

The topological entropy htop(σ |Yλ,prod) is equal to htop(fλ), the topological entropy of the map
fλ, which is meant as htop(fλ|K+

λ
) , the topological entropy of the restriction of fλ to the

maximal fλ-(forward) invariant set K+
λ .
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