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Abstract 

 

    Combination of solving the flux by trans-

mission matrix T(s) and backward diffusion 

equation, respectively, with the help of 

det[T(s)] = 1 enables us to develop the ele-

ments of transmission matrix in Taylor series 

in s.  This series is useful in evaluation of the 

time moments of residence time, first passage 

time and time lag. 
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Diffusion is a ubiquitous process in the 

physical world.  It is of great theoretical im-

portance with a multiplicity of applications 

in such diverse fields as chemical reaction,1,2 

electrochemistry,3 colloidal science,4 solid 

state physics,5 semiconductor-device fabrica-

tion and operations,6 physical ceramics,7 bio-

physics,8 drug delivery,9 and environmental 

science.10  One way to characterize a diffu-

sion system in which a particle initially lo-

cated at x = x0, within a finite domain is by 

means of the probability density of the time 

required for the particle escaping from this 

domain for the first time, i.e., the distribution 

of the first passage time.11,12  Complete in-

formation of the probability distribution can 

be obtained only for some particular cases.  

Thus, one is usually forced to resort to the 

time moments.  Of the most important among 

them is the first moment, i.e., the mean first 

passage time.  The latter is often related to 

the reciprocal of a (first-order) rate constant 

if a chemical reaction is modeled by diffusion 

over a potential.12  In order to have more in-

formation about the distribution, higher mo-

ments are required.  For example, without the 
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second moment the dispersion of the distri-

bution can not be estimated.13 

For a diffusion with initial condition of 

Dirac delta-function type, the first and higher 

moments are obtainable from solving the 

backward diffusion equation with appropri-

ate boundary conditions.12  Another ap-

proach proposed by Deutchl4 is the use of 

repeated integration over the original diffu-

sion equation.  He obtained the mean first 

passage time for a heterogeneous domain with 

initial distributions of either Dirac delta-

function type or of saturated equilibrium.  

However, the results for the second moment 

is not given. 

Now turn our attention to membrane dif-

fusion transport.  Of them the absorptive 

permeation is the commonest practice.  The 

experiment is set up under a zero initial activ-

ity within the whole membrane, and a con-

stant and a zero activity at the upstream and 

downstream faces, respectively.  Permeabil-

ity, P, and time lag, tL, are crucial parameters 

to estimate the total release Q(t) as a function 

of time through the asymptotic linear equa-

tion Q(t) = P (t - tL).
15,16  tL can be expressed 

by dt
J

tJ
dt

d

tt
ssd

d

L ∫
∞

=
0 ,

)(
,17 with )( tJ d  the time 

dependent flux at the downstream face and 

ssdJ ,  the steady-state flux.  Mathematically 

tL is the first moment of the 
ssd

d

J

tJ
dt

d

,

)(
 distri-

bution.  Various mathematical techniques 

have been employed to formulate the first 

moment, i.e., the time lag, for diffusion with 

position-dependent partition coefficient and 

diffusivity.  However, up to date, we have 

not found the formulation for the higher mo-

ments.   
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Extended calculation to higher terms enables 

us to generalize the Taylor expansion of the 

transmission matrix, T(s), to 
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with nα , nβ , nγ , nδ , following the iterative 

schemes: 

dzdyz
DK

Kx
h

y

n

h
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)(~
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1)(~
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dy
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Recently Zwanzig18 has elucidated the 

effect of potential roughness on the effec-

tive diffusivity of a particle under the influ-

ence of the potential U0(x) + Ul(x), where 

U0(x) is the spatially varying part and Ul(x) 

is the fluctuating part.  The latter is respon-

sible for the potential roughness.  It is found 

that the effective diffusivity D* is related to 

the original diffusivity D by 

>−><<
=

)]/)((exp[)]/)(exp[( 11

*

kTxUkTxU

D
D  (6) 

where k is the Boltzmann constant and < > 

denotes the spatial average.  As a first exam-

ple, if the roughness is simply 

)cos()(1 qxxU ε= , then18 

2
0

*

)]/([ kTI

D
D

ε
=                              (7) 

where I0 is the modified Bessel function of  

the zeroth kind and kT/ε  is its argument. 

If the amplitude of the roughness is a  

Gaussian distribution, with a probability  

proportional to )2/exp( 22 εU−  in which 

>=< 2
1

2 Uε , then 

])/(exp[ 2* kTDD ε−=                       (8) 

In the above examples, it is interesting to note 

that the parameters nα , nβ , nγ , and nδ  are 

modified by being multiplied by a factor 

nkTI 2
0 )]/([ ε  for the first example and 

by nkT ]})/({exp[ 2ε− for the second.  Since 

both 1)/(0 >kTI ε  and 1)/exp( <− kTε  for 

0>ε , we assert that the effect of potential 

roughness in this two cases is to increase the 

magnitude of and hence the time moments of 

orders ≥1. 

In conclusion, we have given an alterna-

tive approach to the time moment analysis 

for diffusion problems.   
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As compared to the traditional iterative 

GreenR function,11 solving the backward dif-

fusion equation11,12,18 and repeated intera-

tion,14 our method gains some advantage in 

the sense that it can be accomplished in a 

simple, straightforward way, involving only 

algebraic operation. 

This results have been accepted for pub-

 



 4

lication in Journal of Chemical Physics on 

March 8, 2000. 
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