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Abstract 

We propose more than one spatial 

fundamental Gaussian modes may happen in 

the concentric and confocal resonators under 

persisting nonlinear effect.  Extensively 

studying the influence of resonator’s 

parameters in Kerr-lens mode-locked 

resonator, pitchfork bifurcation results in 

more symmetrical configurations and 

saddle-node bifurcation appears as the 

symmetry being broken.  From the 

properties of bifurcation, we suggest that the 

equal-arm and near-confocal resonator is 

suitable for the emergence of bistability in 

KLM lasers. 
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Recently bistability in Kerr-lens 

mode-locking (KLM) resonators were studied 

by many researchers after the KLM laser was 

built [1-3].  Bistability was firstly predicted 

in a near-concentric unstable KLM resonator 

by considering saturable Gaussian gain and 

Kerr nonlinearity when the pumping rate is 

modulated about the threshold for laser 

operation [1].  When both spatial and 

temporal effects are simultaneously taken 

into account, the S-shaped bistable behavior 

of spot size, pulse width and pulse energy 

with varying pump power was found at a 

specific near-confocal configuration [2].  In 

these two researches bistability mainly 

results from the mixing effect of absorptive 

(gain saturation) and dispersive (optical Kerr 

effect) nonlinearity.  Excluding gain effect, 

bistable behavior was also studied in Ref. [3].  

By applying the reduced self-focusing ABCD 

matrix for a Kerr medium and considering the 

nonlinear coupling of two transversal 

directions in the elliptical beam, they found 

more than one TEM00 resonator modes exist 

near concentric configuration.  In the 

previous results, multiple Gaussian modes 

are numerically obtained in some specific 

configurations with the different source of 

nonlinearity.  But, why these configurations 

are sensitive to nonlinear effect and whether 

this bistable character is configuration 

dependent are not given.  We will show in 

this report the bistability depends upon 

resonator configuration and propose a 

reasonable illumination from studying 

dynamics of Gaussian beam propagation. 
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In the paraxial approximation, the 

fundamental propagation of Gaussian beam 

follows the ABCD law.  The q parameter of 

Gaussian beam is defined as 

( )2

0
11 wiRq πλ−= , where R is radius of 

curvature, w0 the spot size and λ the 
wavelength of the beam.  After using the q 

parameter to construct the iterative map, the 

character of fundamental resonator mode can 

be determined from the behavior of the map 

at the period-1 fixed point [4].  Analyzing 

the stability of the fixed point with the 

Greene’s residue theorem, we obtained the 

residue in a linear system [4] is 

Res=1-(2G1G2-1)
2.   (1) 

Here we had defined G1=a-b/ρ1 and 

G2=d-b/ρ2 as the G-parameters for general 

optical resonators, where ρ1 and ρ2 are their 

radii of curvature for the two end mirrors and 


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





dc

ba
 is the transfer matrix of one-way 

pass between these two end mirrors.  If a 

fixed point of a map without multiplier +1 is 

isolated, there are no other fixed points 

within its neighborhood [5].  Contrarily, 

another periodic orbit could be created or 

destroyed when the fixed point has a 

multiplier +1.  Such saddle-node or 

pitchfork bifurcation may occur under 

persisting nonlinear perturbation.  Since the 

system with residue equal to zero has 

multiplier +1 [5], the confocal (G1G2=0) or 

concentric (G1G2=1) configuration could have 

the above-mentioned bifurcation with the 

help of Eq.(1).  Thus, a general resonator at 

these configurations has the intrinsic 

character that may have multiple Gaussian 

resonator modes under the nonlinear effect.  

The nonlinear self-focusing of Gaussian 

beam in the Kerr medium can be described by 

using the renormalized q parameter [6].  The 

renormalized q parameter will follow the 

free-space propagation in the Kerr medium 

with the Kerr parameter K is the cavity beam 

power over the critical power of self-trapping 

and the Re and Im represent the real and 

imaginary parts of a complex number.  From 

self-consistency of q parameters in a 

resonator, a simple analytical approach was 

proposed to design the four-mirror folded 

KLM laser [7].  Since the curvature of 

Gaussian resonator mode must match those 

of the end mirrors in lossless system, the 

curvature of q parameter at output flat mirror 

M1 is zero.  Thus, we can assume that the q 

parameter at M1 is λπ 2

1
wjjyq == .  

Using the renormalized q parameter concept 

to transform q1 through the Kerr medium and 

the self-consistence at end face II, one can 

obtain the spot size of fundamental mode at 

M1 satisfies a quartic equation of y
2 as [7] 
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Here ΓΓΓΓ represents a configuration variable 
that depends on focal length f.  The distance 

between M1 and M2 is d1, between M3 and 

M4 is d2, between M2 and the end face I of 

Kerr medium is r1 and between two curved 

mirrors is z and the Kerr medium length L, 

respectively.  The coefficients 
4
a , 

3
a , 

2
a , 

1
a , and 

0
a are functions of K and ΓΓΓΓ.  

Owing to a quartic equation having analytic 

solutions, one can extensively study the 

bifurcation behavior of spatial fundamental 

Gaussian mode in the KLM resonator with 

various configurations Γ Γ Γ Γ ’s and K’s. 
�
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We will concentrate on the symmetric 

confocal configuration in the KLM laser 

which has equal arms with d1 = d2 = 850 mm 

and the crystal is placed at the center of two 

curved mirrors with r1 = r2.  The parameters 
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of the optical elements referred to the 

experimental ones [8], in which the radii of 

curvature of the curved mirrors M2 and M3 

are both 100 mm and the length of 

Brewster-cut Ti:sapphire rod is L=20 mm.  

The curved mirrors have been tilted by an 

angle θ for the astigmatism compensation 
about Brewster-cut laser rod.  Thus, the 

resonator could be divided into two 

astigmatic optical systems associated with 

the sagittal and tangential planes.  These 
two planes are considered to be orthogonal.  

Because the similar behavior can also be 

found in both planes, we focused the 

following numerical simulation on the sagittal 

plane.  Since the beam’s q-parameter 

contains only the spot size with zero 

curvature at the output mirror M1, the spot 

size is chosen as the scalar measure in the 

numerical simulation.  The Kerr parameter 

offers the nonlinear effect to be the 

bifurcation parameter. 

Fig. 1(a) shows spot size at M1 versus 

Kerr parameter for z = 115.3mm, r1 = r2 = 

47.65mm and °= 5.14θ  in the symmetrical 

stable resonator.  The solid line in this figure 

indicates the stable solutions of 

self-consistent Gaussian beam and the dashed 

line represents the unstable one.  The 

configuration is near confocal, since the 

confocal configuration for linear (cw) 

resonator corresponds to a separation of the 

curved mirrors zc=115.267mm.  As 

predicted in the previous section, the 

bifurcation appears as a pitchfork bifurcation 

with the bifurcation point at ( )
bb

wK ,  = 

(0.04278, 0.4513 mm), where Kb and wb 

represent the critical bifurcation Kerr 

parameter and spot size.  Furthermore, we 

numerically obtain 0====
Kwww
hhhh  at 

the bifurcation point, where the subscripts of 

function h(w,K,ΓΓΓΓ) represent the various order 
partial derivatives with respect to the 

variables indicated as the subscripts.  

According to the singularity theory [9], this 

result also verifies that the classification 

belongs to the pitchfork bifurcation.   

 When the crystal is located away the 

center of two curved mirrors, the 

characteristics of bifurcation will be changed.  

By constraining z=115.3 mm, the bifurcation 

diagram with r1=46.5mm is shown in Fig. 

1(b), note that r1=47.65 mm for symmetry 

resonator.  It is no longer a standard 

pitchfork bifurcation but a perturbed one.  

Owing to pitchfork bifurcation is not generic, 

it usually results from some peculiar 

symmetry or the inadequacy of the 

idealization, in which some small effects are 

neglected [9].  Therefore, moving the crystal 

away the center of two curved mirrors had 

broken the symmetry and induced the 

perturbed variation of bifurcation.  In Fig. 

1(b), the upper branch of this typical 

perturbed bifurcation corresponds to the 

continuous evolution branch from before to 

after bifurcation.  On the contrary, the other 

typical perturbed pitchfork bifurcation takes 

place at r1 greater than 47.65 mm.  For 

example r1=49 mm in Fig. 1(c), the lower 

branch in this type is a continuous evolution 

one.   

When a slit is inserted at M1 in a hard 

aperturing KLM resonator, the KLM 

strength δ is determined by the rate of change 
of the spot size as increasing the laser power 

[7,10].  Experimentally for achieving the 

larger self-amplitude modulation, in general 

the slit is inserted vertical to the tangential 

plane, in which has the larger KLM strength.  

If the configuration has the pitchfork 

bifurcation in the saggital plane with δ<0 in 
the tangential plane, it is suitable for 

observing the bistablility in hard-aperturing 

KLM laser.  Under well matching the 

astigmatism, δ has the same sign in both 
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planes, thus the configuration with the type 

like r1=49 mm in Fig. 1(c) prefers to operate 

at KLM due to δ<0 in both planes.  

Whereas, the configuration with the type like 

r1=46.5 mm in Fig. 1(b) will not be a 

preferable KLM one.   

 If we considering the asymmetric 

resonator with d1 ≠ d2 but d1+d2=170 cm, the 

different classification of bifurcation will take 

place.  In Fig. 2 with d1=70 cm, d2=100 cm, 

z=114.74 mm and r1=41 mm, saddle-node 

bifurcation occurs at critical bifurcation 

parameter Kb ≈0.08993.  There are no real 
solution of spot size as K < Kb, and two 

self-consistent spot sizes exist as K > Kb.  

The lower branch with solid line indicates 

stable solutions and the upper branch with 

dashed line represents unstable solutions.  

When the configuration varies close to the 

confocal one, the Kb decreases.  In general, 

pitchfork bifurcation will occur in more 

symmetrical configurations and saddle-node 

bifurcation exists as this symmetry being 

broken [5].  Therefore, we think the 

emergence of different classification mainly 

results from the configurations having the 

unequal arms, which have broken the 

symmetry of resonator.  

 However, the symmetry broken from 

the slightly unequal arms can be compensated 

by the tilted angle θ of the curved mirrors.  
The critical bifurcation parameter against the 

tilted angle is shown in Fig. 3 with d1 = 83 cm, 

d2 = 87 cm, z = 115 mm and r1 = 40 mm 

which corresponds to near-confocal 

configuration.  We constrain our discussions 

on Kb < 0.4 that the associated power can be 

obtained from general experiments.  As 

θ <θa =13.7709
o, the configuration has only 

one real solution of spot size and no 

bifurcation.  Increasing the tilted angle to 

θ >θa, we find the saddle-node bifurcation 

takes place.  The upper branch corresponds 

to the stable solution and the lower branch 

corresponds to the unstable solution.  

Moreover, Kb increases as increasing the 

tilted angle, but the stability reverses and the 

Kb decreases as increasing the tilted angle to 

θ >θb = 13.9155
o.  When θ is greater than θc 

= 14.1207o, the bifurcation transits to the 

perturbed pitchfork bifurcation and Kb still 

decreases as increasing θ.  The minimum Kb 

is 0.04955 at θd = 14.1361
o corresponding to 

the standard pitchfork bifurcation.  The 

other type of perturbed pitchfork bifurcation 

exists as θd<θ <θe = 14.2186
o, in which Kb 

increases as increasing θ.  The configuration 
returns to having one reasonable spot size as 

θ >θe if one constrains Kb<0.4.  In fact, 

dynamical characteristics in this region still 

belongs to the pitchfork bifurcation for 

Kb>0.4.  Because such a K value is not easy 

to reach in general KLM lasers, the 

phenomenon of bifurcation may not be 

observed in experiments.  It is note that the 

above regions all have δ<0 in tangential plane, 
i.e., these regions prefer to KLM operation 

with hard aperture.  Although the tilted 

angle can compensate the broken symmetry 

resulting from unequal arms, the latter one 

governs the emergence of bifurcation.  If we 

constrain cmdd 170
21

=+  and 
21

dd ≤ , the 

region of pitchfork bifurcation is about 

hundreds of µm for z translation in equal-arm 
resonator.  The region quickly shrinks as 

increasing 
21

dd −  and becomes less than 

10µm as cmdd 4
21

≥−  even having the 

tilted angle compensation.   

The bifurcation phenomenon can also be 

found in the near-concentric resonator.  But 

the region having bifurcation is smaller than 

that of near-confocal resonator, and its 

classification belongs to the saddle-node 

bifurcation.  Since saddle-node bifurcation 

has only one stable solution, bistability will 

not be found in such configuration if we just 
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consider the self-focusing effect.  Moreover, 

no steady spot size in the range with K< Kb 

represents that the resonator lacks a steady 

pulse generating mechanism from cw with K= 

0 transiting to KLM with higher K.  This 

system may not be spontaneous in KLM 

laser.  On the contrary, bistability could be 

observed in the configuration with 

unperturbed or perturbed pitchfork 

bifurcation having two stable spot sizes in 

K> Kb and a steady one in K< Kb; especially, 

the configurations having δ<0 in tangential 
plane is achievable to mode-locking operation 

with hard aperture.  Thus, we suggest that 

the equal-arm and near-confocal resonator is 

suitable for the emergence of bistability in 

experiment due to the region with pitchfork 

bifurcation being large. 

When we further consider the spatial 

and temporal effects in a KLM resonator, a 

simple quadratic equation is obtained to 

determine the pulse width from space-time 

analogy [12].  Owing to the spot size 

variation in Kerr medium couples to temporal 

self-phase modulation matrix, the bifurcation 

of spot size will result in the bifurcation of 

pulse width.  We indeed found the same 

classification of bifurcation in pulse width 

versus Kerr parameter.  It is also found in 

Ref. [2] that both spot size and pulse width 

appears the same bistability behavior.  But 

S-shaped behavior in Ref. [2] is not found 

and instead of pitchfork bifurcation in this 

research, this difference may be attributed to 

the gain saturation effect. 
�
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Studying the iterative map constructed 

from the propagation of Gaussian q 

parameter in a resonator, we found that the 

confocal and concentric configuration 

corresponding to the map having multiplier 

+1.  Such a map will induce bifurcation 

under nonlinear perturbation in general.  

This result gives a reasonable interpretation 

for the existence of multiple fundamental 

Gaussian modes, which often occur at the 

limit of stable region.  When the numerical 

simulations contain only the self-focusing and 

ignore the gain saturation effect in KLM 

resonator, bistability takes place in the 

above-mentioned configurations.  Under 

extensively studying the influence of different 

arm-lengths, crystal position and tilted angle, 

there are two main classification bifurcation 

corresponding to pitchfork and saddle-node 

ones.  Pitchfork bifurcation occurs in 

configurations with higher symmetry and 

saddle-node bifurcation exists as this 

symmetry being broken.  In addition, we 

suggest that the equal-arm and near-confocal 

resonator is suitable for the emergence of 

bistability in experiment. 
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Fig. 1  Pitchfork bifurcation.  The spot size 

versus Kerr parameter with d1 = d2 
= 85 cm is shown for z = 115.3 mm 

and (a) r1=47.65 mm, (b) r1=46.5 

mm and (c) r1=49 mm.  The solid 

line for stable solutions and dashed 

line for unstable one. 
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Fig. 2  Saddle-node bifurcation at d1=700, 

d2=1000, z=114.74 and r1=41 mm, 

respectively. 
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Fig. 3  The critical bifurcation parameter 

versus tilted angle with d1=830, 

d2=870, z=115 and r1=40 mm, 

respectively. 

 


