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Abstract— Signal strength fluctuation is one of the major
problems in a fingerprint-based localization system. To alleviate
this problem, we propose a scrambling method to exploit temporal
diversity and spatial dependency of collected signal samples. We
present how to apply these properties to enhance the positioning
accuracy of several existing schemes. Simulation studies and
experimental results show that the scrambling method can greatly
improve positioning accuracy, especially when the tracked object
has some degree of mobility.

Index Terms— Context Awareness, Location-Based Service,
Pervasive Computing, Sensor Network, Indoor Positioning, Lo-
cation Tracking.

I. INTRODUCTION

Recently, location-based applications are regarded as one of the
most important services in wireless networks [16], [8]. Location
tracking is critical to support location-based services. Although
GPS [6] has been widely used, indoor localization is still a
challenging problem. Localization models can be classified into
angle of arrival (AoA) [10], time of arrival (ToA) [1], time
difference of arrival (TDoA) [14], and fingerprint [2], [13], [15],
[3], [4], [11], [9]. In this work, we are interested in fingerprint-
based localization systems, such as RADAR [2]. Unlike other
propagation-based localization methods, the fingerprint method
does not rely on calculating signal fading in an environment but
relies on a training phase to learn the signal strength patterns at a
set of training locations from pre-deployed beacons in a sensing
field. These beacons can be existing infrastructures, such as IEEE
802.11 access points. To position an object, we will compare
its received signal strengths (RSSs) against those of the training
locations.

However, because signal fluctuation is inherent to RF systems,
fingerprint schemes have their limitation to positioning accuracy.
To conquer this problem, [13] presents a probabilistic framework
to handle uncertainty in signal strength measurement. Signal
variations are modeled by probability distributions. Based on the
similar concept, [15] uses recursive Bayesian filters for localiza-
tion. Reference [3] adopts a neural network model, which is a
multi-layer structure with a number of interconnected neurons, to
implement its positioning algorithm. This model has a forward
and backward propagation mechanism to adaptively assign suit-
able weights for the connections based on the training samples.
Then, this network can take a number of real-valued numbers
as inputs and generate a number of real-valued numbers for the
neurons in the output layer. Finally, at the positioning stage, RSSs
can be fed into the network and the location whose representative
neuron has the highest output is the estimated location.

Although the fingerprint-based approach is very similar to
the traditional classification problem [7], there are still some
properties particular to the localization problem that have not
been well exploited. In this paper, we point out that the observed
RSSs may have some degrees of temporal diversity and spatial
dependency. Thus, we propose a scrambling method to take
advantage of these properties. Based on temporal diversity, its
basic idea is to enlarge the comparison space by recombining
observed samples in a short period of time. Through scrambling,
samples with less interference are expected to appear. Then,
spatial dependency will exploit the moving trajectories of objects
to select a better location estimation. This scrambling method
should be considered an enhancement to existing schemes, instead
of a new scheme. We will show how to integrate it with two
methods [2], [13]. The contributions of this work are three-
fold. First, it is the first work exploiting the temporal diversity
and spatial dependency simultaneously. Second, it handles signal
fluctuation well in indoor environments. Third, it greatly improves
positioning accuracy, especially when the tracked object has some
degree of mobility. Our simulation and experimental results do
support these claims.

II. THE PROPOSED SIGNAL SCRAMBLING METHOD

A fingerprint-based localization system generally works as
follows. We are given a set of beacons B = {b1, ...,bn} in a
field, which are capable of transmitting radio signals, and a set of
training locations L = {�1, ..., �m}. At each training location �i,
we measure the signal strengths from beacons for a period of time
and create a characteristic vector ci = 〈ci

1,c
i
2, . . . ,c

i
n〉 in a location

database, where ci
j is derived from the received signal strengths

of b j, j = 1, . . . ,n. When an object moves into the field, it also
measures its received signal strength vector s = 〈s1,s2, . . . ,sn〉 and
compares s against the database to determine its location.

The challenge to the above localization problem is that signal
fluctuation is unavoidable, which may be due to multipath fading
and interference. For example, in Fig. 1, there are three beacons,
b1, b2, and b3, and three training locations, �1, �2, and �3. Ideally,
an object at location �1 should observe a signal vector 〈s1,s2,s3〉.
However, if the received signal strength from beacon b2 is slightly
degraded to s∗2, the estimated location may become �2. Similarly,
if the signal quality of b3 is degraded to s∗3, the estimated location
may become �3.

To improve localization accuracy, our scheme will not be
based on a single observation. Instead, it will be based on a
sequence of vectors observed close to the current time t. Let
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AN EXAMPLE LOCALIZATION ERROR DUE TO SIGNAL FLUCTUATION.

SOLID LINE CIRCLES STAND FOR CORRECT DISTANCE MEASUREMENT

WHILE DOTTED LINE CIRCLE STAND FOR DEGRADED DISTANCE

MEASUREMENT.

s(i) = 〈s(i)
1 ,s(i)

2 , . . . ,s(i)
n 〉 be the signal strength vector that the object

observes at time i. Our scheme will exploit temporal diversity by
generating a set of scrambled vectors from the recently received w
signal vectors to enlarge the comparison space, and exploit spatial
locality by examining the possible locations of the object in the
previous h time steps. Fig. 2 shows the system flowchart. The
vector buffer is a shift register which can keep the most recent w
signal strength vectors. The vector scramble module takes these
w vectors and generates wδ scrambled vectors, where δ is the
scramble degree. These scrambled vectors are then sent to the
location estimation module to generate wδ predicted locations.
Finally, the location selection module will choose one location
based on spatial dependency.

A. Vector Scramble Module

Given w vectors s(i), i = t −w + 1, . . . , t, the vector scramble
module will generate wδ vectors. Temporal diversity means that
the RSSs from the same beacon over a short period of time,
though maybe fluctuating due to multipath fading and interfer-
ence, are expected to contain a correct value statistically. At any
location, the distribution of the received signal strength s

(i)
j from

b j can be modeled by a Gaussian normal distribution G(μ ,σ)
with a mean μ and a standard deviation σ . Let I = [μ −Δ,μ +Δ]
be the interval within which the signal fluctuation is tolerable
for the positioning purpose at this location. Then the probability
that we see at least one signal strength falling in the interval
I over w continuous observations is 1−∏t

i=t−w+1 prob[s(i)
j �∈ I],

which should be high as long as w is large enough. Note that the
temporal diversity is based on the assumption that the samples
of the same beacon observed from similar environments may
fluctuate. However, over a short period of time, within a few
samples, the mean or close-to-mean signal strength value as
observed in the training phase of that beacon is very likely to
appear. Therefore, with proper scrambling, the mean or close-to-
mean signal strength values of all beacons are likely to appear in

the scrambling results.
To tolerate fluctuation and noise, we will scramble the signal

strengths of the δ beacons over the past w steps, where δ ≤
n. Here we adopt the strategy of selecting the beacons with
the strongest average RSSs for scrambling1. Specifically, let
Vj = {s(i)

j , i = t −w + 1, . . . , t} denote the set of signal strengths
from b j, avg(Vj) the average of Vj, and V̂ the set of beacons
whose avg(Vj) are top δ among all beacons. Then the set of
scrambled vectors is defined as R = {〈r1,r2, . . . ,rn〉|r j ∈Vj if b j ∈
V̂ and r j = avg(Vj) if b j �∈ V̂}. Intuitively, if the average signal
strength avg(Vj) of b j is low, we let r j = avg(Vj); otherwise, r j is
selected from the set Vj. Therefore, there are at most wδ vectors
in R.

For example, in the scenario in Fig. 1, if we have w = 2
vectors s(t) = 〈s1,s∗2,s3〉 and s(t−1) = 〈s1,s2,s∗3〉, using δ = 3
(which means that the signal strengths of the 3 beacons with
the strongest average RSSs will be scrambled), we can generate
a set of scrambled vectors R = {〈s1,s2,s3〉, 〈s1,s∗2,s3〉, 〈s1,s2,s∗3〉,
〈s1,s∗2,s

∗
3〉}. Therefore, with temporal diversity, the correct vector

〈s1,s2,s3〉 has appeared, thus helping us correctly position the
object.

B. Location Estimation Module

This module can be implemented by plugging in any
fingerprint-based positioning algorithm, such as [2], [3], [4], [13],
[15]. For each scrambled vector r ∈ R, we can use the algorithm
to determine a location loc(r). Below, we show how to plug in
algorithms [2], [13] into this module.

1) Nearest Neighbor in Signal Space (NNSS) Algorithm [2]:
In NNSS, the Euclidean distance between signal vectors is used
as the metric. Therefore, for each r = 〈r1,r2, . . . ,rn〉 ∈ R and
each training location �i’s characteristic vector ci = 〈ci

1,c
i
2, . . . ,c

i
n〉,

we will compute a distance dist(r, �i) =
√

∑n
j=1(r j − ci

j)2.
Then the training location with the minimum Euclidean dis-
tance will be chosen as the predicted location, i.e., loc(r) =
argmin�i∈L dist(r, �i).

2) Probability-based Algorithm [13]: To account for signal
fluctuation, this algorithm regards the characteristic vector ci =
〈ci

1,c
i
2, . . . ,c

i
n〉 of the training location �i as a vector of probability

distributions, i.e., ci
j is a probability density function instead of

a scalar. For each r ∈ R, this algorithm computes a likelihood
function Pr(r|�i) = ∏n

j=1 ci
j(r j) to estimate the probability that the

object is at �i. The predicted location is set to the training location
with the highest probability, i.e., loc(r) = argmax�i∈L Pr(r|�i).

C. Location Selection Module

From the above derivation, at each time t, we already generated
a set of scrambled vectors. Now, let the set of scrambled vectors
generated at time t be R(t), and the corresponding set of locations
L(t) = {loc(r)|r ∈ R(t)}. This module will pick one location
loc∗ in L(t) as the final estimated location of the object. Spatial
dependency implies that an object’s movement trajectory should
not have “jumping effect”, i.e., the successive locations should
be smooth. The location selection module is developed based on
this assumption.

1There may exist other strategies to select beacons for scrambling. For
example, this can be done according to the information gain in [5]. This can
be directed to future research.
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THE SYSTEM FLOW OF THE SCRAMBLING METHOD.

At time t, this module will memorize the previous h sets of
locations, L(t−h+1), L(t−h+2), . . ., and L(t), where integer h is the
spatial dependency factor. Then we compute a path �t−h+1 →
�t−h+2 → . . . → �t , such that �i ∈ L(i) and the total path distance
is minimum (here we define the distance of two locations to be
their Euclidean distance). Intuitively, this path has the minimum
jumping effect. Then the final location at time t is predicated
as �t . (Note that the locations other than �t on the path are not
necessarily the predicted locations at the previous h−1 steps.)

III. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Environment

We have simulated a 50×50 square meters region with eight
beacons placed at (0,0), (49,0), (0,49), (49,49), (25,0), (0,25),
(25,49), and (49,25). In the training phase, we collect data
at 624 grid points, each separated by 2 m, both horizontally
and vertically, except for the locations with beacons. In our
simulations, signal strengths in the training and positioning phases
are both generated by the log-distance path loss model [12], which
specifies the decay between a transmitter and a receiver by

PL(d) = PL(d0)+10α log(
d
d0

)+Xσ ,

where d0 is a reference distance close to the transmitter, d is the
distance between the transmitter and the receiver, α is a path
loss exponent, and Xσ is a zero-mean Gaussian random variable
with a standard deviation σ . The received signal strengths are
generated by Pt −PL(d), where Pt denotes the transmit power. In
the positioning phase, objects move based on a random waypoint
mobility model. An object will switch between moving and
pausing states. In the moving state, a traveling speed and a
destination location will be chosen randomly. After reaching the
destination, the object enters the pausing state and stays there
for a period of time. This process will be repeated until the
simulation is terminated. Each simulation will last 2000 seconds.
Unless stated otherwise, the other simulation parameters are set to
transmit power Pt = 15 dBm, PL(d0 = 1 m) = 37.3 dBm, α = 3.3
dBm, σ = 4 dBm, moving speed = 1~10 m/sec, sampling period
= 1 sec, and pause time = 10 sec. In the location estimation
module, we adopt three fingerprint-based positioning algorithms:
nearest neighbor in signal space (NNSS) [2], probability-based
(Prob) [13], and neural network (NeuNet) with a 3-layer structure
[4] algorithms. These schemes, when plugged into our scrambling
method, are denoted as scr-NNSS, scr-Prob, and scr-NeuNet,
respectively. We also simulate a simple method which uses the
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THE RANGES OF AVERAGE POSITIONING ERRORS OF THE SCRAMBLED

LOCATIONS GENERATED BY scr-NNSS (w = 3, δ = 3).

average of the signal strengths of the most recent w samples
for database matching, denoted as avg-NNSS, avg-Prob, and avg-
NeuNet, respectively.

Before we evaluate the performance of the scrambling method
in details, we first show the impact of the increased search
space using the scrambling method. For the scrambled locations,
we estimate the Euclidean distance from each of them to the
corresponding true location. In Fig. 3, we show the ranges of av-
erage maximum and minimum positioning errors of the scrambled
locations generated by scr-NNSS (w = 3, δ = 3) under different
levels of noise. This reflects the increase of search space. These
error ranges generally cover the average errors of NNSS without
scrambling, denoted by crossed points. By incorporating with
proper location selection module, the location errors are expected
to be decreased, as shown in our simulation and experimental
results below.

B. System Parameters

First, we evaluate some system parameters of the scrambling
method with different positioning algorithms, such as vector
buffer size w and spatial dependency factor h. 2Fig. 4(a) shows

2We can observe that the performance of the NeuNet-based scheme is worse
than the others. This is against the results in [4]. This is because we use a
simpler structure to implement the NeuNet algorithm without any performance
tuning. However, this does not violate our objective of showing the capability
of our scrambling method in improving each specific localization scheme.
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COMPUTATION COST VS. POSITIONING ERROR UNDER DIFFERENT VECTOR

BUFFER SIZES AND SCRAMBLE DEGREES.

the result when w ranging from 2 to 5. A longer w means more
scrambled vectors being generated. However, when objects are
moving, a too large w may result in some unreal scrambled
vectors. This is because the the observed samples’ environment
conditions may vary significantly due to mobility. Thus, a too
large w might be harmful to positioning accuracy. From Fig. 4(a),
we can observe that a w around 3 can achieve better performance.
In Fig. 4(b), we examine the impact of the spatial dependency
factor h. We can observe that a larger h can result in higher
accuracy. However, after h ≥ 4, the amount of improvement
becomes very insignificant.

Fig. 4(c) examines the effect of the scramble degree δ . A larger
δ means more scrambled vectors being generated. Note that when
δ = 0, our scr-NNSS is in fact the same as the avg-NNSS scheme.
The result shows that the positioning accuracy is kept on being
improved when δ ≤ 4. However, a larger δ also implies higher
computation overhead. Also, we see that the positioning error will
increase when δ ≥ 5. This is possibly due to choosing too weak
beacons for scrambling. The samples contributed by these beacons
do not help discriminate one location from the others, thus easily
producing positioning errors. Hence, a scramble degree δ around
4 can achieve relatively satisfied performance.

With different vector buffer sizes and scramble degrees, the
corresponding computation cost may vary. Generally, larger buffer
sizes or/and scramble degrees will result in more scramble
samples, thus increasing the computation cost. Fig. 5 shows the
average computation cost versus positioning error under different
settings. The results closer to the lower-left corner are better
choices. In some cases, higher computation cost does not imply
higher accuracy. The reason is that more scrambled locations
will increase the complexity of location selection. Hence, after
considering both positioning accuracy and computation cost, we
choose (w,δ ) = (2,4), (3,2), and (3,3) and h = 5 in the following
simulation studies.

C. Simulation Studies

Moving speed will affect accuracy because a higher speed
will result in received samples observed at locations that are
farther apart. This violates our assumption of temporal diversity.
Fig. 6(a) shows that the positioning errors of the original NNSS

algorithm, two average schemes avg-NNSS (w = 2) and avg-NNSS
(w = 4), and two scrambling schemes scr-NNSS (w = 2, δ = 4)
and scr-NNSS (w = 4, δ = 2). All schemes except NNSS are
influenced by the moving speed, but avg-NNSS is more sensitive
to the moving speed than scr-NNSS. A larger buffer size w is
harmful as the moving speed increases. This is because these
schemes all rely on the assumption that samples in the buffer
are collected under similar environment conditions. In particular,
we see that avg-NNSS (w = 4) outperforms all other schemes at
low speeds, but quickly deteriorates as the speed increases. But a
larger scramble degree can reduce the negative effect caused by
high moving speeds. Therefore, the proposed scrambling method
can not only improve localization accuracy, but also reduce the
effect of mobility. In Fig. 6(b) and (c), we see the similar effect
when comparing to Prob and NeuNet algorithms. To summarize,
when the object is fixed or has low mobility, the average method
with a larger buffer size is a good choice to reduce the effect
of signal fluctuation. However, if mobility is not negligible, then
the scrambling method with a reasonable small buffer size can
provide quite satisfiable and stable performance.

Fig. 7 shows the impact of sampling periods on different
schemes. We simulate mobile objects with a normal walking
speed of 1.5 m/sec. A longer sampling period will hurt schemes
with buffering. Therefore, we see higher positioning errors when
the sampling period increases. However, compared to the moving
speed, the sampling period is more controllable. Hence, we sug-
gest to decrease sampling periods under the hardware constraints.

In our simulation model, we use a normal distribution to simu-
late the noise effect. Next, we observe the impact of the standard
deviation σ of the distribution (which reflects the level of noise).
Fig. 8 shows the result. The original NNSS, Prob, and NeuNet
schemes are also very sensitive to the enlargement of σ . By taking
the average of several samples, the effect can be reduced. Using
our scrambling methods, such as scr-NNSS (w = 3, δ = 3), scr-
Prob (w = 3, δ = 3), and scr-NeuNet (w = 3, δ = 3), the error can
be further reduced. Therefore, the proposed scrambling method
can help to reduce the impact of environmental noise.

D. Experimental Results

In order to verify our simulation results, we also conducted a
median-size experiment with real signal strength data based on
IEEE 802.11 WLANs. We will compare NNSS with and without
scrambling. Fig. 9 shows our experimental environment at the
National Chiao Tung University, Engineering Building III. There
are over 20 access points in the environment. We collect 100
samples in each of east, south, west, and north directions at 39
distinct locations. This data collection procedure is performed
twice, one for training purpose and the other for testing purpose.
We simulate a user trace from location 1 to location 39 in that
order at different sampling frequencies f . That is, at each location,
we will randomly choose f samples from the testing database. So
there are 39× f samples for experimental evaluation. (The value
of f can somehow be interpreted as the roaming speed of a user.)

Fig. 10 shows the experimental results of different parameter
settings. In Fig. 10(a), the ranges of average maximum and mini-
mum positioning errors of the scrambled locations are presented.
This result shows that with scrambling, larger search space can
be generated, thus being able to provide potential locations that
are closer to the real location at the cost of some computational
overhead. Note that the crossed points in Fig. 10(a) are average
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errors incurred by NNSS without scrambling. Fig. 10(b) shows a
similar comparison as Fig. 5, except that the results are obtained
from experiments. Hence, to balance the trade-off between posi-
tioning accuracy and computation cost, the scrambling methods
with (w,δ ) = (3,2), (3,3), (3,4), (4,2), and (4,3) are better
choices.

Based on the above observation, we select scr-NNSS (w = 3,
δ = 3) and avg-NNSS (w = 3) to evaluate the positioning errors
under different f in Fig. 11. We observe that when w ≥ f , the
impact of signal fluctuation can be effectively reduced. Therefore,
scr-NNSS (w = 3, δ = 3) performs better when f ≥ 3. However,

when f ≤ 2, scr-NNSS (w = 3, δ = 3) performs worse because
we may usually scramble samples from different locations.

IV. CONCLUSIONS

We have presented a novel scrambling method which considers
both temporal diversity and spatial dependency for localization
in noisy environments. By means of scrambling, we can enlarge
the sample space. Through recombining the limited observed
signal vectors, samples with less interference are expected to
appear. Also, a trajectory mechanism is developed to select a
final location from the scrambled results. This scrambling method
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THE EXPERIMENT ENVIRONMENT AT THE NATIONAL CHIAO TUNG

UNIVERSITY, ENGINEERING BUILDING III.

can be integrated with various fingerprint-based positioning al-
gorithms to improve their positioning accuracy. Our simulation
and experimental results show that with a reasonable increase in
computation overhead, positioning accuracy can be significantly
improved.
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