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Performance of block-coded land mobile satellite systems
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SUMMARY

Although various measurements have indicated that mobile satellite channels are not memoryless, most
related coded system performance analysis assumes perfect interleaving is in place so that the effect of
channel memory can be completely ignored. This paper presents a systematic method to accurately and
efficiently predict the performance of errors-and-erasures or errors-only decoders for block-coded systems
in general mobile satellite channels. Numerical results are provided to validate our analytic results.
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1. INTRODUCTION

In the past two decades, there has been a series of investigations on land mobile satellite (LMS)
channel measurements and modeling. Measurements ranging from very high frequency to Ka-
band have been performed and some statistical models were proposed [1–3]. Initial efforts were
focused on the measurements and the characterization of field strength statistics but subsequent
studies found that signals propagating through a mobile satellite channel often suffer from
correlated fading and the received waveform variation can be modeled by a proper Markov or
semi-Markov process. For different environments and applications, LMS channels can be
described by a simple two-state Gilbert–Elliott (GE) model [4–7] or a more complicated
multiple-state model [8–11].

Lutz et al. [4] suggested an analog channel model and a two-state GE model to represent
L-band LMS channels. They also discuss the block error probability density (probability
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of m errors occurring in a block of n bits), error gap distribution, and block error prob-
ability. Sebastiao et al. [5] extended the work of [4], evaluating the performance
of Tomlinson–Cercas–Hughes codes in LMS channel through computer simulations.
Zhu and Roy [6] use a two-state GE model (shadowed, unshadowed) to investigate the
performance of a hybrid FEC/ARQ system in LMS channels. Ernst et al. [7] show the
potential improvement for satellite multicast by using packet level coding in two-state Ku-band
channels.

Vucetic and Du [8] used a linear combination of lognormal, Rayleigh, and Ricean models
to describe signal variations over areas with constant environmental attributes. A finite-state
Markov chain is applied to represent environmental parameter variations. Lin et al. [9]
proposed a three-state (blocked, shadowed, clear) Markov chain to predict propagation
statistics of the LMS communication in L- and S-bands. Braten and Jelta [10] characterized
L-band LMS channels by two- or three-state (open, shadowed, or blocked) semi-Markov
models where the duration in each state follows an exponential distribution. Shen et al. [11]
presented a six-state Markov model for LMS channels with two main channel states
used to describe low shadowing and high shadowing situations while each state in turns
contains three sub-states.

Performance of some special or general block codes in finite-state Markov channels has
been analyzed [12–16] but none deals with systems operating in LMS channels. We present a
detailed performance analysis that accurately predicts the performance of general bounded-
distance errors-and-erasures (EE) and errors-only (EO) decoders over correlated LMS channels.
The rest of this paper is organized as follows. General two-state Markov channel model
and its extension to LMS channel modeling are described in the following section, so are the
related parameters. Section 3 focuses on the evaluation of the codeword error probabilities
(CEPs). We first review a general CEP expression given in [17], which is in turn decomposed into
some conditional CEPs. As the CEP formula involves the probability of an error event in an
arbitrary s-state Markov chain, we present two algorithms for evaluating this probability.
Specific expressions of each conditional CEP for the LMS channel of interest are then derived.
Numerical examples and related discussion are provided in Section 5. Finally, Section 6
summarizes our major results.

2. HIDDEN MARKOV CHANNELS AND MODELS

We begin with a brief review of the classical GE model and associated parameters. We then
investigate the LMS channel where the simple GE model is not sufficient to describe the channel
characteristic. The effect of finite interleaving size is taken into account as well.

2.1. GE channel model

The GE channel model is a two-state Markov chain consisting of a good state G and a bad
state B; see Figure 1. The transition probabilities that the channel moves from state G to state B
and from state B to state G are denoted by b and g, respectively. Oftentimes, one has small
values for the transition probabilities b and g. The method of matching GE channel model to a
flat Rayleigh fading channel is discussed in [18]. Denoting by g the instantaneous signal-to-noise
ratio (SNR) and choosing a level gt for the particular instantaneous SNR value or the
normalized received signal strength that separates the good state from the bad state [19] and
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then matching the average bad state duration, derived from the level-crossing rate, to the
average number of time units the GE channel stays in the bad state, we arrive at [18,20]

g ¼
rfDTs

ffiffiffiffiffiffi
2p

p
er

2 � 1
ð1aÞ

b ¼ rfDTs

ffiffiffiffiffiffi
2p

p
ð1bÞ

where fD is the Doppler frequency, Ts is the symbol duration, and r ¼ gt=g is the ratio
between the channel state threshold and the average SNR of the received signal. Note that the
product fDTs, which will be called normalized fade rate henceforth, determines the average
fade rate in the sense that a smaller fDTs implies smaller transition probabilities and larger
probabilities of staying at a given state. The choice of the threshold, as found by Wilhelmsson
and Milstein [19], has, in many cases, little impact on the accuracy of the model if it is within a
reasonable range.

Consider a block interleaver of m columns and n rows, where n is equal to the codeword
length. The transmitted codeword symbols are written in by column and read out by row. We
would like the interleaver depth m to be larger than or at least equal to the channel’s coherent
time. In practice, however, interleaver size is limited by both hardware and delay constraints.
The combining effect of the interleaver–deinterleaver pair and the channel with memory is
equivalent to that of a new GE channel whose transition probabilities are given by [(6)–(9), 19]

g0 ¼ P1ðGÞð1� ð1� b� gÞmÞ ð2aÞ

b0 ¼ P1ðBÞð1� ð1� b� gÞmÞ ð2bÞ

where P1ðGÞ and P1ðBÞ are steady-state probabilities of good state and bad state, respectively.
Obviously, the larger the interleaver depth m, the greater the transition probabilities g0 and b0

become and the less likely the channel will stay at a given state. As a result, the correlations
among the received samples become smaller.

2.2. An LMS channel model

The measurement of Lutz et al. [4] indicates that an LMS signal passes through shadowed and
unshadowed sections and the characteristics of the switching process between two sections can
be approximated by a Markov model. When no shadowing is present, the multipath (diffused)
component is superimposed on the direct satellite signal, with the total received signal amplitude
forming a Ricean process. The probability density function (pdf) of the instantaneous received
power S is

PðSÞ ¼ Ke�KðSþ1ÞI0ð2K
ffiffiffiffi
S

p
Þ ð3Þ

G B

b

g

1-b

1-g

Figure 1. The Gilbert–Elliott channel model.
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where K is the Ricean factor and I0ð�Þ is the modified Bessel function of the first kind of order
zero. When shadowing is present, S is Rayleigh distributed with a short-term mean S0 that
follows a lognormal distribution. In short, the instantaneous received power is governed by the
two pdfs

PðSjS0Þ ¼
1

S0
e�S=S0 ð4Þ

and

PðS0Þ ¼
10ffiffiffiffiffiffi

2p
p

s ln 10

1

S0
exp �

ð10 log10 S0 � mÞ2

2s2

� �
ð5Þ

where m is the mean power level decrease (in decibels) and s2 is the corresponding variance of the
power level due to shadowing. Measurements of the short-term average behavior over a large
area suggest that S0 can also be modeled as a Markov process. A multi-state model is thus
needed to characterize the dynamic behavior of the shadowed satellite mobile channels [8].
However, it was also observed [8] that the variations of the lognormal component are much
slower than the Rayleigh component. Therefore, it is reasonable to assume that when a
transmitted codeword encounters a Rayleigh–lognormal fading, the received signal strength
within a short period (e.g. a few codeword lengths) follows a Rayleigh distribution with a
constant S0.

Taking into account the fading characteristic in each section, which in our case might last for
a few symbol or codeword lengths, we obtain the four-state model shown in Figure 2, where a
superstate refers to the collection of states that characterize either unshadowed or shadowed
fading and is equivalent to a section defined in [4]. For a given vehicular speed v (m/s) and
sampling rate R (samples/s), the measured average distances in meters (m) that a vehicle remains
in an unshadowed and a shadowed section (superstates), Du (m) and Ds (m), and the average
distances in samples are related by

DuðsamplesÞ ¼
1

pus
¼

R

v
Du ðmÞ ð6aÞ

DsðsamplesÞ ¼
1

psu
¼

R

v
Ds ðmÞ ð6bÞ

Gu

Bu

Gs

Bs

unshadowed
superstate

shadowed
superstate

pus

psu

1-pus 1-psugsgubu bs

1-gu 1-gs

1-bu 1-bs

Figure 2. A land mobile satellite channel model.
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where pus and psu are the transition probabilities, Prfunshadowed superstate-shadowed
superstateg and Prfshadowed superstate-unshadowed superstateg, respectively.

The transition probabilities between two superstates can be evaluated by the same method
used for the GE model. Those between two shadowed (conditional Rayleigh fading) states are
the same as (1a) and (1b) and are denoted by gs and bs, while the transition probabilities between
two unshadowed states (Ricean fading) are given by

gu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðK þ 1Þ

p
fDTsre�K�ðKþ1Þr

2

I0ð2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 1Þ

p
Þ

1�Q1ð
ffiffiffiffiffiffiffi
2K

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK þ 1Þ

p
rÞ

ð7aÞ

bu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðK þ 1Þ

p
fDTsre�K�ðKþ1Þr

2

I0ð2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 1Þ

p
Þ

Q1ð
ffiffiffiffiffiffiffi
2K

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK þ 1Þ

p
rÞ

ð7bÞ

where

Q1ða; bÞ ¼
Z 1

b

xe�ðx
2þa2Þ=2I0ðaxÞ dx ð8Þ

is the Marcum’s Q function. Usually, the inter-superstate transition probabilities are smaller
than the inter-state (intra-superstate) transition probabilities. But even with a very small pus or
psu (o10�4) and a moderate codeword length (say 200 code symbols), the probability of at least
an inter-superstate transition within a codeword is much larger than the CEP. For short codes
and small pus or psu, the CEP is to be averaged over two conditional CEPs; each one is computed
under the assumption that the received samples corresponding to a codeword suffer from
multiplicative fading whose statistic is governed by the states within the same superstate. For
both cases, however, the error that occurs when the channel is in a shadowed state will dominate
the decoder performance.

3. CEP ANALYSIS

Our analysis on the CEP Pw(e) performance of a coded LMS system in a Markovian
channel whose characteristic is described in the previous section follows the approach proposed
in [17]. For convenience of reference, we summarize the main results of [17] in the following
subsection.

3.1. A systematic approach for computing CEP

For an s-state Markov chain, we denote by Ni; i ¼ 1; 2; . . . ; s, the random variables that
represent the number of times state i is visited during an n-time-unit period and by Es ¼

def �
ðN1 ¼ n1; . . . ;Ns ¼ nsÞ the event that during an n-time-unit period the channel is in state j for nj
(symbol) times. Then [17]

PwðeÞ ¼
X
Es

Pwðejn1; . . . ; nsÞPnðn1; . . . ; nsÞ ¼
X
Es

PwðejEsÞPnðEsÞ ð9Þ

where PwðejEsÞ ¼ Pwðejn1; . . . ; nsÞ is the conditional CEP given Es and PnðEsÞ ¼ Pnðn1; . . . ; nsÞ is
called the channel state-sequence (CSS) probability.

For a system that employs a block code of length n for transmission over a Hidden Marker
Channel (HMC) characterized by an s-state Markov chain, the corresponding CEP expression

PERFORMANCE OF BLOCK-CODED LMS SYSTEMS 255

Copyright r 2008 John Wiley & Sons, Ltd. Int. J. Commun. Syst. Network 2008; 26: 251–267

DOI: 10.1002/sat



(9) is modified as

PwðeÞ ¼
Xn
n1¼0

Xn�n1
n2¼0

� � �
Xn�
Ps�2

j¼1
nj

ns�1¼0

PnðEsÞPwðejEsÞ ð10Þ

If the minimum distance of the code be dmin ¼ 2tþ 1, then for EO decoding, we have the
decomposition

PwðejEsÞ ¼
Xn

t¼ddmin=2e

X
t1

Psðt1jn1Þ
X
t2

Psðt2jn2Þ � � �
X
ts�1

Psðts�1jns�1ÞPsðtsjnsÞ ð11Þ

where t ¼
Ps

i¼1 ti, ns ¼ n�
Ps�1

j¼1 nj , and dxe represents the smallest integer greater than or equal
to x, while Psðti jniÞ is the conditional probability that ti errors occur during the ni times the
channel stays at state i. The upper and lower limits of various summations in (11) given above
can be found in [17].

If an EE decoder is used, we have

PwðejEsÞ ¼
Xdmin�1

‘¼0

Xn�‘
t¼dðdmin�‘Þ=2e

Pð‘; tjEsÞ þ
Xn
‘¼dmin

PEð‘jEsÞ ð12Þ

where Pð‘; tjEsÞ is the joint (conditional) probability that there are ‘ erasures and t errors
in a codeword and PEð‘jEsÞ ¼ Pð‘; 0jEsÞ is the (conditional) probability that there are
‘ erasures in a codeword. Detailed expressions for these conditional probabilities can be
found in [17].

The evaluation of the above conditional probabilities, PEð‘jEsÞ and Pð‘; tjEsÞ, in turn, relies
on the knowledge of the following component conditional probabilities [17]:

Peji ¼ Prfa symbol is erasedjchannel state ¼ ig ð13aÞ

Psji ¼ Prfa symbol is incorrectly detectedjchannel state ¼ ig ð13bÞ

Pc; �eji ¼ Prfa symbol is correctly detected and not erasedjchannel state ¼ ig ð13cÞ

Ps; �eji ¼ Prfa symbol is incorrectly detected but not erasedjchannel state ¼ ig ð13dÞ

It can be shown that the above conditional probabilities satisfy Peji þ Ps; �eji þ Pc; �eji ¼ 1 and
Psjið1� PejiÞ ¼ Ps; �eji.

3.2. Evaluating the CSS probability

The above equation indicates that to calculate the CEP it is necessary to evaluate the CSS
probability PnðEsÞ. This issue was not addressed in [17]. We now present two simple systematic
methods for computing PnðEsÞ for an arbitrary finite-state Markov chain.

3.2.1. The transform domain method. Define the multi-dimensional moment generating function
of the random variables N1;N2; . . . ;Ns by

Cðz1; z2; . . . ; zsÞ ¼
X

n1þn2þ���þns¼n
n1 ;n2 ;...;ns

Pnðn1; n2; . . . ; nsÞz
n1
1 z

n2
1 � � � z

ns
s ð14Þ
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Then it is easy to see that the corresponding joint pdf is

Pnðn1; n2; . . . ; nsÞ ¼
1

n1!n2! � � � ns!
@n

@zn11 @z
n2
2 � � � @z

ns
s
Cðz1; z2; . . . ; zsÞ ð15Þ

The moment generating function Cðz1; z2; . . . ; zsÞ can be computed as follows. Let T ¼ ½pij �s�s be
the transition probability matrix of the s-state Markov chain of concern and pj ; j ¼ 1; 2; . . . ; s, be
the probability of being in state j at time t5 1. Then it can be shown that [13]

Cðz1; z2; . . . ; zsÞ ¼ �ZT
n�1
Z 1 ð16Þ

where 1 ¼ ½1 1 � � � 1�T and �Z ¼ ½p1z1 p2z2 � � �pkzs�.

3.2.2. A direct recursive method. The second method utilizes the recursive relation [13]

Pixðd1; . . . ; dsÞ ¼
Xs
y¼1

Pði�1Þyðd1; :::; dx � 1; :::; dsÞpyx ð17Þ

where pyx is the (one-step) transition probability from state y to state x and Pixðd1; . . . ; dsÞ
is the joint probability that during a period of i consecutive time intervals the channel
has visited state x dx times and is in state x at the ith time interval. The initial condition
is given by

P1xðd1; . . . ; dsÞ ¼
px if dx ¼ 1 and dy ¼ 0 8y 2 f1; . . . ; sg fxg
0 otherwise

�

Therefore,

Pnðn1; . . . ; nsÞ ¼
Xs
x¼1

Xs
y¼1

Pðn�1Þyð. . . ; nx � 1; . . .Þpyx ð18Þ

It can be shown that, for an s-state Markov channel with
Ps
i¼1

ni ¼ n, the (multiplicative)

complexities for computing PnðEsÞ based on the above two methods are Oððn� 1Þs4ð
nþ s� 1
s� 1

ÞÞ

and Oðsn�1ð
nþ s� 1
s� 1

ÞÞ, respectively. Hence the transform domain approach is preferred
if n� s.

4. CEP PERFORMANCE OF A CODED SYSTEM

In the previous section we have presented a systematic approach and general expressions for
evaluating the CEP performance of an arbitrary (n, k) block code with minimum distance
dmin ¼ 2tþ 1 in an arbitrary s-state HMC. However, the CEP is a function of several
component conditional probabilities, which can be derived only if the channel statistic
and decoding method are given. In this section, we derive the component conditional
probabilities for a system that employs a Reed–Solomon (RS) code, block interleaver, and
noncoherent M-ary orthogonal modulation.

4.1. System description and basic properties

Consider the system whose (source) data stream is first encoded by an (n, k) extended RS code
and interleaved by a block symbol interleaver before being mapped into M-ary orthogonal
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signals, M5 n, say, M-ary frequency shift keying, multiple frequency shift keying, or
Walsh–Hadamard-coded sequences. We assume that the received signal suffers from frequency
nonselective fading, i.e. the received amplitude remains constant during a symbol period. The
associated symbol error probability for an optimal noncoherent detector (matched-filter bank)
is then given by [21]

PsðgÞ ¼
Xn�2
i¼0

n� 1

i þ 1

 !
ð�1Þi

1

i þ 2
e
�iþ1
iþ2Zg ð19Þ

where Z ¼ k log2 n=n.
An EE decoder needs an erasure-insertion method (EIM) to determine which received

symbol should be erased. We use the ratio threshold test (RTT) [22] as our EIM because
of its robustness against the estimation errors of channel statistic such as noise power
or SNR, i.e. the optimal threshold used in an RTT remains almost constant within a large
range of operating SNR. For this test, the ratio between the largest and the second
largest outputs of the noncoherent matched-filter bank is compared with the threshold t
and an erasure is inserted when this ratio is greater than t. Using such an RTT-EIM, we
have [23,24]

Pc; �eðgÞ ¼
Xn�1
i¼0

ð�1Þn
n� 1
i

� �
exp½�ðti=ðti þ 1ÞÞZg�

ti þ 1
ð20aÞ

Ps; �eðgÞ ¼
Xn�2
i¼0

ð�1Þi
n� 1
i þ 1

� �
tði þ 1Þ

tði þ 1Þ þ 1

exp½�ððti þ 1Þ=ðtði þ 1Þ þ 1ÞÞZg�
ti þ 1

ð20bÞ

4.2. Coded performance in HMCs

On the basis of the above three basic equations, (19)–(20b), we now derive the performance of
the RS-coded system in two HMCs. Both channels have been discussed in Section 2. We
begin with the simplest one in which the transmitted signal suffers from correlated Rayleigh
fading distortion and additive white gaussian noise. As a two-state GE model is sufficient to
describe the channel and the pdf of the instantaneous SNR is f ðgÞ ¼ ð1=gÞe�g=g; gX0, we use
(19), (20a), or (20b) to obtain related conditional probabilities whose expressions are similar to
(11a)–(12d) of [17].

Next, we consider the LMS channels over which a Walsh–Hadamard-coded orthogonal
signal is transmitted. The signal suffers from Rayleigh or Ricean distortion depending on
whether a line-of-sight path is present. Figure 2 shows a four-state hidden Markov model
(HMM) for this class of LMS channels. The component conditional probabilities for the two
shadowed (Rayleigh-faded) states have expressions similar to those of the previous case. The
two unshadowed states, however, have Ricean statistics with instantaneous received SNR g
distributed according to

f ðgÞ ¼
1þ K

g
e�Ke

�
ð1þKÞg

g I0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð1þ KÞg

g

s !
; gX0 ð21Þ
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Assuming noncoherent detection, we then have

PsjGu
¼

1

P1Gu

Xn�2
i¼0

ð�1Þi
n� 1

i þ 1

� �
ð1þ KÞ exp½ðð1þ KÞ=dsg� 1ÞK �

ði þ 2Þdsg

�Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð1þ KÞ

dsg

s
;
ffiffiffiffiffiffiffiffiffiffi
2dsgt

p ! ð22aÞ

PsjBu
¼

1

P1Bu

Xn�2
i¼0

ð�1Þi
n� 1

i þ 1

� �
ð1þ KÞ exp½ðð1þ KÞ=dsg� 1ÞK �

ði þ 2Þdsg

� 1�Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð1þ KÞ

dsg

s
;
ffiffiffiffiffiffiffiffiffiffi
2dsgt

p !" # ð22bÞ

where

ds ¼
1

g
þ

i þ 1

i þ 2

� �
Z ð23aÞ

P1Gu
¼ Q1ð

ffiffiffiffiffiffiffi
2K

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ KÞ

p
rÞ ð23bÞ

P1Bu
¼ 1�Q1ð

ffiffiffiffiffiffiffi
2K

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ KÞ

p
rÞ ð23cÞ

For an EE decoder that uses an RTT-EIM with threshold t, we have

Pc; �ejGu
¼

1

P1Gu

Xn�1
i¼0

ð�1Þi
n� 1

i

� �
ð1þ KÞ exp½ðð1þ KÞ=dceg� 1ÞK �

ðti þ 1Þdceg

�Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð1þ KÞ

dceg

s
;
ffiffiffiffiffiffiffiffiffiffiffiffi
2dcegt

p ! ð24aÞ

Pc; �ejBu
¼

1

P1Bu

Xn�1
i¼0

ð�1Þi
n� 1

i

� �
ð1þ KÞ exp½ðð1þ KÞ=dceg� 1ÞK�

ðti þ 1Þdceg

� 1�Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð1þ KÞ

dceg

s
;
ffiffiffiffiffiffiffiffiffiffiffiffi
2dcegt

p !" # ð24bÞ

Ps; �ejGu
¼

1

P1Gu

Xn�2
i¼0

ð�1Þi
n� 1

i þ 1

� �
ð1þ KÞtði þ 1Þ exp½ðð1þ KÞ=dseg� 1ÞK �

ðti þ 1Þ½tði þ 1Þ þ 1�dseg

�Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð1þ KÞ

dseg

s
;
ffiffiffiffiffiffiffiffiffiffiffiffi
2dsegt

p ! ð24cÞ
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Ps; �ejBu
¼

1

P1Bu

Xn�2
i¼0

ð�1Þi
n� 1

i þ 1

� �
ð1þ KÞtði þ 1Þ exp½ðð1þ KÞ=dseg� 1ÞK �

ðti þ 1Þ½tði þ 1Þ þ 1�dseg

� 1�Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð1þ KÞ
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1þ K

g
þ

ti
ti þ 1

Z ð25aÞ

dse ¼
1þ K

g
þ

ti þ 1

tði þ 1Þ þ 1
Z ð25bÞ

Detailed derivations of the above equations are given in the Appendix.

5. NUMERICAL EXAMPLES AND DISCUSSIONS

In the following numerical examples, the modified Jakes model of [25] is used to simulate
correlated Rayleigh fading. For correlated Ricean fading, a direct path is added.

Shown in Figure 3 is the CEP performance of a (16, 8) RS-coded system as a function of the
normalized fading rate fDTs when the average Eb=N0 ¼

def gb is 15 dB and the interleaver depth is
m5 27. We use a GE channel with the state threshold gt ¼ 2 dB, i.e. 13 dB below the average
SNR value to predict the decoder performance in correlated Rayleigh fading. For a fixed
interleaver depth, the CEP performance improves as the channel fading becomes faster since the
inter-code-symbol correlation becomes smaller accordingly. At fDTs 5 0.01, m5 27 is then
sufficient to decorrelate the channel effect and provide near-perfect-interleaving performance.
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Figure 3. CEP performance of a (16, 8) RS-coded system as a function of the normalized fading rate;
average Eb=N0 ¼ 15 ; dB, gt 5 2 dB.
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The CEPs of EE decoders using single-threshold (1T) and two-threshold (2T) RTT-EIMs [24]
are also depicted in the same figure. The 2T decoder uses a state-dependent threshold to make
erasure-insertion decision. The RTT has robust performance only if it operates in a stationary
environment, i.e. one with time-invariant channel statistic. In a time-varying channel whose
statistical properties are state-dependent, the optimal threshold should also be state-dependent.
One can easily seen that (i) similar to the trend we observed in jammed channels [24], 2T EE
decoding yields performance better than that of a 1T EE decoder, and (ii) the analysis based on
the GE channel model gives a quite accurate performance prediction, i.e. as far as decoded CEP
is concerned, GE model gives a good approximation of the channel behavior generated by the
modified Jakes model. We also observe that the analytic performance prediction becomes more
accurate when a four-state channel model is used. The three thresholds we used for the four-
state model are 4, 0, and �4 dB, respectively. For the purpose of fair comparison, we only use
two thresholds for the four-state model, i.e. the erasure-insertion threshold depends only on
whether the average SNR is above 0 dB (there are two states above 0 dB and two states below).

EO and EE decoder performance of an LMS channel is shown in Figure 4. The satellite
elevation angle is 241 degrees and the time-share factor of shadowing is either A5 0.66 (City) or
0.25 (Highway) [4]. System parameters used are carrier frequency5 1.54GHz, data
rate5 1200 symbols/s, and channel parameters associated with the former (City) case are
K5 6.0 dB, v5 40 km/h, fD 5 57.03Hz, fDTs ¼ 0:0475, Du ¼ 27:0m, and Ds ¼ 52:0meters,
while those for the latter (Highway) case are K5 11.9 dB, v5 90 km/h, fD 5 128.33Hz,
fDTs ¼ 0:1068, Du 5 188m, and Ds 5 62.0m, respectively.

The normalized mean received SNR are �1.78 and �4.95 dB at Highway and City,
respectively. The threshold used to separate two fading states within a superstate is 3 dB. As
mentioned before, we assume that the mean received power remains constant for at least a
codeword period. The performance curves thus represent a conditional performance only. The
overall performance can be obtained by averaging over the lognormal distributed S0.

Similar to the previous example, these curves indicate that our four-state HMM leads to an
accurate decoder performance prediction. Since A accounts for the fraction of time the channel
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Figure 4. Simulated (sim) and analytic (ana) EO and EE decoder performance for the (16, 8) RS code over
land mobile satellite channels; ideal5 perfect interleaving.
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stays at Rayleigh fading states, these curves imply that the EE decoding gain is more impressive
in Ricean fading states.

In the remaining three figures, the decoded performance in correlated Rayleigh fading for
rate 1/2 RS codes with different codeword lengths is presented. Figure 5 shows the impact of the
interleaver depth m on the CEP performance of EO and EE decoders. The (16, 8) RS code is
used and the threshold for the 1T RTT-EIM is 0.6. Performance for the system using a perfect
(infinite interleaving size) interleaver is also given so that performance degradation due to finite
interleaver size can be assessed. As expected, the larger the interleaver depth, the better the
system performance. The performance of the (8, 4) and (32, 16) RS codes in correlated Rayleigh
fading channels with different normalized fade rates and imperfect interleaving is depicted in
Figure 7 where the interleaver size is fixed at nm ¼ 768 symbols (Figures 6 and 7). For this case,
the larger the codeword length n, the smaller the interleaving depth m and the higher the
correlation among the received samples within a codeword length. Hence, as the performance
curves in this figure indicate, for EO decoding, the longer (32, 16) code does not necessarily yield
a better performance; it is even outperformed by the shorter (8, 4) code when the normalized
fade rate is slow. In contrast, EE decoding is able to preserve the error-correcting capability of a
more powerful code notwithstanding a small fixed finite-size interleaver. A larger normalized
fade rate (fDTs) implies a faster fading and reduced correlation among the received samples. The
corresponding decoder performance is thus improved.

Similar behavior can be found in Figure 8 where the performance of the (16, 8), (32, 16), and (64,
32) RS codes over LMS channels with the same channel statistics and interleaver
size of Figure 4 is plotted. In a city environment, the benefit of using the longer (32, 16) codes
against the shorter (16, 8) one is not clear for EO decoding. The (64, 32) codes are powerful enough
to overcome the small interleaver and outperform other shorter codes for both EO and EE decoding.

When the codeword length of an RS code is greater than or equal to 64, the computational
complexity of the CEP expression, (9), becomes relatively high. There are two simple ways to
obtain a good approximation and reduce the complexity. We first notice that each term on the
right-hand side of (9) involves a CSS probability PnðEsÞ ¼ Pnðn1; . . . ; nsÞ and the corresponding
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Figure 5. Codeword error probabilities as a function of the interleaver depths m.
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conditional error probability PwðejEsÞ. Those terms with a negligible CSS probability can be
neglected. Second, (11) or (12) says that the conditional error probability PwðejEsÞ can be
decomposed into summations of component conditional error probabilities, a proper criterion
for adaptively deleting those small summands without affecting the required accuracy can be
used. Our numerical experiments indicate that both methods are very efficient in reducing the
computing complexity.
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Figure 7. Codeword error probabilities as a function of the received SNR for (8, 4) and (32, 16) RS codes;
fDTs ¼ 0:001; 0:005, t ¼ 0:6 for EE decoding.
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6. CONCLUSION

We have presented the performance analysis of block codes in correlated LMS channels. Using
a finite-state Markov chain to model the channel in question and following the approach of [17],
we develop recursive algorithms for computing the CSS probabilities, which is critical in
evaluating the CEP performance of both EO and EE decoders. We consider systems that
employ RS codes and M-ary orthogonal modulations. Our analysis makes it possible to study
the effects of various system parameters and channel conditions on both types of decoders.
These design parameters include the interleaving size, code rate, codeword length, and minimum
distance and channel condition parameters such as the fade rate, average SNR, and time-share
shadowing factor. Numerical results prove that our analysis does provide accurate prediction
and gives performance estimation that is very close to that predicted by computer simulations
using an established statistical model.
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APPENDIX A

A.1. Derivations of some component conditional probabilities

This Appendix contains the derivations of the formulae of the component conditional
probabilities given in Section 4.2. We choose to present only two of them as the derivations of
others are similar. The first one is the conditional probability PsjB where B denotes that the
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Figure 8. Codeword error probabilities as a function of the received SNR for (16, 8), (32, 16), and (64, 32)
RS codes over land mobile satellite channels.
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channel is in the shadowed superstate in which the received instantaneous SNR follows an
exponential pdf:

f ðgÞ ¼
1

g
e�g=g ðA1Þ

By using (A1) and (19), we can derive the conditional probability PsjB as given below:
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1

P1B

Z gt

0

f ðgÞPsðgÞ dg

¼
1

1� e�r
2

Z gt

0

1

g
e�g=g

Xn�2
i¼0

n� 1

i þ 1

� �
ð�1Þi

1

i þ 2
e
�iþ1
iþ2 Zg

dg

¼
1

1� e�r
2

Xn�2
i¼0

ð�1Þi
n� 1

i þ 1

� �
1

ði þ 2Þg

Z gt

0

exp �
1

g
þ

i þ 1

i þ 2

� �
Z

� �
g

� �
dg

¼
1

1� e�r
2

Xn�2
i¼0

ð�1Þi
n� 1

i þ 1

� �
1� exp½�ð1=gþ ðði þ 1Þ=ði þ 2ÞÞZÞgt�
ði þ 2Þ½1þ ðði þ 1Þ=ði þ 2ÞÞZg�

ðA2Þ

where

P1B ¼
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and r ¼ gt=g.
The second example considers the case when the two unshadowed states have Ricean

statistics with the received instantaneous SNR distributed according to
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By using (A4) and (19), we obtain the conditional probability PsjGu
, (a), by the following steps.
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Equation (A5d) is obtained by substituting into (A5c) the change of variable, g ¼ x2=ð2dsÞ,
where ds ¼ 1=gþ ðði þ 1Þ=ði þ 2ÞÞZ: Furthermore,
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where (A6c) is obtained from (A6b) by the use of the change of variable g ¼ gx2=2ð1þ KÞ.
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