
J. Parallel Distrib. Comput. 68 (2008) 678–685
www.elsevier.com/locate/jpdc

Parallel solution of large-scale eigenvalue problem for master equation in
protein folding dynamics

Yiming Lia,∗, Shao-Ming Yub, Yih-Lang Lib

aDepartment of Communication Engineering, National Chiao Tung University, Hsinchu, Taiwan
bDepartment of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

Received 5 May 2007; received in revised form 24 August 2007; accepted 12 September 2007
Available online 22 September 2007

Abstract

It is known that a master equation characterizes time evolution of trajectories and transition of states in protein folding dynamics. Solution
of the master equation may require calculating eigenvalues for the corresponding eigenvalue problem. In this paper, we numerically study the
folding rate for a dynamic problem of protein folding by solving a large-scale eigenvalue problem. Three methods, the implicitly restarted
Arnoldi, Jacobi–Davidson, and QR methods are employed in solving the corresponding large-scale eigenvalue problem for the transition matrix
of master equation. Comparison shows that the QR method demands tremendous computing resource when the length of sequence L > 10 due
to extremely large size of matrix and CPU time limitation. The Jacobi–Davidson method may encounter convergence issue, for cases of L > 9.
The implicitly restarted Arnoldi method is suitable for solving problems among them. Parallelization of the implicitly restarted Arnoldi method
is successfully implemented on a PC-based Linux cluster. The parallelization scheme mainly partitions the operation of matrix. For the Arnoldi
factorization, we replicate the upper Hessenberg matrix Hm for each processor, and distribute the set of Arnoldi vectors Vm among processors.
Each processor performs its own operation. The algorithm is implemented on a PC-based Linux cluster with message passing interface (MPI)
libraries. Numerical experiment performing on our 32-nodes PC-based Linux cluster shows that the maximum difference among processors
is within 10%. A 23-times speedup and 72% parallel efficiency are achieved when the matrix size is greater than 2 × 106 on the 32-nodes
PC-based Linux cluster. This parallel approach enables us to explore large-scale dynamics of protein folding.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Master equation; Eigenvalue problem; Implicitly restarted Arnoldi method; Jacobi–Davidson method; QR method; Parallelization; PC-based Linux
cluster; MPI

1. Introduction

Dynamics of protein folding has recently been of great
interest. It is nowadays explored in different way, such as
mass action models, all atoms, lattice, and off-lattice model,
and methods between macroscopic and microscopic models
[1,2,3,4,5,6,7,11,15,20,21,22]. One of biopolymer folding dy-
namic core problems is finding an ensemble of transition state
conformations or rate-limiting steps. For small molecules, nu-
merical methods theoretically could find transition states, i.e.
the saddle points of the potential energy surface. However,
for proteins or RNA macromolecules, the potential energy
surface of them is usually more complicated and has many

∗ Corresponding author. Fax: +886 3 572 6639.
E-mail address: ymli@faculty.nctu.edu.tw (Y. Li).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.09.002

pathways. Among approaches, a master equation [8,5] is cru-
cial in dynamic simulation of protein folding. Deriving from
the Liouvillian, the master equation basically describes time
evolution of a distribution of trajectories. Numerical solution
of the master equation requires computing eigenvalues �N and
eigenvectors for the corresponding N by N transition matrix.
Those negative and larger eigenvalues determine the slowest
dynamical relaxation processes. The size of transition matrix
grows dramatically with respect to the length of studied protein,
which results in a large-scale eigenvalue problem to be solved.

In this study, we first compare the QR [28,17], implicitly
restarted Arnoldi [24,27], and Jacobi–Davidson [12,23] meth-
ods in calculating all or first few larger nonpositive eigenvalues
of the matrix arising from the master equation in protein fold-
ing problems. These methods are implemented and tested with
respect to different problem size. For a problem with more

http://www.elsevier.com/locate/jpdc
mailto:ymli@faculty.nctu.edu.tw

Y. Li et al. / J. Parallel Distrib. Comput. 68 (2008) 678–685 679

than 10 residues, the QR method is the most stable algorithm
in solving whole eigenvalues of the matrix, but it seriously en-
counters huge computing resource troubles. It requires large-
size of memory to store the whole matrix and the CPU time
grows exponentially. It becomes impossible for us to apply the
QR method to solve a realistic protein folding problem which
involves more than 10 residues. For a problem with 9 residues,
the Jacobi–Davidson method can only solve 26 eigenvalues if
we want to compute the first 50 eigenvalues, for example. By
applying a sparse matrix technique to the transition matrix, the
implicitly restarted Arnoldi method does work for all testing
cases. For various testing proteins with 16 and 17 residues,
the corresponding eigenvalue problems with N in the order of
millions are solved successfully, where the first few computed
nonpositive eigenvalues are discussed. Our comparison sug-
gest that the implicitly restarted Arnoldi method is robust in
calculating the desired eigenpairs of the master equation. Un-
fortunately, the calculation of eigenvalue is a time-consuming
task and requires a lot of computational resources. Therefore,
parallelization of the implicitly restarted Arnoldi method will
benefit the investigation of protein folding dynamics with large
sequences.

We further parallelize the implicitly restarted Arnoldi method
and for the first time introduce this method to explore dynam-
ics of protein folding. Our parallelization scheme principally
partitions the operations of the matrix. For the Arnoldi fac-
torization, we replicate the upper Hessenberg matrix Hm for
each processor, and distribute the set of Arnoldi vectors Vm
among processors. Each processor performs its own operations.
The parallel technique distributes the request of computing re-
sources among PCs uniformly and accelerates the calculation
of eigenvalues �N significantly. In terms of several computa-
tional benchmarks [18,19,10,9], we test the parallel algorithm
with respect to different size of problem on our constructed 32-
nodes PC-based Linux cluster with message passing interface
(MPI) libraries. For proteins with 16 and 17 residues, paral-
lel solution of the eigenvalue problem with N in the order of
millions is successfully implemented, where the accuracy of
computed nonpositive eigenvalues is almost the same with the
solution computed from a single PC. Results of parallel perfor-
mance are achieved in terms of the load balancing, speedup and
efficiency. The scale of parallel performance is examined for
the aforementioned benchmarks with respect to different matrix
size. For small number of processors, the efficiency is almost
independent of the matrix size. For the number of processors
is greater than 8, the efficiency increases when the matrix size
increases; in particular, the scale is evident and continuously
improved even for the matrix size greater than 105 on the 32-
nodes PC-based Linux cluster. A 23-times speedup and over
72% parallel efficiency are simultaneously observed when the
matrix size is greater than 2 × 106 on the 32-nodes PC-based
Linux cluster. According to our numerical examinations, this
parallel implementation successfully solves the problem arising
from the master equation of protein folding in a good manner.
Therefore, it significantly reduces the computational time and
effectively governs large-scale eigenvalue problems in bioin-
formatics.

This paper is organized as follows. In Section 2, we state the
master equation and expound the parallel algorithm. In Section
3, we show the results and discussion. Finally, we draw the
conclusions.

2. The computational model and parallelization

The master equation describing time evolution of trajectory
(i.e., the transition of states) is expressed as [7,8]

dP (t)

dt
= AP(t). (1)

To study the dynamics of Eq. (1), we have to compute the eigen-
values (in general, the first few largest nonpositive eigenvalue)
of the matrix A, where P(t) is the N-dimensional vector of the
instantaneous probability of the N conformations. Depending
on different free energy, A is a sparse and asymmetric N by N
transition (or rate) matrix, where the matrix entries is defined
as

Aij =
{

ki→j for i �= j,∑
l �=i ki→l for i = j,

(2)

where ki→j is the rate constant for a protein changes its confor-
mation from the ith conformation to the j th conformation, and
only depends on the energy states between two conformations

ki→j =
{

1 for Ei �Ej ,

e(Ei−Ej)/kT for Ei < Ej ,
(3)

where Ei and Ej are energy states. k is the Boltzmann constant
and T means the temperature. For any initial conformations,
solutions of Eq. (1) provides the dynamics of population

P(t) =
N=1∑
m=0

C(c)
m nme−�mt , (4)

where the −�m and nm are the mth eigenvalue and eigen-
vector. The overall folding kinetics is the linear combination
by a coefficient C

(c)
m of N possible protein folding conforma-

tions. Therefore, C
(c)
m means contribution to overall kinetics

from the mth mode. The eigenvalues can be ordered as �0 <

�1 ��2 � · · · ��N−1. The eigenvector n0 for the equilibrium
mode gives the equilibrium population distribution. The eigen-
vector n1 for the slowest mode indicates the intermediate state
of protein folding process which takes longest time to fold to
the next conformation.

Furthermore, people may interest in the largest nonpositive
eigenvalue �1. If there is a large gap between the eigenvalues
of slow modes group and a fast modes group, then the overall
folding speed is limited by these slow modes. Therefore, this
protein may fold fast in the beginning because of the group of
fast modes; then there is a rate-determining process because
of the group of slow modes, and finally it fold as the ground
state conformation with its function. Especially for the eigen-
value spectrum with extremely slow modes and a large gap
from other modes, this mode is the bottleneck process of the
whole folding process. It suggests that some eigenvectors with

680 Y. Li et al. / J. Parallel Distrib. Comput. 68 (2008) 678–685

Table 1
The number of conformations of proteins with the length of L residues in a
2D square lattice model

Protein length (L) Number of conformations (N)

4 5
5 13
6 36
7 98
8 272
9 740

10 2034
15 296,806
16 802,075
17 2,155,667
20 41,889,578

�m>0 disappear quickly. On the other hand, any other eigen-
vectors with �m ∼ 0 will determine the slowest dynamic re-
laxation processes. The overall folding processing time of the
protein is approximated as 1/�1. We use HP (hydrophobic and
polar residues) model in a 2D square lattice [1,15,8,13,14]. The
number of conformations of proteins with L residues is listed
in Table 1.

To calculate the first few larger nonpositive eigenvalues
(or all eigenvalues) of the constructed matrix above, the QR
[28,17], implicitly restarted Arnoldi [24,27], and Jacobi–
Davidson [12,23] methods are employed and implemented in
our investigation. Among three solution methods, according
to our numerical experiment, the implicitly restarted Arnoldi
method is suitable for solving the first few larger nonpositive
eigenvalues of the corresponding eigenvalue problem above.
The implicitly restarted Arnoldi method is known as a direct
algorithm for reducing a general matrix into upper Hessenberg
form, and it could be more effective than subspace iteration
methods for computing the dominant eigenvalues of a large,
sparse, real, and asymmetric matrix [17,23,16,6,25]. An algo-
rithm for implementing the implicitly restarted Arnoldi method
is shown below.

Arnoldi Algorithm: Make an Arnoldi factorization AVm =
VmHm + fmeT

m While (converge)

(i) Compute the eigenvalues �j , j = 1, 2, . . . , m;
(ii) Sorting eigenvalues into a wanted set �j , j = 1, 2, . . . , k

and unwanted set �j , j = k + 1, k + 2, . . . , m;
(iii) Perform m − k = p steps of the QR iteration with the

unwanted eigenvalues shift to obtain HmQm = QmH+m;
(iv) AVmQk = VmQkH+k + f+k eT

k , where H+k is the leading
principle submatrix of order k for H+m;

(v) Extend length k Arnoldi factorization to a length m factor-
ization.

Parallelization scheme used in this work is to partition the
operations of the matrix [23,16,6,25]. For the Arnoldi factor-
ization

AVm = VmHm + fmeT
m, (5)

where Vm is the set of Arnoldi vectors, Hm is the upper Hes-
senberg matrix, and fm is the residual vector, it replicates Hm

Fig. 1. A computational flowchart of the implemented parallel method.

on every processor. Vm and fm are partitioned by rows and are
distributed to every processor in the cluster. Explicitly com-
putational steps of the process responsible for the j block are
given by

Step 1. �m← gnorm(||f (∗)
m ||); v

j

m+1 ← f
(j)
m · 1

�m
;

Step 2. w(j)← Av
j

m+1;

Step 3.

(
h

�

)(j)

←
(

V
(j)T
m

V
(j)T

m+1

)
w(j);

(
h

�

)
← gsum

[(
h

�

)(∗)]
;

Step 4. f
(j)

m+1 ← w(j) − (Vm, vm+1)
(j)

(
h

�

)
;

Step 5. Hm+1 ←
(

Hm h

�m eT
m

)
; and

Step 6. v
(j)

m+1 ← (Vm, vm+1)
(j).

For the steps stated above, �m is the norm of the distributed
vector fm, v

j

m+1 is computed by fm/�m, and w(j) is the local
segment of the matrix–vector product Av that is consistent with
the partition of V. The function gnorm at Step 1 is meant to
represent the global reduction operation of computing the norm
of the distributed vector fm from the norms of the local seg-
ments f

(j)
m , and the function gsum at Step 3 is meant to repre-

sent the global sum of the local vectors h(j) so that the quantity
h = �nproc

j=1 h(j) is available to each process on completion.
Fig. 1 is a computational flowchart for the proposed parallel

procedure of the solution method. The communication between
processors is based on the MPI, where the initialization of the
MPI environment has to be carried out firstly [18]. We then per-
form an Arnoldi factorization, and replicate matrix H on each
node. The next step is to partition the calculation of V ma-
trix by the available number of processors, and distributes it to

Y. Li et al. / J. Parallel Distrib. Comput. 68 (2008) 678–685 681

each node. Each processor performs the respective matrix op-
eration, exchanges data to other processors. With this approach
there are two communication points within the construction of
the Arnoldi factorization: the computation of the 2-norm of the
distributed vector fm and the orthogonalization of fm to Vm us-
ing classical Gram–Schmidt with DGKS correction [6,25,26].
Typically the partitioning of V is comparable with the parallel
decomposition of the matrix A. For n-node PCs cluster, the V
matrix is partitioned by blocks VT = (V(1)T, V(2)T, . . . , V(n)T)

with one block per processor and with H replicated on each
node. Since H is replicated on each processor, all operations
on the matrix H are replicated on each node and there is no
communication overhead. We note that the parallel technique is
that the partition of operations on the matrix can accelerate the
calculations and reduce communications among processors.

3. Results and discussion

We first compare the convergence properties of the used three
methods, shown in Table 2. The QR is direct method which en-
ables us to compute all eigenvales (if the target is for all eigen-
values); however, the implicitly restarted Arnoldi (IR-Arnoldi)
and Jacobi–Davidson (J–D) methods belong to iterative meth-
ods. Therefore, we merely compute first few eigenvalues, target
= 50. It is found for L < 10, the QR method solves all targets
acceptable. Unfortunately, it takes a long time to solve large-
scale problems (e.g., 5 h for an 11-mer on a single PC). Only a
half of the target converges when the J–D method is adopted.
It is known that the J–D method is an empirical technique, so
its convergence is still an ambiguous problem [27,23].

Table 2
The interested target and converged result of the tested problem (we consider here the hydrophobic residues only) with different methods

Matrix size (740)2 (9-mer) (2034)2 (10-mer) (5513)2 (11-mer) (15, 037)2 (12-mer)

IR-Arnodi Target 50 50 50 50
Converged 50 50 50 50

J–D Target 50 50 50 50
Converged 26 24 21 20

QR Target 740 2034 5513 15,037
Converged 740 2034 5513 N/A

N/A means that the memory size is greater than 2 GB on the used single PC with 3.06 GHz CPU.

Table 3
A convergence test on the IR-Arnoldi and J–D methods for a problem with 11-mer, where four sequences are calculated

Sequence IR-Arnoldi J–D methods
Target Converged Target Converged

11111111111 50 50 50 21
10101010101 50 50 50 21
00111101011 50 50 50 19
11001111011 50 50 50 20

Solution with the QR method demands on huge computing resource. We compare only two methods on the same PC. The CPU time of these two methods is
within 4 h.

As shown in Table 3, we perform a convergence test on the
IR-Arnoldi and J–D methods for a problem with 11-mer, where
four different sequences are calculated. We find the convergence
property of the J–D method depends on the combination of
sequence. Using the IR-Arnoldi method, we estimate the CPU
time for solving the first 10 eigenvalues of the problem with
the 11-mer hydrophobic residues only (the simplest case), as
shown in Table 4. For different sequence types, the CPU time
increase from 3 to 8 times of this problem.

As shown in Fig. 2, a sequence with nine residues which
has only one conformation in ground state is solved with the
QR method, where all eigenvalues of the problem are com-
puted. It is found that the largest computed nonpositive eigen-
value is equal to −0.0422. The folding time is proportional to
the reciprocal of −0.042. Shown in Table 5, we have tested
the stability of the IR-Arnoldi method with different initial

Table 4
A CPU-time test on the IR-Arnoldi method for the problem with 11-mer
hydrophobic residues only, where the length of sequences are from 12 to 17
on the same PC

Length of sequence CPU time (s.)

4 5
12 12
13 39
14 115
15 343
16 906
17 2880

682 Y. Li et al. / J. Parallel Distrib. Comput. 68 (2008) 678–685

100 10 1 0.1 0.01

Absolute value of the computed eigenvalues in log scale

Fig. 2. The distribution of all computed eigenvalues using the QR algorithm. The plot is for the absolute value of the computed eigenvalues. The first three
largest nonpositive eigenvalues are −0.0422, −0.0468, and −0.0542, respectively. They determine the smallest mode of folding.

Table 5
A stability test of the IR-Arnoldi method with different initial guesses for
the protein with nine residues

Initial guess The 1st eigenvalue The 2nd eigenvalue

1 0 −0.04223398667659
0.04 0 −0.04223398667659
0.0001 0 −0.04223398667664
0 0 0.01827176116506
−0.001 0 −0.04223398667660
−0.04 −0.04223398667659 −0.04675639270119
−1 −1.04365630038126 −0.93086218558657

guesses. We find the IR-Arnoldi method is sensitive to the initial
guesses which may complicate the solution of master equation.
Besides the zero initial guess, biological-based observations
could also be adopted as initial guesses to reduce the related
side effects.

To verify the stability and correctness of the parallel com-
putational method, we test the sequence 0011101011 with 10
residues which has unique conformation in the ground state.
With similar PC-based Linux cluster to [18,19], each PC is
equipped IBM eServer EM64T with 3.6 GHz CPU, 2 GB mem-
ory, and Intel 100 MBit fast Ethernet. All PCs in the con-
structed 32-nodes cluster system are connected with 100 MBit
3Com Ethernet switch. To verify the correctness of the parallel
solution technique, we plot the distributions of all computed
eigenvalues, shown in Fig. 3, and Table 6 shows the first ten
computed eigenvalues from a single processor PC and 32-node
PC-based Linux cluster. Obviously, the computed eigenvalues
are totally the same in a single PC and 32-node PC-based cluster
[17]. We also perform other verifications with larger sequences
and have similar results. This indicates that the implemented
parallel method provides a computationally efficient way to
accurately calculate the eigenvalues in studying dynamics of
protein folding. Fig. 4 shows the maximum norm error of the
smallest and 50th eigenvalue versus the number of iterations
in a single PC and 32-node PC-based cluster. The convergence
of the smallest eigenvalue is much faster than that of the fifti-
eth eigenvalue. It is also found that our parallel method has a
similar behavior of convergence in 32-nodes cluster compared
with the behavior in a single PC.

10 1 0.1 0.01

Absolute value of the computed eigenvalues in log scale

10 1 0.1 0.01

Absolute value of the computed eigenvalues in log scale

Fig. 3. The distribution of all computed eigenvalues for the sequence
0011101011 (L = 10) in (a) a single processor (b) and 32-node PC-based
Linux cluster.

Table 6
The computed first 10 eigenvalues on a single processor and 32-node PC-
based Linux cluster with a 10-mer sequence

Eigenvalues Single processor 32-nodes cluster

1st 2.7300e− 3 2.7300e− 3
2nd 5.0800e− 3 5.0800e− 3
3rd 0.0599 0.0599
4th 0.0927 0.0927
5th 0.3039 0.3039
6th 0.4733 0.4733
7th 0.6146 0.6146
8th 0.7724 0.7724
9th 0.8789 0.8789
10th 0.9818 0.9818

The benchmarks, speedup, efficiency, and maximum dif-
ference [18,19,10,9] with respect to various numbers of pro-
cessors and matrix sizes are adopted to evaluate the parallel

Y. Li et al. / J. Parallel Distrib. Comput. 68 (2008) 678–685 683

1e+1

1e-1

1e-3

1e-5

1e-7

1e-9

1e-11

1e-13

1e-15

M
a
x
.
e
rr

o
r

o
f
th

e
 e

ig
e
n
v
a
lu

e

0 40 80 120 160 200 0 80 160 240 320 400

Number of iteration Number of iteration

Signal Processor

32 Node PCs Cluster

Signal Processor

32 Node PCs Cluster

Fig. 4. The maximum norm error of the (a) first and (b) the 50th eigenvalues versus the number of iterations.

Table 7
The achieved parallel speedup and efficiency of the parallel computing algo-
rithm, where the tested case is a 17-mer with only hydrophobic residues

Processors Simulation time (s) Speedup Efficiency (%)

1 34,704 – –
2 18,964 1.83 91.50
4 9859 3.52 88.00
8 5119 6.78 84.75

16 2902 11.96 74.75
32 1496 23.20 72.50

10 1 0.1 0.01

Absolute value of the computed eigenvalues in log scale

Fig. 5. The eigenvalues of the transition matrix of a 17-mer with only
hydrophobic residues. The dimension of the transition matrix is 2,155,667
by 2,155,667, and 50 eigenvalues have been computed.

performances. The speedup is the ratio of the code execution
time on a single processor to that on multiple processors. The
efficiency is defined as the speedup divided by the number of
processors. Table 7 summarizes the parallel speedup and effi-
ciency of the implemented parallel technique. The tested cases
is a 17-mer with only hydrophobic residues, and we compute
the first 50 eigenvalues of the corresponding transition matrix.
Fig. 5 is the computed eigenvalues of the transition matrix of a
17-mer with only hydrophobic residues. The dimension of the
transition matrix is 2,155,667 by 2,155,667, and 50 eigenval-

20

15

10

5

0

-5

-10
4 8 12 16 20 24 28 32

Number of processors

M
a
x
im

u
m

 d
if
fe

re
n
c
e
 (

%
)

Fig. 6. The achieved load balancing versus the number of processors for the
tested case of a 17-mer with only hydrophobic residues.

ues have been computed. We find that the number of processors
increases, and the efficiency decreases, as shown in Table 7.
However, a 23-times speedup is maintained and the efficiency
is over 72% on the 32-nodes cluster for the 17-mer case. For
the same tested case, as shown in Fig. 6, the variation of max-
imum difference is within 8% when the number of processors
is increased from 2 to 32. The maximum difference is defined
as the maximum difference of the code execution time divided
by the maximum execution time [18,19,10,9]. Fig. 7 shows
the achieved parallel efficiency versus the matrix size for dif-
ferent number of processors. The parallel efficiency can hold
over 70% for parallelization on 2, 4, and 8 processors, which
is almost independent of matrix size. It even achieves 90% ef-
ficiency on 2 processors for all matrix sizes. The paralleliza-
tion on 16 and 32 processors shows the efficiency increases

684 Y. Li et al. / J. Parallel Distrib. Comput. 68 (2008) 678–685

100

90

80

70

60

50

40

104 105 106

Matrix size

E
ff
ic

ie
n
c
y
 (

%
)

2 processors

4 processors

8 processors

16 processors

32 processors

Fig. 7. The achieved parallel efficiency versus the matrix size for different
number of processors.

Matrix size

M
a
x
im

u
m

 d
if
fe

re
n
c
e
 (

%
)

2 processors

4 processors

8 processors

16 processors

32 processors

50

40

30

20

10

0

104 105 106

Fig. 8. The achieved load balancing versus the matrix size for different
number of processors.

when the matrix size increase. However, the efficiency is de-
graded for the cases with small matrix size due to the increased
data communication time among the processors. According to
the results, when the matrix size is less than 105, it is suitable
to perform parallelization on the small number of processors
(e.g., < 8) for maintaining optimal speedup and efficiency. As
shown in Fig. 7, for the parallelization on 16 processors, the
slope of efficiency is reduced when the matrix size is greater
than 106, whereas the slope of efficiency of the parallelization
on 32 processors still grows when the matrix size increases.
The results imply that we may perform parallelization on 32
or more than 32 processors to gain an improved speedup with-
out losing too much parallel efficiency when the matrix size is
greater than 106. Fig. 8 shows the maximum difference versus
the matrix size for different number of processors. We notice
that the maximum differences of the parallelization on 16 and
32 processors decrease significantly when the matrix size in-

creases. We thus have an opportunity to achieve a better load
balancing for those cases with large matrix size. This obser-
vation has been confirmed for the parallelization of the tested
case of a 17-mer with only hydrophobic residues on 32 pro-
cessors (where the matrix size is 2,155,667 by 2,155,667), as
shown in Figs. 6 and 8.

4. Conclusions

We have computationally studied the dynamics of protein
folding by directly solving a large-scale matrix eigenvalue prob-
lem with three numerical algorithms, the implicitly restarted
Arnoldi, Jacobi–Davidson, and QR methods. The QR method
demands huge computing resource when the length of se-
quence L > 10. The Jacobi–Davidson method has encountered
convergent problems, for cases of L > 9. The implicitly
restarted-Arnoldi method solves different corresponding matrix
problems among three methods. We have further parallelized
the implicitly restarted-Arnoldi method for accelerating the
solution of large-scale eigenvalue problem on our 32-nodes
PC-based Linux cluster. Accuracy of the parallelization of
implicitly restarted Arnoldi method has been confirmed for
several tested cases. Benchmark results including the speedup
and parallel efficiency have also been achieved, and have ex-
hibited excellent parallel performance on the PC cluster. We
believe this approach enables us to solve large-scale eigen-
value problems of the master equation in dynamics of protein
folding. For problems with more large sequences, we note that
the growth of matrix size is very fast and then ways to con-
struct the corresponding matrix should be explored. Advanced
computational techniques, such as distributed memory scheme
among computational nodes could also benefit the solution of
large-scale problems. We are currently planning to upgrade our
cluster with more number of processors for further large-scale
problems.

Acknowledgements

This work was supported in part by the National Science
Council of TAIWAN under Contract NSC-96-2221-E-009-210,
Contract NSC-95-2221-E-009-336, Contract NSC-96-2752-E-
009-003-PAE, Contract NSC-95-2752-E-009-003-PAE, and by
the MoE ATU Program, Taiwan, under a 2006–2007 grant.

References

[1] M. Akahoshi, K. Onizuka, M. Ishikawa, K. Asai, A three-dimensional
animation system for protein folding simulation, in: Proceedings of
27th International Conference on Biotechnology Computing 5 (1994)
173–182.

[2] E. Alm, A.M. AV, T. Kortemme, D. Baker, Simple physical models
connect theory and experiment in protein folding kinetics, J. Mol. Biol.
322 (2002) 463–476.

[3] S. Altmeyer, R. Fuchslin, J. McCaskill, Folding stabilizes the evolution
of catalysts, Artificial Life 10 (2004) 23–38.

[4] G. Bologna, R. Appel, A comparison study on protein fold recognition,
in: Proceedings of the 9th International Conference on Neural
Information, vol. 5, 2002, pp. 2492–2496.

[5] V. Daggett, Molecular dynamics simulations of the protein
unfolding/folding process, Accounts of Chem. Res. 35 (2002) 422–430.

Y. Li et al. / J. Parallel Distrib. Comput. 68 (2008) 678–685 685

[6] J. Daniel, W. Gragg, L. Kaufman, G. Stewart, Reorthogonalization and
stable algorithms for updating the Gram-Schmidt qr factorization, Math.
Comput. 30 (1976) 772–795.

[7] K. Dill, H. Chan, From levinthal to pathways to funnels, Nat. Structural
Biol. 4 (1997) 10–18.

[8] K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas,
H.S. Chan, Principles of protein folding—a perspective from simple
exact models, Protein Sci. 4 (1995) 561–602.

[9] K. Dowd, C. Severance, High Performance Computing, O’Reilly,
Sebastopol, 1998.

[10] H. El-Rewini, T.G. Lewis, Distributed and Parallel Computing, Manning,
Greenwich, CT, 1998.

[11] S.W. Englander, Protein folding intermediates and pathways studied by
hydrogen exchange, Annual Rev. Biophy. Biomol. Struct. 29 (2000)
213–238.

[12] D.R. Fokkema, G.L.G. Sleijpen, H.A.V. Vorst, Jacobi–Davidson style
qr and qz algorithms for the reduction of matrix pencils, SIAM J. Sci.
Comput. 20 (1998) 94.

[13] U. Hansmann, Protein folding in silico: an overview, Comput. Sci. Engrg.
5 (2003) 64–69.

[14] C.-D. Huang, C.-T. Lin, N.R. Pal, Hierarchical learning architecture
with automatic feature selection for multiclass protein fold classification,
IEEE Trans. NanoBiol. 2 (2003) 221–232.

[15] E.S. Keum, J. Kim, K.J. Santos, Local minima-based exploration of off-
lattice protein folding, in: Proceedings of the 2003 IEEE Bioinformatics
Conference, 2003, pp. 615–616.

[16] R.B. Lehoucq, D. Sorensen, Deflation techniques for an implicitly
re-started Arnoldi iteration, SIAM J. Matrix Anal. Appl. 17 (1996)
789–821.

[17] Y. Li, Numerical calculation of electronic structure for three-dimensional
nanoscale semiconductor quantum dots and rings, J. Comput. Electron.
2 (2003) 49–57.

[18] Y. Li, S. Sze, T. Chao, A practical implementation of parallel dynamic
load balancing for adaptive computing in VLSI device simulation, Engr.
Comput. 18 (2002) 124–137.

[19] Y. Li, S. Yu, A two-dimensional quantum transport simulation of
nanoscale double-gate MOSFET’s using parallel adaptive technique,
IEICE Trans. Info. Syst. E87-D (2004) 1751–1758.

[20] J.F.-B.R.G.M.A. Micheelsen, C. Rischel, L. Serrano, Mean first-passage
time analysis reveals rate-limiting steps, parallel pathways and dead ends
in a simple model of protein folding, Europhy. Lett. 61 (2003) 561–566.

[21] V. Munoz, W.A. Eaton, A simple model for calculating the kinetics of
protein folding from three-dimensional structures, Proc. Nat. Acad. Sci.
U.S.A. 96 (1999) 11311–11316.

[22] K.T.S.K.W. Plaxco, D. Baker, Contact order, transition state placement
and the refolding rates of single domain proteins, J. Mol. Biol. 277
(1998) 985–994.

[23] G.L.G. Sleijpen, H.A.V. Vorst, A Jacobi–Davidson iteration method for
linear eigenvalue problems, SIAM J. Matrix. Anal. Appl. 42 (1996)
267–293.

[24] D.C. Sorensen, Implicit application of polynomial filters in a k-step
Arnoldi method, SIAM J. Matrix Anal. Appl. 13 (1992) 357–385.

[25] D.C. Sorensen, Implicitly-restarted arnoldi/lanczos methods for large
scale eigenvalue calculations, in: D.E. Keyes, A. Sameh, V.
Venkatakrishnan (Eds.), Parallel Number Alogirthm Proceedings
ICASE/LaRC Workshop, Kluwer Academic Publishers, Dordrecht, 1995.

[26] A. Stathopoulos, K. Wu, A block orthogonalization procedure with
constant synchronization requirements, SIAM J. Sci. Comput. 23 (2002)
2165–2182.

[27] A. Stathopoulos, S. Yousef, W. Kesheng, Dynamic thick restarting of
the Davidson, and the implicity restarted Arnoldi methods, SIAM J. Sci.
Comput. 19 (1998) 227–245.

[28] D.S. Watkins, Qr-like algorithms for eigenvalue problems, J. Comput.
Appl. Math. 123 (2000) 67–83.

Yiming Li received his B.S. degrees in applied
mathematics and electronics engineering, his
M.S. degree in applied mathematics, and his
Ph.D. degree in electronics from the National
Chiao Tung University (NCTU), Hsinchu,
Taiwan, in 1996, 1998, and 2001, respectively.
He is currently an Associate Professor with the
Department of Communication Engineering,
NCTU. He is a Deputy Director of the Modeling
and Simulation Center and conducts the Parallel
and Scientific Computing Laboratory at NCTU.
His research areas include computational

science and engineering, in particular, for biology, electronics and physics.
He has authored over 120 research papers appearing in international book
chapters, journals, and conferences. He has organized and served on various
international conferences and has served as a reviewer and editor for many
international journals. Dr. Li is a member of Phi Tau Phi, Sigma Xi, ACM
and IEEE, and is included in Who’s Who in the World. He was the recipient
of the 2002 Research Fellowship Award presented by the Pan Wen-Yuan
Foundation, Taiwan and the 2006 Outstanding Young Electrical Engineer
Award from Chinese Institute of Electrical Engineering, Taiwan.

Shao-Ming Yu received his B.S. and M.S.
degrees in Computer and Information Science
from NCTU in 2002 and 2004. Currently he
is pursuing his Ph.D. degree at the Department
of Computer Science of NCTU. His research
interests focus on modeling and simulation of
semiconductor nanodevices, parallel and scien-
tific computation, evolutionary algorithms, and
design optimization. He is a student member
of IEEE.

Yih-Lang Li received his B.S. degree in nu-
clear engineering and his M.S. and his Ph.D.
degrees in computer science from the National
Tsing Hua University, Hsinchu, Taiwan, in 1987,
1990, and 1996, respectively. In February 2003,
he joined the faculty of the Department of Com-
puter Science, NCTU, where he is currently an
Assistant Professor. Prior to joining the faculty
of NCTU, from 1995 to 1996 and from 1998
to 2003, he was a Software Engineer and an
Associate Manager at Springsoft Corporation,
Hsinchu, where he was heavily involved in the

development of verification and synthesis tools for custom-based layout. His
research interests include physical synthesis, parallel architecture, and VLSI
testing.

