
Available online at www.sciencedirect.com
www.elsevier.com/locate/jvci

J. Vis. Commun. Image R. 19 (2008) 256–269
Content-Aware Fast Motion Estimation Algorithm

Yi-Wen Chen *, Ming-Ho Hsiao, Hua-Tsung Chen, Chi-Yu Liu, Suh-Yin Lee

College of Computer Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan

Received 31 July 2007; accepted 24 January 2008
Available online 19 February 2008
Abstract

In this paper, we propose the Content-Aware Fast Motion Estimation Algorithm (CAFME) that can reduce computation complexity
of motion estimation (ME) in H.264/AVC while maintaining almost the same coding efficiency. Motion estimation can be divided into
two phases: searching phase and matching phase. In searching phase, we propose the Simple Dynamic Search Range Algorithm (SDSR)
based on video characteristics to reduce the number of search points (SP). In matching phase, we integrate the Successive Elimination
Algorithm (SEA) and the integral frame to develop a new SEA for H.264/AVC video compression standard, called Successive Elimina-
tion Algorithm with Integral Frame (SEAIF). Besides, we also propose the Early Termination Algorithm (ETA) to early terminate the
motion estimation of current block.

We implement the proposed algorithm in the reference software JM9.4 of H.264/AVC and the experimental results show that our
proposed algorithm can reduce the number of search points about 93.1%, encoding time about 42%, while maintaining almost the same
bitrate and PSNR.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Motion estimation; Successive Elimination Algorithm; Integral frame; Search range; H.264/AVC; SAD; Motion vector; Computational
complexity
1. Introduction

Block matching-based motion estimation (ME) and
compensation is a fundamental process in international
video coding standards, such as MPEG-1, MPEG-2,
MPEG-4, ITU-T H.263, and H.264, which can efficiently
remove temporal redundancy. Since an ME module is usu-
ally the most computational-intensive part in a typical
video encoder (about 50–90% of the entire system), a effi-
cient ME module is essential and vital.

In recent years, many fast motion estimation algorithms
have been proposed. Some algorithms like Three-Step Search
(TSS) [1] and Diamond Search (DS) [2], search the best
matched blocks following a predefined search pattern to speed
up the searching process. The Successive Elimination Algo-
1047-3203/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jvcir.2008.01.002

* Corresponding author. Fax: +886 3 5724176.
E-mail addresses: ewchen@csie.nctu.edu.tw (Y.-W. Chen),

mhhsiao@csie.nctu.edu.tw (M.-H. Hsiao), huatsung@csie.nctu.edu.tw
(H.-T. Chen), liucy@csie.nctu.edu.tw (C.-Y. Liu), sylee@csie.nctu.edu.tw
(S.-Y. Lee).
rithm (SEA) [3] is a lossless approach which can avoid unnec-
essary computation of the sum of absolute difference (SAD)
and reduce the computation complexity while maintaining
the same performance. The Window Follower Algorithm
(WFA) [7] can dynamically adjust the size of the search win-
dow to avoid unnecessary computations. Since the video con-
tent varies dramatically, these algorithms do not always
perform well for videos of various activities. The drawbacks
and advantages of these algorithms are listed in Table 1.

In this paper, we propose the Content-Aware Fast
Motion Estimation (CAFME) Algorithm to speed up
the motion estimation considering the video content.
The CAFME consists of the Simple Dynamic Search
Range Algorithm (SDSR), Successive Elimination Algo-
rithm with Integral Frame (SEAIF), and Early Termina-
tion Algorithm (ETA). The SDSR adjusts search range
adaptively according to the motion activity of the video.
The experiments show that the SDSR performs well for
the video of different kinds of motion activity. The SEAIF
is designed for saving the computing of block matching in

mailto:ewchen@csie.nctu.edu.tw
mailto:mhhsiao@csie.nctu.edu.tw
mailto:huatsung@csie.nctu.edu.tw
mailto:liucy@csie.nctu.edu.tw
mailto:sylee@csie.nctu.edu.tw


Table 1
Advantages and drawbacks of fast motion estimation algorithms

Category Advantage Drawback

Follow certain search pattern
p

Number of SP is very small
p

Local minimum problemp
Reduce considerable computation

p
Unsuitable for high motionp
Coding efficiency degradation

Adjust search window size
p

Number of SP is small
p

Need thresholdsp
Reduce considerable computation

p
Unsuitable for sudden motion changep
Substantial overheadp
Coding efficiency degradation

Reduce matching complexity
p

Reduce considerable computation
p

Substantial overheadp
Lossless approach

p
Unsuitable for hardwarep
Coding efficiency degradation

Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269 257
motion estimation of H.264/AVC and the ETA could skip
some search points in motion estimation by early termina-
tion of the searching process. Although the CAFME con-
sists of the SDSR, SEAIF, and ETA, these three
algorithms can be used independently. The experimental
result shows that the proposed algorithms could reduce
the computing time-of-motion estimation and maintain
almost the same coding efficiency compared with Full
Search.

The paper is organized as follows: Section 2 introduces
the related background knowledge. In Section 3, we pres-
ent how the Content-Aware Fast Motion Estimation Algo-
rithm is designed and developed. Section 4 reports the
significant experimental results. Finally, the conclusions
and future works are given in Section 5.
2. Related works

2.1. Matching criterion

Matching criterion is exploited as a quality evaluation
metric for motion estimation algorithms to find out the
best matched block. Mean square difference (MSD), mean
absolute difference (MAD), and sum of absolute difference
(SAD) are frequently used criteria. Their definitions can be
described by the following equations.

MSD fc;frðm;nÞð Þ¼ 1

MN

XM�1

i¼0

XN�1

j¼0

fcði;jÞ� frðiþm;jþnÞð Þ2 ð1Þ

MAD fc;frðm;nÞð Þ¼ 1

MN

XM�1

i�0

XN�1

j¼0

fcði;jÞ� frðiþm;jþnÞj j ð2Þ

SAD fc;frðm;nÞð Þ¼
XM�1

i¼0

XN�1

j¼0

fcði;jÞ� frðiþm;jþnÞj j ð3Þ

M and N are the width and height of a block, respec-
tively. m and n are horizontal and vertical components
of motion vector, respectively. fc and fr are the current
and reference blocks, respectively. Among these match-
ing criteria, SAD is a multiplication-free method which
enables efficient implementations in hardware and soft-
ware. Therefore, SAD is chosen as the criterion for
block matching in the international video coding
standards.

Unlike other video coding standards, H.264 uses the
Lagrange multiplier to compute the rate distortion cost
for selecting the best partition from seven block partitions
for inter-prediction of a macroblock. The best matched
block is selected by minimizing the following Lagrange
cost.

J MV;kmotionð Þ ¼ SAD fc; frðm; nÞð Þ þ kmotion

�Rate MV�MVPð Þ ð4Þ

MV = (m,n) is the motion vector, MVP = (mPx,nP) is the
prediction for motion vector, and kmotion is the Lagrange
multiplier. The function Rate(MV �MVP) represents the
predicted motion error and is implemented by a look-up ta-
ble [12].
2.2. Integral frame

Integral frame is proposed by Viola and Jones [13] to
efficiently compute the sum of pixel values within any
rectangle area in a frame. The main idea of integral
frame is to first calculate the value of integral frame at
pixel (p,q) in a frame f, denoted by If(p,q) as defined
in the Eq. (5), in which f(i, j) represents the pixel value
at position (i, j). From Eq. (5), we can see that the value
of the integral frame If(p,q) is the sum of the pixel values
within the rectangle whose top left corner is (0, 0) and
bottom right corner is (p,q). As Fig. 1 shows, the value
of integral frame If(p,q) is the sum of the pixel values
within the gray area.

I fðp; qÞ ¼
Xp

i¼0

Xq

j¼0

f ði; jÞ ð5Þ

We could analyze the computational cost for an integral
frame value with the following equations: let Rf(p,q) be
the sum of pixel values from pixel(0, q) to pixel (p,q) in
row q. By using Eqs. (9) and (10) recursively, one can com-
pute all the values of integral frame If (i, j) at pixel (i, j)



X

Y

p(0, 0) 

f (p, q)

If (p, q)

q

Fig. 1. Integral frame.

258 Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269
within a frame in one pass. For a frame of W � H pixels,
2WH additions are required to compute all the integral
frame values.

Rfðp; qÞ ¼
Xp

i¼0

f ði; qÞ ð6Þ

Rfð�1; qÞ ¼ 0 ð7Þ
I fðp;�1Þ ¼ 0 ð8Þ
Rfðp; qÞ ¼ Rfðp � 1; qÞ þ f ðp; qÞ ð9Þ
I fðp; qÞ ¼ I fðp; q� 1Þ þ Rfðp; qÞ ð10Þ

After we calculate all the integral frame values within a
frame, the sum of pixel values in any rectangular block in
the frame can be computed by three arithmetic operations.
For example, as illustrated in Fig. 2, the block sum of block
D, denoted as BS(D), could be acquired by only three oper-
ations as Eq. (11) shows:

BSðDÞ ¼
Xp

i¼rþ1

Xq

j¼sþ1

f ði; jÞ

¼ I fðp; qÞ � I fðr; qÞ � I fðp; sÞ þ I fðr; sÞ ð11Þ

Because integral frame speeds up the computation of the
block sums, our proposed fast block-matching algorithm
X

Y

p(0, 0) 

q

A

B

C

D

r

s

Fig. 2. Computation of block sum.
utilizes the concept of integral frame to further improve
the efficiency of motion estimation in the process of video
encoding.
2.3. Successive Elimination Algorithm (SEA)

In motion estimation, once the SAD value between
the current block and the candidate block is computed,
it is compared with the current minimum SAD value.
If the newly computed SAD value is smaller than the
current minimum SAD, the candidate block is considered
as the up-to-date best matched block. In order to reduce
the computation of SAD, Successive Elimination Algo-
rithm (SEA) [3] was proposed to speed up the motion
estimation by pruning the unnecessary computation.
The main idea of SEA can be shown in the Eq. (12),
in which fc and fr represent the current block and the
candidate block, BSc and BSr are the block sums of
the current block and candidate block, respectively.
sea(fc, fr) is a value computed by substracting the block
sum BSc from the block sum BSr.

SAD fc; frð Þ ¼
PM�1

i¼0

PN�1

j¼0

fcði; jÞ � frði; jÞj j

P
PM�1

i¼0

PN�1

j¼0

fcði; jÞ �
PM�1

i¼0

PN�1

j¼0

frði; jÞ
�����

�����
� BSc � BSrj j
� sea fc; frð Þ

ð12Þ

SAD (fc, fr) is equal to or larger than sea(fc, fr). If
sea(fc, fr) is larger than the current minimum SAD,
SAD(fc, fr) must be larger than the current minimum
SAD, and therefore, computation of SAD(fc, fr) can be
skipped. Besides, computing sea value is easier than com-
puting SAD, because BSc needs to be calculated only
once and BSr can be derived from the previous value
of BSr. Hence, SEA can efficiently reduce the computa-
tion of SAD.

Multilevel SEA (MSEA) proposed in [4] is a general-
ized SEA. MSEA partitions a block into several sub-
blocks and calculates the BS for each sub-block to gen-
erate a tighter decision value. The block is partitioned in
a multi-level manner. At the L-level partition, the block
is divided into 22L sub-blocks of size N/2L � N/2L. The
msea(fc, fr) value for current block fc and candidate block
fr is then computed by summing the absolute differences
of the corresponding block sum (BS) of each sub-block.
The mesa(fc, fr) is always equal to or larger than
sea(fc, fr). Consequently, the msea(fc, fr) is a lower bound
of SAD, as described in Eq. (13). In Eq. (13), k is the
index of sub-block and L is the level of division. When
the block size is 16 � 16 (M = 16, N = 16), MSEA with
level L = 0 corresponds to SEA, and MSEA with level
L = 4 corresponds to SAD. Obviously, the decision
bound is tighter when the level L is larger; however,
the computational cost is also higher.



Table 3
Modified Window Follower Algorithm

Step 1: For the kth frame, compute the value D as defined in WFA
Step 2: Perform motion estimation for each block in kth frame with

search range Pt, for tth block. Pt is determined by the following
mutually exclusive rules

ð1Þ If SADmint�1 >¼ TH1ð Þ P t ¼ P max; F ¼ 1

ð2Þ If SADmint�1 <¼ TH1 and F ¼¼ 1ð Þ P t ¼ max D; dt�1ð Þ þ 1

If SADmint�1 <¼ TH1 and F ¼¼ 0ð Þ P t ¼ Dþ 1

Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269 259
SAD fc; frð Þ ¼
PM�1

i¼0

PN�1

j¼0

fcði; jÞ � frði; jÞj j

P
P22L�1

k¼0

BSck � BSrkj j

� mseaðfc; frÞ
P BSc � BSrj j
� sea fc; frð Þ

ð13Þ
ð3Þ If SADmint�1 <¼ TH2 and F ¼¼ 1ð Þ P t ¼ max D; dt�1ð Þ
If SADmint�1 <¼ TH2 and F ¼¼ 0ð Þ P t ¼ D
2.4. Modified Window Follower Algorithm (MWFA)

Search range is also a critical factor which influences the
computational complexity of motion estimation. Small
search range results in poor matching results while large
search range produces higher computational load. A suit-
able search range can reduce the computation complexity
and also maintain good coding performance. Window Fol-
lower Algorithm (WFA) [7] is proposed to adaptively
adjust search range based on the following assumptions:

(1) The change of motion content between frames is
gradual and not sudden.

(2) The motion content is constant over a large number
of successive frames.

WFA takes the maximum displacement of MV in previ-
ous frame plus one unit as the search range for the current
frame. The algorithm is presented in Table 2.

However, the characteristics of motion in natural video
sequences vary a lot and is hardly predictable. The assump-
tions of WFA may not be true in natural video sequences.
MWFA [8] modifies WFA by exploiting both temporal and
spatial information and adopting SAD as a measure of
accuracy of MV. MWFA algorithm is presented in Table 3.

SADmint�1 and dt�1 represent the minimum SAD and
the maximum MV displacement for the (t � 1)th block in
the current frame, respectively. The flag F is set to zero
at the beginning of each frame. When the flag F is set to
zero, only temporal information is considered; when the
flag F is set to one, both temporal and spatial information
are taken into account. According to the experimental
results from simulations of typical video sequences, the
threshold TH1 and TH2 are set to 4096 and 2048,
respectively.
Table 2
Window Follower Algorithm

Step 1: For the kth frame, compute the maximum horizontal and vertical
displacement from all MVs in (k � 1)th frame. The maximum value D is
defined as Eq. (14). The dt represents the maximum displacement of two
components of MV of tth block
D ¼ max dt½ � (14)
dt ¼ max MVtx;MVty

� �
(15)

Step 2: Perform motion estimation for kth frame with search range
P = D + 1. For the first frame, the search range P is set to the default
max search range defined in sequence parameter set
3. Content-Aware Fast Motion Estimation Algorithm

In this paper, in order to reduce the computational com-
plexity of motion estimation in .264/AVC, we analyze the
correlations between search range and the motion activity
of the video content and the correlations of the motion vec-
tors between neighboring blocks. Based on these observa-
tions, these correlations are fully considered in the
development of the Content-Aware Fast Motion Estima-
tion Algorithm (CAFME). We first present some observa-
tions and analyses of search range in motion estimation in
Section 3.1. Then, the details of the proposed algorithms,
Simple Dynamic Search Range Algorithm (SDSR), SEA
with integral frame (SEAIF) and Early Termination Algo-
rithm (ETA) are described in Sections 3.2–3.4, respectively.

3.1. Analysis of search range

True MV is defined as the displacement of current block
from the matched block in the reference picture with min-
imum SAD value. Search range constraints current block
to search the best matched block within a predefined area
in the reference picture. Therefore, exploring the effect of
the coding parameters upon the search range in motion
estimation helps to adaptively determine the search range
for each coding block to retrieve true MV in a suitable
search range. Some experiments have been made to observe
and analyze the relationships between search range (SR)
and frame rate, frame resolution, motion activity, quanti-
zation parameter (QP), and SAD of best matched block.
The results and discussion of each experiment are intro-
duced in the following subsections. The experimental envi-
ronment is shown in Table 4.

3.1.1. Search range and frame rate

Since the frame rate affects the difference of successive
frames, so we observe the relationship between SR and
frame rate. The test data are foreman sequence with
FPS = 30 and 15. The temporal distance of sequence with
FPS = 30 and 15 are 1/30 and 1/15 s, respectively. In the-
ory, when the frame rate is higher, the motion estimation
needs smaller search range.



Table 6
The relation between SR and resolution

Table 4
Experimental environment for analysis of the correlations between search
range and coding parameters

Encoder environment

Software: JM 9.4 [14]
RDO: Enabled
Number of reference frame: 1
Quantization parameter (QP): 36
GOP size: 15
Macroblock adaptive inter-layer prediction: Enabled
Machine: Athlon XP 1700+ with 512 MB memory
Profile: baseline
Prediction structure: IPPP
Fast ME (UMHexagonS) [15]: disable
Fast mode selection [16]: disable

260 Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269
The quantization parameter (QP) is mapped into quan-
tization step and affects the bitrate significantly. In our
experiments, the QP is fixed and Rate Control (RC) is dis-
abled. Therefore, we only need to observe the bitrate for
different search ranges. In Table 5, the gray areas indicate
that the bitrates are stable, which means the search ranges
are sufficient for most MBs to be coded with true MVs
which mininimizes SAD value in motion estimation. We
can observe that the bitrates are stable when search range
(SR) is larger or equal to 4 with FPS = 30 and search range
(SR) is larger than or equal to 8 with FPS = 15. It indicates
that the sufficient search range (SR) is proportional to
frame rate.

3.1.2. Search range and frame resolution

To find the relationship between search range and frame
resolution, we run the testing sequence in QCIF and CIF
resolution. The experimental results of coastguard
sequence is shown in Table 6. The gray areas in QCIF res-
olution show that the bitrate is stable when the SR varies
from 2 to 32. The gray areas in CIF resolution indicate
the bitrate is stable when the SR varies from 4 to 32. These
observations indicate that the search range equal to 2 is
sufficient to find the true MVs in QCIF resolution and
search range equal to 4 is sufficient to find the true MVs
in CIF resolution. The search range is proportional to res-
olution, which means the search range should be adjusted
adaptively based on the frame resolution.
Table 5
The relation between SR and FPS
3.1.3. Search range and motion activity

To see the impact of motion activity on search range, we
divide the foreman sequence into two sequences, in which
one is of low motion and the other one is of high motion.
The first sequence is clipped from the first 90 frames and
the second one is clipped from frame 151 to 240. In Table 7,
it is observed that the bitrates are approximately stable
when the SR = 4 in low-motion sequence and the SR = 8
in high-motion sequence, which indicates the higher search
range is needed for high-motion sequences to derive true
motion vectors.

3.1.4. Search range, QP, and SAD of best matched block

In block matching, SAD is used as the matching crite-
rion. In this experiment, we observe the impact of search
range (SR) and quantization parameter (QP) on SAD
value. As shown in Table 8, the experimental result shows
the true MVs can be obtained as long as search range is lar-
ger or equal to 8 while QP only affects the magnitude of
SAD. Fig. 3 depicts SAD average from frame 0 to 299 of
Foreman sequence. In this figure, the vertical axis is the
value of SAD average and the horizontal axis is frame
index. And, the dotted line and solid line represent the
average SAD value over frames in Forman sequence with
SR = 4 and 32, respectively. We can see that the value of
SAD average with SR = 4 and 32 are almost the same from
frame 0 to 299 except for those frames from 150 to 220.
The curve of SR = 4 is above the curve of SR = 32 from
frame 150 to frame 220. This phenomenon is resulted from
Table 7
The relation between SR and motion activity



Table 8
The relation between SR, QP, and SAD

Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269 261
the fact that the motion is higher than the rest of the
sequence from frame 150 to 220. Since true MV always
results in minimum SAD value, it means SR 5 4 is not suf-
ficient to find the true MVs for those frames from 150 to
220, thus results in larger SAD value.

In summary, an appropriate SR can reduce unnecessary
computation in motion estimation and still can find out
true MVs. In our experiments, the search range should be
adjusted adaptively according to motion activity of video
and parameters of encoder. Hence, we propose a mecha-
nism Simple Dynamic Search Range (SDSR) to adjust
SR dynamically based on motion activity.
3.2. Simple Dynamic Search Range (SDSR)

In order to adaptively adjust search range for motion
estimation, some approaches (DSWA [5], AFSBM [6],
MWFA [8], and MAS [9]) have already been implemented.
According to different measure criteria, these approaches
Foreman QCIF Q

0

1000

2000

3000

4000

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

Frame

SA
D

Fig. 3. Motion activity in foreman QCIF frame by

Foreman CIF SR32 SA

0

500

1000

1500

2000

2500

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

Frame

SA
D

Fig. 4. SAD of foreman
could be classified into block-matching error-based and
motion vector-based approaches.

The block-matching error, which represents the degree of
matching between the current block and the candidate block,
is usually measured in Mean of Squared Difference (MSD),
Mean of Absolute Difference (MAD) or Summation of
Absolute Difference (SAD). The value of block-matching
error is determined considering many factors including
motion activity, texture, and quantization parameter. See
Fig. 4 for example. From frame 220, the values of SAD are
much higher than the rest frames. The reason is the compli-
cated video texture, not the motion activity. However, the
values of SAD in frames from 150 to 170 rise sharply due
to the sudden motion change instead of video texture. Con-
sequently, the approaches based on block-matching error
are usually unsuitable to evaluate the motion activity.

On the contrary, motion vector could represent the
motion activity more precisely [9]. Since MV is the dis-
placement between current block and the best matched
block within the search range in reference picture, the mag-
nitude of MV must be less or equal to that of search range.
The relation between SR and MV can be model by Eq.
(16).

SR ¼ max MVx;MVy

� �
þ D ð16Þ

D is an offset between the maximum component of MV and
search range (SR) and it also can be viewed as a magnitude
to measure the extra search points processed in motion esti-
mation. Ideally, D = 0 represents that SR is set equal to the
maximum component of MV, which means no extra search
points are processed. An adaptive SR scheme is to set SR
as close to MV as possible by minimizing D for each coding
block. However, the MV of current block is unknown
before the SR is determined. Therefore, in the proposed
P36

16
9

18
2

19
5

20
8

22
1

23
4

24
7

26
0

27
3

28
6

29
9

SR 4

SR 32

frame with respective to different search range.

Davg=1350

16
9

18
2

19
5

20
8

22
1

23
4

24
7

26
0

27
3

28
6

29
9

SAD

CIF frame by frame.



262 Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269
Simple Dynamic Search Range (SDSR) scheme, we try to
set the SR according to the MVs of neighboring blocks be-
cause the MV of current block and those of neighboring
blocks are highly correlated.

The proposed SDSR algorithm is described in Table 9.
Due to the wide variations of motion activity in video
sequences and different motion activity in various areas
within a single frame, we like to adjust search range based
on both temporal correlation and spatial correlation of
motion field, respectively. The proposed SDSR scheme first
uses the maximum component of MV in previous frame
plus an offset c as an upper bound for search range predic-
tion. It can be described by Eq. (17), in which SR_FRA-
MEk represents search range in frame_level and
max[MVxt,MVyt] represents the maximum horizontal and
vertical displacement among all motion vectors in previous
frame. In this equation, c is used to enlarge the upper
bound for search range prediction to avoid the bad match-
ings caused by small search range.

SR FRAMEk ¼ max MVxt;MVyt

� �
þ c; c P 0

t 2 all blocks inðk � 1Þth framef g
ð17Þ

Then the maximum displacement components of neighbor-
ing MVs of current block t, denoted as MV_MAXt, is used
as a lower bound for search range prediction.

Finally, the search range for each block is adjusted
between the prediction upper bound, SR_FRAMEk, and
the prediction lower bound,MV_MAXt. As described in
Eq. (18), once the MV_MAXt are found to be larger than
Table 9
Simple Dynamic Search Range Algorithm

Step 1: Determine the search range in frame level. The search range
called SR_FRAMEk is computed by the maximum horizontal and
vertical displacement from all MVs in (k � 1)th frame plus c.
The definition is

SR FRAMEk ¼ max MVxt;MVyt

� �
þ c; c P 0

t 2 all blocks in ðk � 1Þth framef g
Step 2: Adjust the search range in macroblock level. Let MV_MAXt

denote the maximum displacement of two components of MVs in
neighbor blocks of tth block, as described in the following rules
s 2 {The left, above left, above, above right blocks of tth block}
If any of neighbor blocks is not available

MV_MAXt = max[max[MVxs,MVys],SR_it FRAMEk]
Else

MV_MAXt = max[MVxs,MVys]
Step 3: Determine the final search range for tth block, called

SR_BLOCKt by the following rules
//Adjust SR in block level
If(MV_MAXt P SR_FRAMEk)

SR_BLOCKt = MV_MAXt + b, b P 0
Else

SR_BLOCKt = a �MV_MAXt + (1 � a) � SR_FRAMEk,
0 6 a 6 1

//SR constraint
If (SR_BLOCKt 6 1)

SR_BLOCKt = 1
Else if (SR_BLOCKt P max search range)

SR_BLOCKt = max search range
SR_FRAMEk, the final search range for current block,
SR_BLOCKt, will be set to MV_MAXt plus an offset b
which acts like c in Eq. (17)

SR BLOCKt ¼MV MAXt þ b; b P 0 ð18Þ
SR BLOCKt ¼ a �MV MAXt þ ð1� aÞ � SR FRAMEk;

0 6 a 6 1 ð19Þ

Otherwise, the final search range will be calculated by Eq.
(19). The control parameter a is used to adjust the weight
of MV_MAXt and SR_FRAMEk to calculate the final
search range SR_BLOCKt for each block.

3.3. Successive Elimination Algorithm with Integral Frame

(SEAIF)

In H.264/AVC standard, the partition modes of each
macroblock in motion estimation include nine intra-modes
and seven inter-modes (see Fig. 5). In inter-coding, 41
motion estimations are required for a 16 � 16 macroblock
while rate-distortion optimization (RDO) is enabled for
mode selection (one for 16 � 16, two for 16 � 8, two for
8 � 16, four for 8 � 8, eight for 8 � 4, eight for 4 � 8,
and 16 for 4 � 4). Due to the support of various partition
modes, the ME cost in H.264/AVC increases dramatically
compared to previous video coding standards. Therefore, it
is essential to develop efficient algorithm to speed up the
computation of ME.

In the H.264/AVC reference software JM 9.4 [14], in
order to reduce the intensive computation caused by
RDO, a Fast Full Pel Search algorithm is implemented
by reusing SAD values of the smallest 4 � 4 block. At
the beginning of the motion estimation of each macro-
block, it first computes the SAD values for all 4 � 4 block
at all search points within the search window. After that, it
merges the SAD values to get the SAD values of larger
blocks. In this way, computation of SAD for a macroblock
with all block size enabled is about equal to the computa-
tion of SAD with only a 16 � 16 block.

We adopt the concept of reusing SAD and integrate it
into our proposed algorithm. We integrate SEA and inte-
gral frame technique introduced in Sections 2.2 and 2.3
to form a new SEA called SEAIF for H.264/ACV stan-
dard. The main idea of the SEAIF for H.264/AVC is to
reuse sea values and SAD values. The following sub-sec-
tions present the details of the design. Sections 3.3.1 and
3.3.2 present the techniques of reusing sea and SAD values.
Finally, analysis of complexity for SEAIF is presented in
Section 3.3.3.

3.3.1. Reusing of sea value

For each search point, calculate the sea values of 16
4 � 4 blocks of the current macroblock by using integral
frame technique. These sea values of 4 � 4 blocks are the
basis for sea values of larger blocks. Then the sea values
of larger blocks are derived from thesesea values of 4 � 4
blocks, described as follows:



16×16 type 16×8 type 8×16 type 8×8 type

8×8 type 8x4 type 4x8 type 4x4 type

Different partition sizes for a macroblock subtype in 8×8 mode

Fig. 5. Different partition sizes in a macroblock.

Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269 263
� For 8 � 4 or 4 � 8 block, sum up sea values of two 4 � 4
blocks.
� For 8 � 8 block, sum up sea values of two 8 � 4 blocks.
� For 16 � 8 or 8 � 16 block, sum up sea values of two

8 � 8 blocks.
� For 16 � 16 block, sum up sea values of two 16 � 8

blocks.

In this way, we can get all the sea values of all blocks of
different partitions. These sea values of larger blocks are
always equal to or larger than the sea values computed
directly from block sums (BS) of corresponding blocks.
Therefore, the sea values of larger blocks derived from
4 � 4 block sea values are lower bound of SAD and thus
more computations of SAD can be skipped.
3.3.2. Reusing of SAD value

In SEAIF, if the sea value is less than the current mini-
mum SAD value, complete calculation of SAD will be pre-
formed. In H.264/AVC, overlapped blocks are used in
motion estimation. In order to reduce the computations of
SAD, we take the 4 � 4 block SAD values as the basis of
the larger block SAD values. In this way, there is no redun-
dant computation of SAD. The proposed approach is
described in Table 10.
3.3.3. Analysis of complexity

The reason of adopting SEA is to reduce the computa-
tional cost in block matching. The overhead of SEA should
be considered and analyzed. The overheads of SEA are
mainly the computation of block sums. In SEA [3], Salari
and Li proposed a fast algorithm to compute the block
sums. The conventional approach, SEA approach, and
Table 10
Reusing SAD value algorithm

Regardless of block size, Calculation of SAD for the block is:
Step1: Find out all 4 � 4 blocks within the block
Step2: Check the SAD values of these 4 � 4 blocks. If any SAD value

of 4 � 4 blocks is not available, compute the SAD value
Step3: Get the SAD value of the target block by adding up SAD values

of these 4 � 4 blocks
Integral frame approach are compared and the analysis
of the overhead of each approach is described as follows:

Let W denote image width, H image height, M block
width, and N block height. Operations required for block
sums of all M � N blocks in a reference frame for the
approaches are as follows:

� Straightforward approach:

Number of block sum in a frame: (W �M + 1)
(H � N + 1)
Operations required for a block sum: MN � 1
Total cost: (MN � 1) (W �M + 1)(H � N + 1)
Approximate cost: MNWH

� SEA approach in [3]:

Total cost: 4WH � (H � N)(M + 3) � 3W(N + 1)
Approximate cost: 4WH

� Integral frame approach:

Operations required for an integral frame: 2WH

Operations required for all block sum: �2(W �M + 1)
(H � N + 1)1

Total cost: 2WH + 2(W �M + 1)(H � N + 1)
Approximate cost: 4WH

Although Integral frame approach and the SEA
approach in [3] have approximately the same complexity,
there is an advantage in Integral frame approach. In Inte-
gral frame approach, it is flexible to get block sum of any
rectangle block.

For example, if we want to use the multilevel SEA for each
block size in H.264/AVC, it will be easier to implement with
integral frame approach (Note that our approach uses the
tighter lower bound in SEA, not multilevel SEA). Comput-
ing msea value of 16 � 16 block with level L = 0 only needs
five operations including three for getting BS, one for sub-
traction operation and one for absolute operation. Never-
theless, merging sixteen 4 � 4 sea values to get the sea
value of 16 � 16 block with level L = 0 needs 15 addition
operations while the sea value is a tighter lower bound. There
1 In [11], Viet Anh Nguyen and Yap-Pen Tan proposed a fast approach
to calculate block sum by exploiting the adjacent property of the blocks.



264 Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269
is trade-off between the tighter lower bound and computa-
tional complexity.

3.4. Early Termination Algorithm (ETA)

In the H.264/AVC encoder, the most time-consuming
component is variable block-size motion estimation. To
reduce the complexity of motion estimation, we propose
an Early Termination Algorithm (ETA) to predict the best
motion vector by exploiting the correlation between the
MVs of the current block and the neighboring blocks. With
the proposed method, some of the search points can be dis-
carded early to speed up the process of motion estimation.

Siou-Shen Lin et al. [10] show that the probability is
about 79% in average when the variance of the current
block and neighbor blocks is smaller than 3. They consider
that it is of high probability that the variance of the motion
vectors in the neighbor blocks is small, which means the
difference between the MVs of current block and those of
neighboring blocks might be small.

We exploit and modify the variance of motion vectors
proposed in [10] to classify the motion activity of current
block and neighbor blocks into simple motion and complex
motion. The variance of motion vectors is defined in Eq. (21).

MVmean ¼ MVaþMVbþMVcþMVdð Þ=4 ð20Þ
MVvar ¼ MVa�MVmeanj j þ MVb�MVmeanj j

þ MVc�MVmeanj j þ MVd�MVmeanj j ð21Þ

If any of the neighbor blocks is not available, MVvar is set
to a large value (999,999). As shown in Eq. (22), the thresh-
old j is used to classify each block into simple_motion or
complex_motion by its MV variance. According to the
experimental results, it is found that setting j to ‘‘5” can
bring more computation time saving while maintaining
good coding performance.

IfðMVvar 5 jÞ
Mactivity ¼ simple motion

Else

Mactivity ¼ complex motion

ð22Þ

Once classified as simple motion, the SAD value of the
block should be similar to those of neighboring blocks.
On the contrary, the SAD values of blocks which are clas-
sified as complex_motion should be quite different from
those of neighboring blocks. Based on this concept, the
lower bound for the condition of termination is determined
in Eq. (23).

IfðMactivity ¼ simple motionÞ
SAD threshold ¼ SAD prediction

Else

SAD threshold ¼ SAD prediction

�SAD standard deviation

ð23Þ

The SAD_prediction and SAD_standard_deviation repre-
sent the prediction of SAD of current block and the stan-
dard deviation of SAD of all blocks in the previous
frame, respectively. The definitions are defined in Eqs.
(24) and (25):

SAD prediction ¼ ðSADaþ SADbþ SADc

þ SADdÞ=4 ð24Þ

SAD mean ¼ 1

Number MB

XNumber MB-1

t¼0

SADt ð25Þ

SAD standard deviation ¼ 1

M � 1

XM�1

t¼0

SADtð
 

�SAD meanÞ2
�1=2

ð26Þ

The SADt is the SAD value of tth block in a frame. Num-
ber_MB is the total number of MB in a frame. If there is no
any neighbor block near the current block, SAD_predic-
tion is set to a small value (�999,999). Note that the
SAD_prediction and SAD_standard_deviation are calcu-
lated for 16 � 16 macroblock. In H.264/AVC standard,
there are seven block sizes used in motion estimation. We
determine the SAD_prediction and SAD_standard_devia-
tion for other block size according to the area occupied
by the block.

Finally, the condition of termination is tested when
a new up-to-date best matched block is found. If the
SAD value of the up-to-date block is equal to or smal-
ler than SAD_threshold, the motion estimation is
terminated.
4. Experimental results and discussions

In this section, we present the experimental results of the
proposed approaches. We modify the H.264/AVC refer-
ence software JM 9.4 and implement the proposed algo-
rithms on it. In the experiments, we observe the number
of search points for each block to measure the performance
of the proposed algorithms. We also measure the coding
efficiency. In order to measure the coding efficiency, we
compare the bitrates of encoded sequences with the same
quantization parameter and disabling rate control. Besides,
we exploit the SAD value as a criterion to measure whether
the determined search range is large enough. Finally, we
compare the total encoding time to measure the improve-
ment in practical situation.
4.1. Experimental environment

Nine testing video sequences are taken into concern in
the experiments. As shown in Table 12, these testing
sequences includes video data of various resolutions and
different motion activities. The experimental environment
and some coding configurations are listed in Table 11.
These parameters are applied to all experiments except
for some circumstances which will be addressed later. Note
that the maximum search range is set to 24.



Table 13
Search points of FFS and SDSR

Sequence name Number of search points Improvement (%)

Fast Full Pel Search SDSR

Foreman QCIF 2401 144 �94
Mobile QCIF 2401 52 �98
Coastguard QCIF 2401 88 �96
Foreman CIF 2401 365 �85
Tempete CIF 2401 261 �89
Flower CIF 2401 563 �77
Stefan SIF 2401 860 �64
Football CIF 2401 1411 �41
Table tennis SIF 2401 497 �79

Average �80

Table 14
Bitrates of FFS and SDSR

Sequence name Bitrates (Kbps) Improvement (%)

Fast Full Pel Search SDSR

Foreman QCIF 69.203 68.858 �0.5
Mobile QCIF 173.016 173.250 +0.1
Coastguard QCIF 76.134 76.022 �0.1
Foreman CIF 188.773 188.490 �0.1
Tempete CIF 425.392 425.810 +0.1
Flower CIF 669.312 669.333 +0.003
Stefan SIF 505.450 505.693 +0.05
Football CIF 413.301 416.525 +0.8
Table tennis SIF 256.259 257.925 +0.65

Average + 0.11

Table 15
Total encoding time of FFS and SDSR

Sequence name Total encoding time (s) Improvement (%)

Fast Full Pel Search SDSR

Foreman QCIF 156 74 �53
Mobile QCIF 151 75 �50
Coastguard QCIF 151 70 �54
Foreman CIF 602 319 �47
Tempete CIF 583 324 �44
Flower CIF 374 221 �41

Table 11
Testing conditions

Encoder configurations

Software: JM 9.4 [14]
ME search range: ±24 pixels
RDO: enabled
Number of reference frame: 1
Quantization parameter (QP): 36
GOP size: 15
Macroblock Adaptive Inter-Layer Prediction: enabled
Machine: Athlon XP 1700+ with 512 MB memory
Profile: baseline
Prediction structure: IPPP
Fast ME (UMHexagonS) [15]: disable
Fast mode selection [16]: disable

Table 12
Descriptions of test video sequences

ID Name Resolution No. of frames Motion activity

A Foreman QCIF 150 Medium
B Mobile QCIF 150 Slow
C Coastguard QCIF 150 Medium
D Foreman CIF 150 Medium
E Tempete CIF 150 Slow, zooming
F Flower CIF 90 Slow
G Stefan SIF 150 High
H Football CIF 90 Very high
I Table tennis SIF 90 Medium, scene change

Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269 265
4.2. Fast full Pel Search

The proposed algorithms are compared with Fast Full
Pel Search2 which is an improved version of conventional
Full Pel Search by reusing SAD values of the smallest
4 � 4 block. Fast Full Pel Search computes the SAD values
for all 4 � 4 blocks in advance whenever a new macroblock
begins the motion estimation. Then, it merges the SAD val-
ues to get the SAD values of larger blocks. In this way,
computation of SAD for a macroblock with all block size
2 The Fast Full Pel Search is implemented in H.264/AVC Reference
Software JM 9.4.
enabled is about equal to the computation of SAD with
only a 16 � 16 block.

Note that the performances of the Fast Full Pel Search
and the conventional Full Search are the same but the Fast
Full Pel Search is faster than the conventional Full Search
in H.264/AVC. In the following context, we denote the
Fast Full Pel Search as FFS.
4.3. Simple Dynamic Search Range

The experimental results of the proposed Simple
Dynamic Search Range (SDSR) algorithm in Table 13
shows that the proposed SDSR algorithm outperforms
the Fast Full Pel Search (FFS) greatly. Compared to
FFS, SDSR reduces the number of search points to 80%
in average. For the testing sequences of low and medium
motions, SDSR could even reduces the number of search
points over 90%. Table 14 shows the comparative results
of coding bitrates of the testing sequences. We can observe
that the bitrates increases slightly for each testing sequence.
In Table 15 the total encoding time is reduced about 40–
50%. The motion activity of Stefan and Football sequences
are higher than others.

To evidence that SDSR could adaptively determine the
search range in a reasonable size, we depict the search
range (SR) determined in each frame as shown in Figs. 6
Stefan SIF 508 340 �33
Football CIF 363 280 �23
Table tennis SIF 298 169 �43

Average �43



Fig. 6. SAD and SR of SDSR frame-by-frame in Foreman QCIF.

Fig. 7. SAD and SR of SDSR frame-by-frame in Football CIF.

Table 17
Total encoding time of FFS and SEAIF (16 � 16 block size only)

Sequence name Total encoding time (s) Improvement (%)

Fast Full Pel Search SEAIF

Foreman QCIF 112 77 �31
Mobile QCIF 117 84 �28
Tempete CIF 458 332 �28
Stefan SIF 369 289 �27

Average �29

266 Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269
and 7. In Figs. 6 and 7, we can also see the SAD values
between the original frame and each reconstructed frame
using the SDSR and the conventional method. It can be
observed that the SAD values of SDSR and FFS are very
close which means SDSR can find true MVs in most of the
motion estimations except for the frames of higher motion
activities. In average, the number of search points is
reduced about 80%, bitrate increases about 0.11%, and
total encoding time is reduced about 43%. Therefore, we
could claim the proposed SDSR can reduce the coding
complexity while maintaining almost the same coding
efficiency.
4.4. Successive Elimination Algorithm with Integral Frame

The proposed Successive Elimination Algorithm with
Integral Frame (SEAIF) is designed to reduces the number
of search points in the process of motion estimation. Tables
16 and 17 show the experimental results of comparison of
SEAIF and Fast Full Pel Search (FFS). In Table 16, we can
see the search points using SEAIF is in average 95% less
than those using FFS under the constraint that only
16 � 16 block size is enabled for motion estimation. There-
Table 16
Search Points of FFS and SEAIF (16 � 16 block size only)

Sequence name Number of search points Improvement (%)

Fast Full Pel Search SEAIF

Foreman QCIF 2401 61 �97
Mobile QCIF 2401 71 �97
Tempete CIF 2401 114 �95
Stefan SIF 2401 193 �92

Average �95
fore, the encoding time of SEAIF is about 29% less than
that of FFS as shown in Table 17.
4.5. Early Termination Algorithm

When reaching desired search point, the proposed Early
Termination Algorithm (ETA) could early terminate the
process of motion estimation to reduce the number of
SP. As shown in Tables 18 and 19, about 44.5% SP are sav-
ing and the bitrate is nearly the same with the bit rate pro-
duced by FFS. However, Table 20 shows that the encoding
time is not reduced as we expect. In the process of motion
Table 18
Search points of FFS and ETA

Sequence name Number of search points Improvement (%)

Fast Full Pel Search ETA

Foreman QCIF 2401 1484 �38
Mobile QCIF 2401 1197 �50
Tempete CIF 2401 1306 �46
Stefan SIF 2401 1350 �44

Average �44.5



Table 19
Bitrates of FFS and ETA

Sequence name Bitrates (Kbps) Improvement (%)

Fast Full Pel Search ETA

Foreman QCIF 69.203 69.365 +0.2
Mobile QCIF 173.016 173.366 +0.2
Tempete CIF 425.392 424.898 �0.1
Stefan SIF 505.450 505.987 +0.1

Average +0.1

Table 20
Total encoding time of FFS and ETA

Sequence name Total encoding time (s) Improvement (%)

Fast Full Pel Search ETA

Foreman QCIF 156 140 �10.3
Mobile QCIF 151 152 +0.7
Tempete CIF 583 594 +1.9
Stefan SIF 508 498 �2.0

Average �2.4

Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269 267
estimation, each search point is estimated in matching cri-
terion, usually SAD. Although our ETA can skip a large
number of search points, it cannot save the computations
of SAD because FFS in JM9.4 calculates all SAD values
in advance. Thus the encoding time can not be saved in this
experiment.
Table 22
Bitrates of FFS and CAFME

Sequence name Bitrates (Kbps) Improvement (%)

Fast Full Pel Search CAFME

Foreman QCIF 69.203 69.118 �0.12
Mobile QCIF 173.016 173.285 +0.16
Coastguard QCIF 76.134 75.862 �0.36
Foreman CIF 188.773 188.784 +0.005
Tempete CIF 425.392 425.955 +0.13
Flower CIF 669.312 670.211 +0.13
Stefan SIF 505.450 504.782 �0.13
4.6. Content-Aware Fast Motion Estimation Algorithm

(CAFME)

The Content-Aware Fast Motion Estimation Algorithm
(CAFME) is formed by integrating the Simple Dynamic
Search Range (SDSR), Successive Elimination Algorithm
with Integral Frame (SEAIF), and Early Termination
Algorithm (ETA). Here we evaluate the performance of
the proposed CAFME and give some discussions.
Football CIF 413.301 419.357 +1.5
Table tennis SIF 256.259 258.939 +1.04

Average +0.26
4.6.1. Performance compared to Fast Full Pel Search (FFS)

Compared to Fast Full Pel Search (FFS), as shown in
Table 21, the number of search points used by CAFME
Table 21
Search points of FFS and CAFME

Sequence name Number of search points Improvement (%)

Fast Full Pel Search CAFME

Foreman QCIF 2401 37 �98.5
Mobile QCIF 2401 12 �99.5
Coastguard QCIF 2401 29 �98.8
Foreman CIF 2401 100 �95.8
Tempete CIF 2401 69 �97.1
Flower CIF 2401 199 �91.7
Stefan SIF 2401 184 �92.3
Football CIF 2401 628 �73.8
Table tennis SIF 2401 224 �90.7

Average �93.1
can be reduced more than 90% for most of the testing
sequences. For the sequences of slow and median motion,
the reduced rates of search points could even reach about
99%. The reduced rate of search points is much lower
(73.8%) for football sequence because of the very high
motion characteristic. In average, the increment of bitrate
of the video stream coded by CAFME is about 0.26%
(Table 22), which is a slight increment. Furthermore, the
total encoding time is reduced about 41.9% as shown in
Table 23.
4.6.2. Performance compared to UMHexagonS

To compare the performance of the proposed CAFME
scheme and UMHexagonS, experiments are done to evalu-
ate the motion estimation time of both schemes under dif-
ferent search range (SR = 24, 48, 96, and 128). Both
schemes are implemented based on JM9.4 and three testing
sequences including Forman, Tempete, and Flower are
used in the experiments.

Tables 24–26 are the results of total motion estimation
time between proposed Content-Aware Fast Motion Esti-
mation Algorithm (CAFME) and UMHexagonS method.
As shown in these tables, although the motion estimation
time of proposed CAFME scheme is higher than that of
UMHexagonS when search range is small, CAFME can
reduce more computation time when search range becomes
Table 23
Total encoding time of FFS and CAFME

Sequence name Total Encoding Time (Second) Improvement (%)

Fast Full Pel Search CAFME

Foreman QCIF 156 69 �56
Mobile QCIF 151 77 �49
Coastguard QCIF 151 68 �55
Foreman CIF 602 314 �48
Tempete CIF 583 318 �45
Flower CIF 374 224 �40
Stefan SIF 508 324 �36
Football CIF 363 325 �10
Table tennis SIF 298 184 �38

Average �41.9



Table 28
Bitrate of UMHexagonS and CAFME over different search range for
sequence Foreman_CIF

Search range Bitrate (bps) Improvement (%)

UMHexagonS CAFME

24 194.45 194.75 +0.15
48 194.53 194.68 +0.07
96 194.56 194.71 +0.07

128 194.71 194.71 +0

Table 29
Motion estimation time of UMHexagonS and hybrid approach over
different search range for sequence Foreman_CIF

Search
range

Motion estimation time (s) Improvement
(%)UMHexagonS UMHexagonS + CAFME

24 47 40 �15
48 57 41 �28
96 78 45 �42
128 92 48 �48

Average �33

Table 30
Motion estimation time of UMHexagonS and hybrid approach over
different search range for sequence Tempete CIF

Search
range

Motion estimation time (s) Improvement
(%)UMHexagonS UMHexagonS + CAFME

24 51 40 �21
48 69 41 �40
96 98 46 �53
128 119 49 �58

Average �43

Table 24
Motion estimation time of UMHexagonS and CAFME over different
search range for sequence Foreman_CIF

Search range Motion estimation time (s) Improvement (%)

UMHexagonS CAFME

24 47 70 +48
48 57 70 +23
96 78 76 �3
128 92 83 �10

Average +14.5

Table 25
Motion estimation time of UMHexagonS and CAFME over different
search range for sequence tempete CIF

Search range Motion estimation time (s) Improvement (%)

UMHexagonS CAFME

24 51 52 +2
48 69 58 �15
96 98 66 �32
128 119 70 �41

Average �24

Table 26
Motion estimation time of UMHexagonS and CAFME over different
search range for sequence Flower CIF

Search range Motion estimation time (s) Improvement (%)

UMHexagonS CAFME

24 43 47 +8
48 52 51 �1
96 76 58 �23
128 90 65 �27

Average �11

268 Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269
larger. It is believed that the proposed CAFME is more
efficient under high search range scenarios like high pro-
files. It is noted that the differences in PSNR and BitRate
between the two schemes at all testing sequences are found
to be negligible. For example, from Tables 27 and 28, we
can see the difference of PSNR and BitRate are not larger
than 0.1% for Forman sequence.

UMHexagonS scheme searches the best matched blocks
following a predefined search pattern to speed up the
Table 27
PSNR of UMHexagonS and CAFME over different search range for
sequence Foreman_CIF

Search range PSNR (dB) Improvement (%)

UMHexagonS CAFME

24 32.58 32.61 +0.1
48 32.58 32.61 +0.1
96 32.58 32.61 +0.1

128 32.58 32.61 +0.1
searching process while the proposed CAFME is a hybrid
scheme consisting of three approaches to speed motion
estimation. Here we combine UMHexagonS with the pro-
posed scheme and compare it to UMHexagonS to see if the
gain of CAFME could be added on top of UMHexagonS.

Compared to UMHexagonS, as shown in Tables 29–31,
the total motion estimation time of hybrid approach (com-
bination of UMHexagonS and CAFME) can be further
Table 31
Motion estimation time of UMHexagonS and hybrid approach over
different search range for sequence Flower CIF

Search
range

Motion estimation time (s) Improvement
(%)UMHexagonS UMHexagonS + CAFME

24 43 35 �18
48 52 35 �33
96 76 39 �49
128 90 43 �52

Average �38



Y.-W. Chen et al. / J. Vis. Commun. Image R. 19 (2008) 256–269 269
reduced, which means the gain of CAFME can be added
on UMHexagonS for all testing sequences.

4.7. Summary

The proposed Simple Dynamic Search Range (SDSR)
can reduce the number of search points about 80% while
sustaining the coding efficiency (bitrate increases 0.11% in
average). We also integrate the Successive Elimination
Algorithm with Integral Frame (SEAIF) and the Early
Termination Algorithm (ETA) with SDSR to form the
Content-Aware Fast Motion Estimation Algorithm (CAF-
ME). The CAFME improves the SDSR and the number of
search points is reduced 93.1% while the bitrate increases
just a little (0.26%). The overall encoding time is reduced
about 41.9% in our implementation.

5. Conclusions and future works

The motion estimation plays an important role in the
video coding standard. Also, it is usually the most compu-
tational-intensive part in a typical video encoder. Hence,
the efficient motion estimation algorithm is essential. We
proposed a fast algorithm called Content-Aware Fast
Motion Estimation Algorithm (CAFME). CAFME con-
sists of the Simple Dynamic Search Range (SDSR), Succes-
sive Elimination Algorithm with Integral Frame (SEAIF),
and Early Termination Algorithm (ETA). The SDSR
adjusts the search range for every block adaptively and
does not need any predefined thresholds and performs well
for all the test sequences. The SEAIF utilizes reusing tech-
niques for calculating SAD of overlapped blocks of vari-
able size thus can reduces the number of computation of
SAD without loss of coding efficiency. The ETA terminates
the search process early when finding a good candidate
block and the performance is stable for all kinds of testing
sequence of different motion activity.

The experimental results show that CAFME can reduce
the number of search point about 93.1% and the bitrate
only increases 0.26% while sustaining the same PSNR.
We modified H.264/AVC reference software JM 9.4 and
implemented our proposed algorithms on it. The total
encoding time reduces about 41.9%.

The motion search algorithm currently used in CAFME
is Fast Full Pel Search (FFS). However it may be replaced
by any fast motion estimation algorithm like TSS and DS.
The future works will focus on developing a fast motion
estimation algorithm suitable for dynamic search range,
alleviate the overhead in implementation, and so on.
References

[1] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, T. Ishiguro, Motion
Compensated Interframe Coding for Video Conferencing, in: Proc.
Nat. Telecommun. Conf., New Orleans, LA, November 29–Decem-
ber 3 1981, pp. G5.3.1–5.3.5.

[2] S. Zhu, K.-K. Ma, A new diamond search algorithm for fast block-
matching motion estimation, IEEE Trans. Image Process. 9 (2) (2000)
287–290.

[3] W. Li, E. Salari, Successive elimination algorithm for motion
estimation, IEEE Trans. Image Process. 4 (1) (1995) 105–107.

[4] X.Q. Gao, C.J. Duanmu, C.R. Zou, A multilevel successive elimina-
tion algorithm for block matching motion estimation, IEEE Trans.
Image Process. 9 (3) (2000) 501–504.

[5] L.-W. Lee, J.-F. Wang, J.-Y. Lee, J.-D. Shie, Dynamic search-
window adjustment and interlaced search for block-matching
algorithm, IEEE Trans. Circuits Systems Video Technol. 3 (1)
(1993) 85–87.

[6] J. Feng, K.-T. Lo, H. Mehrpour, A.E. Karbowiak, Adaptive block
matching motion estimation algorithm for video coding, IEE Elec-
tron. Lett. 31 (18) (1995) 1542–1543.

[7] J. Minocha, N.-R. Shanbhag, A low power data-adaptive motion
estimation algorithm, in: IEEE Third Workshop on Multimedia
Signal Processing, September 13–15 1999, pp. 685–690.

[8] S. Saponara, L. Fanucci, Data-adaptive motion estimation algorithm
and VLSI architecture design for low-power video systems, IEE Proc.
Comput. Digital Techniques 151 (1) (2004) 51–59.

[9] P.-I. Hosur, Motion adaptive search for fast motion estimation, IEEE
Trans. Consumer Electron. 49 (4) (2003) 1330–1340.

[10] S.-S. Lin, P.-C. Tseng, C.-P. Lin, L.-G. Chen, Multi-mode content-
aware motion estimation algorithm for power-aware video coding
systems, in: IEEE Workshop on Signal Processing Systems, 13–15
October 2004, pp. 239–244.

[11] V.-A. Nguyen, Y.-P. Tan, Fast block-based motion estimation using
integral frames, IEEE Signal Process. Lett. 11 (9) (2004) 744–747.

[12] K.-P. Lim, G. Sullivan, T. Wiegand, Text Description of Joint Model
Reference Encoding Methods and Decoding Concealment Methods
ITU-T, Doc. #JVT-N046, January 2005.

[13] P. Viola, M.-J. Jones, Robust Real-Time Object Detection” Cam-
bridge Res. Lab., Tech. Rep. CRL 2001/01, February 2001.

[14] H.264/AVC reference software, <http://ftp3.itu.ch/av-arch/jvt-site/
reference_software/> and <http://iphome.hhi.de/suehring/tml/>.

[15] Z. Chen, P. Zhou, Y. He, Y. Chen, Fast Integer Pel and Fractional
Pel Motion Estimation for JVT” ITU-T, Doc. #JVT-F017, December
2002.

[16] B. Jeon, J. Lee, Fast Mode Decision for H.264 ITU-T, Doc. #JVT-
J033, December 2003.

http://ftp3.itu.ch/av-arch/jvt-site/reference_software/
http://ftp3.itu.ch/av-arch/jvt-site/reference_software/
http://iphome.hhi.de/suehring/tml/

	Content-Aware Fast Motion Estimation Algorithm
	Introduction
	Related works
	Matching criterion
	Integral frame
	Successive Elimination Algorithm (SEA)
	Modified Window Follower Algorithm (MWFA)

	Content-Aware Fast Motion Estimation Algorithm
	Analysis of search range
	Search range and frame rate
	Search range and frame resolution
	Search range and motion activity
	Search range, QP, and SAD of best matched block

	Simple Dynamic Search Range (SDSR)
	Successive Elimination Algorithm with Integral Frame (SEAIF)
	Reusing of sea value
	Reusing of SAD value
	Analysis of complexity

	Early Termination Algorithm (ETA)

	Experimental results and discussions
	Experimental environment
	Fast full Pel Search
	Simple Dynamic Search Range
	Successive Elimination Algorithm with Integral Frame
	Early Termination Algorithm
	Content-Aware Fast Motion Estimation Algorithm (CAFME)
	Performance compared to Fast Full Pel Search (FFS)
	Performance compared to UMHexagonS

	Summary

	Conclusions and future works
	References


