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Estimation and prediction in linear mixed models with
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SUMMARY

This paper extends the classical linear mixed model by considering a multivariate skew-normal assumption
for the distribution of random effects. We present an efficient hybrid ECME-NR algorithm for the
computation of maximum-likelihood estimates of parameters. A score test statistic for testing the existence
of skewness preference among random effects is developed. The technique for the prediction of future
responses under this model is also investigated. The methodology is illustrated through an application to
Framingham cholesterol data and a simulation study. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The normal linear mixed model (NLMM), originally introduced by Laird and Ware [1], has
become the most frequently used analytic tool for longitudinal data analyses with continuous
repeated measures. The specification of both random effects and the error term is automatically
taken to be normal for mathematical convenience. Unfortunately, such normality assumptions are
too restrictive and suffer from the lack of robustness against departure from the normality assump-
tion. Meanwhile, it may yield invalid statistical inferences when the underlying normalities are
violated.

To reduce unrealistic normality assumptions in NLMM, various authors concentrated on more
flexible approaches using a broader family of distributions. Pinheiro et al. [2] proposed a (multi-
variate) t linear mixed model and showed that it would perform well in the occurrence of outliers.
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Verberk and Lesaffre [3] introduced a heterogeneous linear mixed model with random effects
distributed according to finite normal mixtures. They provided a simple goodness-of-fit test for
the investigation of heterogeneity in random effects.

An alternative way of enhancing the justification of the normality assumption in the presence of
strong skewness is via the Box–Cox transformation; see e.g. [4, 5]. Although such transformation-
based methodology may yield reasonable empirical results, the achievement of joint normality is
rarely satisfied and the transformed variables are difficult to interpret. From a practical viewpoint,
one needs to seek an appropriate theoretical model from a robustification of normal theory in
regulating skewness.

The multivariate skew-normal (SN) distribution was introduced by Azzalini and Dalla Valle [6],
and some further attractive features as well as applications are given in Azzalini and Capitaino
[7]. For this class of distributions, a number of extensions and alternative formulations have been
proposed during the last decade. Sahu et al. [8] defined a new class of multivariate SN distributions
and stated that it is very convenient to implement within a Bayesian hierarchical framework.
Arellano-Valle and Genton [9] studied the family of fundamental skew normal (FUSN) distributions
obtained by a convolution scheme that generalizes [8] and leads to a fairly general procedure to
obtain the multivariate SN densities starting from symmetric ones. For more discussions of FUSN
and other proposals of the original SN distribution such as the closed SN of [10] and the hierarchial
SN of [11] along with their connections and related properties, see [12, 13].

Recently, Arellano-Valle et al. [14] proposed a skew-normal linear mixed model (SNLMM)
based on the multivariate SN distribution introduced by Azzalini and Dalla Valle [6] and Azzalini
and Capitaino [7]. They assumed that both random effects and within-subject errors are distributed
as SN for the sake of completeness. To the best of the authors’ experiences, however, in this
setting the SN distributional assumption for within-subject errors is hard to justify even when
the number of observations is sufficiently large. Moreover, it is irrational to assume that the
skewness parameters for within-subject errors are identical for the parsimony of model building.
As can be seen in the illustrative example of [14], such representation departs from the true
realities for the fitted residuals and in turn leads to less significance for the estimated skewness
parameter.

In this paper, we aim at developing additional tools for a simplified version of SNLMM,
more directly linked to the work of [14], in which merely the random effects are assumed to
follow multivariate SN distributions. A key feature of this model is that it can be formulated
as a flexible normal-truncated normal hierarchy, which is useful for random number generation
and for theoretical derivations. In view of the computational perspective, we present a hybrid
of EM-type and gradient-based methods alternative to [14], which is used for accelerating the
calculation of maximum-likelihood (ML) estimates with the standard errors as a by-product at
convergence.

In Section 2, we describe the model, define the notations and derive a few distributional prop-
erties under the complete data framework. In Section 3, we discuss how to compute ML esti-
mates of model parameters in an efficient manner. In Section 4, a score test statistic is obtained
for testing the skewness preference among random effects. Such a test can serve as a prelim-
inary check before fitting a complex SNLMM. Inferences for the estimation of random effects
and the prediction of future values are discussed in Section 5. We illustrate these results us-
ing the famous Framingham cholesterol data in Section 6. One simulation study is presented in
Section 7. Some concluding remarks are given in Section 8 and technical derivations are given in
the Appendices.
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2. MODEL AND NOTATION

A p-dimensional random vector Y is said to have a multivariate SN distribution with a p× 1
location vector l∈ Rp, a p× p positive-definite dispersion matrix R and a p× 1 skewness vector
k∈ Rp, say Y∼SNp(l,R, k), if its probability density function (pdf) is

f (Y)= 2�p(Y | l,R)�(kTR−1/2(Y − l)) (1)

where �p(·|l,R) is the pdf of Np(l,R) and �(·) is the cumulative distribution function of N(0, 1).
Note that if k= 0, the pdf of Y in (1) corresponds to Np(l,R) density. Some essential distributional
properties with regard to (1) are referred to [6, 7, 15].

We consider a generalization of NLMM in which the random effects are assumed to follow
multivariate SN distributions within the family defined in (1). The model can be written as

Yi =Xib+ Zibi + ei , bi ∼SNq(0, �2C, k)

ei ∼Nni (0, �
2Ci ), bi ⊥ ei (i = 1, . . . , N )

(2)

where the subscript i is the subject index, Yi is an ni -dimensional random response vector, Xi and
Zi are known full-rank matrices of dimensions ni × p and ni × q , respectively, b is a p× 1 vector
of unknown fixed effects describing the population mean, bi is a q × 1 vector of unobservable
random effects and ei is an ni × 1 vector of residual errors assumed to be independent of bi .
Moreover, C is a q × q unstructured symmetric positive-definite matrix, Ci is an ni × ni scaled
matrix, which is a function of a small set of autocorrelation parameters q= (�1, . . . , �g) and
depends on i only through its dimension ni , and k= (�1, . . . , �q) is a q × 1 vector of skewness
parameters. In what follows, we reparameterize C=F2 for ease of computation and theoretical
derivation, where F is the square root of C, i.e. C1/2, containing q(q + 1)/2 distinct elements.

According to Proposition 1 of [14], model (2) can be hierarchically represented as

Yi | �i ∼ Nni (Xib+ di�i , �2Wi )

�i ∼ TN(0, �2; (0,∞))
(3)

where

Wi =ZiF(Iq − ddT)FTZT
i + Ci =Ki − didTi

Ki =ZiCZT
i + Ci , di =ZiFd, d= d(k) = k√

1 + ∑q
j=1 �2j

and TN(�, �2; (a, b)) denotes the truncated normal distribution for N (�, �2) lying within a trun-
cated interval (a, b).

It follows from (3) that the density of Yi is

f (Yi ) = 2�ni (Yi |Xib, �
2Ki )�

⎛
⎝dTi W

−1
i (Yi − Xib)

�
√
1 + dTi W

−1
i di

⎞
⎠ (4)

with mean E(Yi ) =Xib+ �
√
2/�di and covariance matrix cov(Yi ) = �2((1 − 2/�)didTi +Wi ).
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From (4), it is straightforward to observe that Yi are independent and marginally distributed
as Yi ∼ SNni (Xib, �2Ki , ai ), where ai = (1 + dTi W

−1
i di )−1/2K1/2i W

−1
i di . Consequently, simple

algebra yields

�i | Yi ∼TN(��i , �
2
�i ; (0, ∞))

where

��i = (1 + dTi W
−1
i di )−1dTi W

−1
i (Yi − Xib), �2�i = �2(1 + dTi W

−1
i di )−1 (5)

Note that, in particular,

E(�i | Yi ) = ��i + �i��i and E(�2i | Yi ) = �2�i + �2�i + �i��i��i (6)

where

�i = �(	i )

�(	i )
and 	i =

��i

��i
= dTi W

−1
i (Yi − Xib)

�
√
1 + dTi W

−1
i di

(7)

Denoting by Y=(Y1, . . . ,YN ) the observed data, the log-likelihood function of h=(b, �2,F,

q, k) is

�(h|Y) =−n

2
log(�2) − 1

2

N∑
i=1

log |Ki | − 1

2�2
N∑
i=1

eTi K
−1
i ei +

N∑
i=1

log�(	i ) (8)

where n = ∑N
i=1 ni denotes the total number of observations, Ki =Ki (F, q) and ei =Yi − Xib.

Explicit expressions for the score vector sh and the observed information matrix Ihh are derived
in Appendix A.

3. MAXIMUM-LIKELIHOOD ESTIMATION

Since the ML estimators of parameters in model (2) cannot be written in closed forms, the
popular Newton–Raphson (NR) algorithm can be applied to calculate or approximate ML estimates

iteratively. Starting from an initial point ĥ
(0)
, the NR procedure proceeds according to

ĥ
(k+1) = ĥ(k) + Î−1(k)

hh ŝ(k)h (9)

where ŝ(k)h and Î(k)hh are the score vector and the observed information matrix evaluated at ĥ
(k)
,

respectively. Other related iterative algorithms such as steepest ascent, Davidon–Fletcher–Powell,
conjugate gradient, quasi-Newton and Marquardt–Levenberg, see e.g. [16], which are gradient
methods such as the NR algorithm, can lead to equivalent calculations.

An oft-voiced complaint of the NR algorithm is that it may not converge unless good starting
values are used. The EM algorithm [17], which takes advantage of being insensitive to the starting
values as a powerful computational tool that requires the construction of unobserved data, has
been well developed and has become a broadly applicable approach to the iterative computation
of ML estimates. One of the major reasons for the popularity of the EM algorithm is that the
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M-step involves only complete data ML estimation, which is often computationally simple. More-
over, the EM algorithm is stable and straightforward to implement since the iterations converge
monotonically and no second derivatives are required.

When the M-step of EM turns out to be analytically intractable, it can be replaced with a
sequence of conditional maximization (CM) steps. Such modification is referred to as the ECM
algorithm [18]. The ECME algorithm [19], a faster extension of EM and ECM, is obtained by
maximizing the constrained Q-function (the expected complete data function) with some CM
steps that maximizes the corresponding constrained actual likelihood function, called the CML
steps. However, computation to the solution of the CML step may involve a high-dimensional
search problem for which the likelihood is not guaranteed to increase. In practice, a modified NR
maximization procedure such as the step-halving method can be used to guarantee that each step
increases the likelihood.

Let s= (�1, . . . , �N ) be the latent vector, and let ĥ
(k) = (b̂

(k)
, �̂2(k), x̂(k)

), where x̂(k) = (vech

(F̂(k)), q̂(k), k̂
(k)

), denote the estimates of h at the kth iteration. Given the hierarchical representation
(3), the complete data log likelihood is

�c(h|Y, s) = −n + N

2
log(�2) − 1

2

N∑
i=1

log |Wi |

− 1

2�2
N∑
i=1

{(Yi − Xib− di�i )TW
−1
i (Yi − Xib− di�i ) + �2i } (10)

Given the current estimate h(k), the E-step calculates Q(h|h(k)) = E(�c(h|Y, s)|Y, h(k)). From
(10), calculation of Q(h|h(k)) requires the expressions of �̂(k)

i = E(�i |Y, h(k)) and û(k)
i = E(�2i |Y,

h(k)), which are readily evaluated according to (6). That is,

�̂(k)
i = �̂(k)

�i + �̂(k)
i �̂(k)

�i and û(k)
i = �̂2(k)�i + �̂2(k)�i + �̂(k)

i �̂(k)
�i �̂(k)

�i (11)

where �̂(k)
�i and �̂(k)

�i in (11) are ��i and ��i in (5) evaluated at h= ĥ(k), and �̂(k)
i = �(	̂(k)

i )/�(	̂(k)
i )

with 	̂(k)
i = �̂(k)

�i /�̂(k)
�i . The CM steps then conditionally maximize Q(h|ĥ(k)) with respect to h,

obtaining a new estimate ĥ
(k+1)

. To update b̂
(k)

and �̂2(k), the closed-form maximizers for b̂
(k+1)

and �̂2(k+1) are given by

b̂
(k+1)
i =

(
N∑
i=1

XT
i Ŵ

−1(k)
i Xi

)−1 N∑
i=1

XT
i Ŵ

−1(k)
i (Yi − d̂(k)

i �̂(k)
i )

�̂2(k+1) = 1

n + N

(
N∑
i=1

ê(k+1)T

i W−1(k)
i ê(k+1)

i − 2
N∑
i=1

�̂(k)
i d̂(k)T

i Ŵ
−1(k)
i ê(k+1)

i

+
N∑
i=1

û(k)
i (1 + d̂(k)T

i Ŵ
−1(k)
i d̂(k)

i )

)

where ê(k+1)
i =Yi − Xi b̂

(k+1)
i , d̂(k)

i =Zi F̂(k)d̂
(k)

and Ŵ
(k)
i =Zi F̂2(k)ZT

i + Ci (q̂
(k)

) − d̂(k)
i d̂(k)T

i .
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Note that the maximization of Q(h|ĥ(k)) with respect to x= (F, q, k) does not have analytical
solutions. We then perform a CML step by maximizing the constrained actual likelihood function
with respect to x using the following one-cycle NR procedure:

x̂(k+1) = x̂(k) + r (k)Î−1(k)
xx ŝ(k)x

where ŝ(k)x and Î(k)xx are evaluated by using the current estimates, and the scaling number r (k),
0<r (k)�1, is chosen at each iteration such that the actual likelihood function is non-decreasing
in k.

The iterations are repeated until a suitable convergence rule is satisfied, e.g. ‖ĥ(k+1) − ĥ(k)‖ is
sufficiently small. Unfortunately, there are instances in which this method is notoriously slow to
converge. To accelerate the convergence, a faster hybrid ECME-NR algorithm is performed by
running a moderate number of ECME iterations from a poor starting value until arriving in a near
neighborhood of the ML estimates, and then switching to the NR algorithm (9) to speed up the
convergence. Under some regularity conditions, the asymptotic variance–covariance estimates can
be approximated by plugging the ML estimate ĥ= (b̂, �̂2, F̂, q̂, k̂) into the inverse of the observed
information matrix.

4. A SCORE TEST FOR THE SKEWNESS PARAMETER

To assess whether the skewness parameter k is significantly different from zero, we use the score
test for testing the null hypothesis H0 : k= 0 against the alternative H1 : k �= 0. The principal
advantage of using the score test in comparison with other competitive testing procedures such as
the likelihood ratio or Wald tests is that it does not require the more complex model to be fitted. To
obtain the score test statistic, we first calculate ML estimates under the null hypothesis, denoted
by ĥ0, and then evaluate the score vector and observed information at h= ĥ0, denoted by [sh]ĥ0
and [Ihh]ĥ0 , respectively. Note that

[
sh

]
ĥ0

has all components equal to 0 except for the derivative
with respect to k.

Let f= (b, �2, vech(F), q), so that h= (f, k). The score vector and observed information matrix
can be reexpressed as

sh= (sTf , s
T
k)

T and Ihh=
[
Iff Ifk

Ikf Ikk

]

respectively. The score test statistic Us is

Us =[sh]Tĥ0[Ihh]
−1
ĥ0

[sh]ĥ0 =[sk]Tĥ0[Ikk·f]
−1
ĥ0

[sk]ĥ0 (12)

where sk= (
∑N

i=1 �i�	i/��1, . . . ,
∑N

i=1 �i�	i/��q)T and Ikk·f= Ikk− IkfI
−1
ff Ifk. Explicit expres-

sions for sk and Ikk·f are shown in Appendix A.
Under H0, Us is asymptotically a chi-squared random variable with q degrees of freedom. A

disadvantage of the score test statistic is that it tends to give too few significant results since its
asymptotic distribution is approached more slowly than that of the likelihood ratio test statistic
in small samples. This is due to the fact that the score test is a first-order approximation to
the likelihood ratio test. For a practical perspective, we suggest that one performs the likelihood
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ratio test to yield more accurate results when the score test gives a weak indication that the null
hypothesis is inappropriate, say at the 10 per cent significance level.

5. INFERENCE FOR RANDOM EFFECTS AND PREDICTION

We consider an empirical Bayes inference for the random effects that is useful for evaluating
subject-specific quantities of interest such as individual intercepts and slopes. From model (2), it
implies that Yi | bi ∼Nni (Xib+Zibi , �2Ci ) and bi ∼SNq(0, �2C, k). The conditional density of
bi given Yi is

f (bi |Yi ) = f (Yi |bi ) f (bi )∫
f (Yi |bi ) f (bi ) dbi = �q(lbi |Yi

,Rbi |Yi )�(kTbbi )

where lbi |Yi
=CZT

i K
−1
i (Yi − Xib), Rbi |Yi = �2(C−1 + ZT

i C
−1
i Zi )

−1 and kb = �−1C−1/2k.
After some algebraic manipulations, the minimum mean-squared error (MSE) estimator of bi

obtained by the conditional mean of bi given Yi is given by

b̂i (h) =�(�i )lbi |Yi
+ �(�i )√

1 + kTbRbi |Yikb
Rbi |Yikb (13)

where �i = (1 + kTbRbi |Yikb)
−1/2kTblbi |Yi

.

In practice, the empirical Bayes estimator of bi , b̂i , can be obtained by substituting the ML
estimate ĥ into (13). As a consequence, it leads to b̂i = b̂i (ĥ). We mention in passing that the
detailed expression for the error covariance matrix of b̂i (h) is somewhat complicated and hence is
not shown here. Furthermore, we are interested in the prediction of yi , a future 
 × 1 vector of mea-
surements of Yi , given the observed measurements Y=(YT

(i),Y
T
i )T, where Y(i)=(YT

1 , . . . ,YT
i−1,

YT
i+1, . . . ,Y

T
N )T.

Let xi and zi denote q ×m1 and q ×m2 matrices of prediction regressors corresponding to yi .
Consequently, we assume that [

Yi
yi

]
∼SNni+
(X∗

i b,Xi , a
∗
i )

where X∗
i = (XT

i , xTi )T, Z∗
i = (ZT

i , zTi )T, Xi = �2(Z∗
i CZ

∗T
i +C∗

i ) and a
∗
i = (1+ d∗T

i W
∗−1
i d∗

i )
−1/2

K∗1/2
i W∗−1

i d∗
i . Moreover, we note that d∗

i =Z∗
i Fd, K

∗
i =Z∗

i CZ
∗T
i + C∗

i , W
∗
i =K∗

i − d∗
i d

∗T
i and

C∗
i =C∗

i (q) is an (ni + 
) × (ni + 
) expanded autocorrelation matrix. Let ti =X−1/2a∗i and let
ti , C∗

i and Xi be partitioned conformably with Y∗
i = (YT

i , yTi )T. Then,

ti = (t(1)Ti , t(2)Ti )T, C∗
i =

[
C11 C12

C21 C22

]

Xi =
[
X11 X12

X21 X22

]
=

[
ZiCZT

i + C11 ZiCzTi + C12

ziCZT
i + C21 ziCzTi + C22

] (14)
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Here the indices for the partitioned matrices in (14) are omitted for notational simplicity. Also,
we note that C11 =Ci , C12 =CT

21, X11 =Ki and X12 =XT
21. Making use of the fact that

f (yi |Yi , h) ∝
∫

f (yi |Yi , �i , h) f (Yi |�i , h) f (�i |h) d�i
the conditional distribution of yi given Yi is

f (yi |Yi , h) =�
(l2·1,X22·1)
�(tTi (Y∗

i − X∗
i b))

�(t̃Ti (Yi − Xib))
(15)

where

l2·1 = xib+X21X
−1
11 (Yi − Xib), X22·1 =X22 −X21X

−1
11 X12

t̃i = t(1)i +X−1
11 X12t

(2)
i√

1 + t(2)Ti X22·1t(2)i

The minimum MSE predictor of yi is the conditional expectation of yi given Yi , i.e.

ŷi (h) = E(yi |Yi , h) = l2·1 + �(t̃Ti (Yi − Xib))

�(t̃Ti (Yi − Xib))

X22·1t(2)i√
1 + t(2)Ti X22·1t(2)i

(16)

Meanwhile, the MSE covariance matrix of predictor (16) is given by

E[(ŷi (h) − yi )(ŷi (h) − yi )T]=E[cov(yi |Yi )]
where

cov(yi |Yi ) =X22·1 −
{
t̃Ti (Yi − Xib) + �(t̃Ti (Yi − Xib))

�(t̃Ti (Yi − Xib))

}

× �(t̃Ti (Yi − Xib))

�(t̃Ti (Yi − Xib))

X22·1t(2)i t
(2)T
i X22·1

1 + t(2)Ti X22·1t(2)i

(17)

Notice that expression (17) does not account for errors due to the estimation of unknown
parameters and hence it tends to underestimate the true error covariance matrix. The prediction of
yi can be obtained by substituting the ML estimate ĥ into (16), leading to ŷi = ŷi (ĥ). Proofs of
(16) and (17) are sketched in Appendix B.

6. AN ILLUSTRATIVE EXAMPLE

The Framingham heart study has examined the role of serum cholesterol as a risk factor for the
evolution of cardiovascular disease. Zhang and Davidian [20] proposed a semi-parametric approach
to analyze a subset of the Framingham cholesterol data, which consist of gender, baseline age and
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Figure 1. Trajectories of cholesterol levels for 133 participants. The thicker solid line
indicates the mean profile in the study.

cholesterol levels measured at the beginning of the study and then every 2 years over 10 years, for
200 randomly selected participants. Arellano-Valle et al. [14] analyzed the same data set by fitting
a linear mixed-effects model to it with both random effects and within-subject errors following SN
distributions. Both of them come to the same conclusion that the distribution of subject-specific
intercepts is non-normal.

In this section, we revisit the Framingham cholesterol data with the aim of providing additional
inferences for the use of SNLMM that are not considered in [14]. To simplify the illustration, we
select 133 participants (60 men and 73 women) whose trajectories of cholesterol levels as well as
covariates of interest are completely observed at the duration of follow-up time. Figure 1 displays
the cholesterol profiles for the 133 participants and suggests that the underlying trend seems to be
linear with time and increases with a slowly moving speed.

Assuming a linear growth model with subject-specific random intercepts and slopes, we fit a
linear mixed model to the data as specified by [20]
Yi j = �0 + �1 sexi + �2 agei + �3ti j + b0i + b1i ti j + �i j , i = 1, . . . , 133, j = 1, . . . , 6 (18)

where b= (�0, �1, �2, �3)
T are the fixed effects of explanatory variables and the random effects

bi = (b0i , b1i )T are assumed to have a bivariate SN distribution SN2(0, �2C, k) with k= (�1, �2)T.
Moreover, the error terms ei = (�i1, . . . , �i6)T are assumed identically and independently N6(0,
�2I6) since the ordinary least-squared residuals from the individual fits exhibit no particular pattern
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Table I. ML estimation results for model (19) with the associated standard errors in parentheses,
where F is the square root of C such that C=F2.

Number of
b̂ F̂ �̂ �(ĥ) parameters AIC BIC

1.5740 1.6869 0.7068 0.2079 −100.89 8 217.78 240.90
(0.1713) (0.1253) (0.1238) (0.0104)
−0.0338 0.9403
(0.0619) (0.1936)
0.01860
(0.0040)
0.2787
(0.0274)

over time. For numerical stability as mentioned in [20], Yi j are the cholesterol level divided by 100
at the j th time point for the i th participant, sexi is a gender indicator (0= female, 1=male), agei
is the i th participant’s age at baseline and ti j is taken as (time− 5)/10, with time measured in
years from the baseline.

To test for the existence of skewness preference for random effects, we start by fitting an ordinary
NLMM as follows:

Yi =Xib+ Zibi + ei , bi ∼ N2(0, �2C)

ei ∼ N6(0, �2I6), bi⊥ei , i = 1, . . . , 133
(19)

The resulting ML estimates, together with the maximized log-likelihood value �(ĥ), and two
penalized likelihood information criteria, AIC and BIC values (AIC =−2�(ĥ)+2m; BIC =−2�(ĥ)+
m log(N )), where m is the number of parameters, corresponding to the fitted NLMM (19) are listed
in Table I. The score test statistic for testing evidence of skewness among random effects gave
a value of 12.17, which is highly significant compared with the 22 distribution. The score test
suggests that the distribution of random effects is probably skewed. Figure 2 depicts histograms and
corresponding normal quantile plots of the empirical Bayes estimates of bi , b̂i = ĈZT

i (Zi ĈZT
i +

I6)−1(Yi −Xi b̂), and shows that the subject-specific intercepts are positively skewed. Conversely,
there are no apparent non-normal patterns for subject-specific slopes.

We thus consider an alternate model

Yi =Xib+ Zibi + ei , bi ∼SN2(0, �2C, k)

ei ∼ N6(0, �2I6), bi⊥ei , i = 1, . . . , 133
(20)

The summarized ML results corresponding to the fitted SNLMM (20) are shown in Table II. All
estimates are significant (compared with their standard errors) with the exception of �2. The results
reveal that the joint distribution of random effects may, to some extent, depart from normality.
Accordingly, the fitted model (20) produces smaller AIC and BIC values than those of model (19),
indicating that model (20) for characterizing a more plausible assumption on the random effects
is our preferred choice.

After fitting model (19) to the Framingham cholesterol data, the individual random effects,
b̂i = (bi1, bi2), i = 1, . . . , 133, can be estimated by using (13) as stated in Section 5. Figure 3
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Figure 2. Histogram and normal Q–Q plots of empirical Bayes estimates of: (a) subject-specific intercepts
and (b) subject-specific slopes.

Table II. ML estimation results for model (20) with the associated standard errors in parentheses, where F is
the square root of C such that C=F2.

Number of
b̂ F̂ �̂ k̂ �(ĥ) parameters AIC BIC

1.2898 2.6799 0.2752 0.2077 4.7052 −94.18 10 208.36 237.26
(0.1731) (0.1977) (0.0883) (0.0103) (1.1702)
−0.0382 0.9398 0.0000
(0.0614) (0.1569) (0.5173)
0.0151
(0.0036)
0.2341
(0.0273)

presents a scatter plot of estimated random effects overlaid on a set of contour lines, together
with summary histograms of the marginal densities. A visual inspection of Figure 3 signifies that
there is considerable asymmetry among the estimated random effects. Moreover, the contour level
curves appear to follow somewhat satisfactorily the trend of a scattergram, reflecting the adequacy
of using a bivariate SN distribution for the random effects.
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Figure 3. Scatter plot of estimated random effects overlaid on a set of contour lines, together with
summary histograms of the marginal densities.

7. SIMULATIONS

The prediction problem for longitudinal data is of great importance in a number of practical
applications. As pointed out by Rao [21] and Lee [22], the predictive accuracy of future observations
can be taken as an alternative measure of ‘fitness’ of the data. In this section, we present a simulation
study in which attention is focused on comparing the predictive abilities of the NLMM and SNLMM
models. In the simulations, we generate 500 Monte Carlo data sets from the model:

Yi j = �0 + ti j�1 + wi�2 + bi + �i j i = 1 . . . , N , j = 1, . . . , 6 (21)

where ti j = j , wi = 1 if i�N/2 and is zero otherwise, �1 = 2, �2 = 1, �i j ∼ N (0, 22) and �0 +bi is
taken to have the Gamma(2, 1) distribution with density f (x)= x exp(−x) for yielding a highly
right skewed distribution. For each generated data set, model (21) will be fitted twice under the
model assumptions outlined in Section 2, with the density of bi represented by a SN distribution
and a normal distribution, respectively.

We use the pseudo-cross-validation approach to assess their predictive performances. This ap-
proach of comparing forecasts with the corresponding actual values is in the spirit of cross validation
of Stone [23] and Geisser [24]. The technique proceeds as follows: (i) drop out the last three mea-
surements yi4, yi5, yi6 on the i th participant; (ii) compute ML estimates using the remaining data
as the sample; (iii) prediction of yi = (yi4, yi5, yi6), denoted by ŷi = (ŷi4, ŷi5, ŷi6), is made by
using formula (16). For each of the 500 generated Monte Carlo data sets, the procedure is repeated
across subjects i = 1, . . . , N .

To evaluate prediction accuracies, the quantity of the empirical mean-squared forecast error

MSFE= 1

3N

N∑
i=1

(ŷi − yi )T(ŷi − yi )

is calculated as a discrepancy measure. On the basis of this measure, the best predictor corresponds
to having the smallest MSFE from a given set of alternatives.

We consider the cases with sample sizes N = 30, 50, 100, 150 and comparisons of both predic-
tors based on 500 replications are summarized in Table III. As expected, the numerical results
indicated that the SNLMM predictor performs encouragingly well in all cases. In all 2000
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Table III. Comparison of prediction accuracy of NLMM and SNLMM predictors in terms of
mean and standard deviation of 500 simulated MSFEs.

N = 30 N = 50 N = 100 N = 150

Predictor Mean SD Mean SD Mean SD Mean SD

NLMM 1.2719 0.2010 1.2920 0.1593 1.2974 0.1116 1.3016 0.0876
SNLMM 1.2184 0.1936 1.2359 0.1516 1.2380 0.1063 1.2413 0.0826
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Figure 4. Percentage improvement of the SNLMM predictor over the NLMM predictor for 500 simulated
MSFEs: (a) N = 30; (b) N = 50; (c) N = 100; and (d) N = 150.

generated simulation data, the SNLMM predictors yield better forecasts (with lower MSFEs)
than the classical NLMM predictors. Judging from this, it is important to emphasize that model
specification with regard to random effects is noteworthy in prediction. Figure 4 displays the per-
centage improvement of the SNLMM predictor over the NLMM predictor. It is readily seen that
the gains in predictive accuracies obtained from the SNLMM model appear striking.

8. CONCLUSIONS

We have proposed an approach to the analysis of linear mixed models using a multivariate SN
distribution for the random effects, which will allow practitioners to fit longitudinal data in
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a wide variety of considerations. We have described a normal-truncated normal hierarchy for
the SNLMM model and presented a hybrid ECME-NR algorithm for dealing with ML estimation
in a flexible complete data framework. Moreover, the score test as well as prediction procedures
considered in this paper are easy to implement once the ML estimates are obtained. Numerical
results illustrated in Section 6 indicate that the SNLMM model for the Framingham cholesterol
data is evidently more adequate than the conventional NLMM model. The simulation study shows
that an appropriate specification of random effects can enhance predictive abilities.

There are a number of possible extensions of the current work. A natural generalization is to
robustify the skew-normal distribution using a broader family such as the skew t [25–27] and
the skew-elliptical [8, 28] distribution. Another worthwhile task is to develop workable Markov
chain Monte Carlo algorithms in a Bayesian framework of hierarchical SNLMM models. Finally,
one referee pointed out that it is also of interest to compare SNLMM and t linear mixed models
[2, 29, 30] with respect to their robust inferences.

APPENDIX A: THE SCORE FUNCTION AND EMPIRICAL INFORMATION MATRIX

The score vector sh is the vector of the first derivatives of (8) with respect to h= (b, �,x), where
x= (vech(F), q, d) with vech(F) being the distinct elements of F. Expressions for the elements
of sh are

sb= ��(h|Y)

�b
= 1

�2
N∑
i=1

XT
i K

−1
i ei − 1

�

N∑
i=1

�ini

s� = ��(h|Y)

��
= −n

�
+ 1

�3
N∑
i=1

eTi K
−1
i ei − 1

�

N∑
i=1

�i	i

[sx]r = ��(h|Y)

��r
= −1

2

N∑
i=1

tr(K−1
i K̇ir ) + 1

2�2
N∑
i=1

eTi K
−1
i K̇irK

−1
i ei +

N∑
i=1

�i 	̇ir

where �i and 	i are as in (7),

ni =
XT
i W

−1
i di√

1 + dTi W
−1
i di

K̇ir = �Ki
��r

and 	̇ir = �	i
��r

Note that

K̇ir =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Zi
�F

� fab
FZT

i + ZiF
�F

� fab
ZT
i if �r = fab (a = 1, . . . , q; b= a, a + 1, . . . , q)

�Ci

��a
if �r = �a (a = 1, . . . , g)

0 if �r = �b (b= 1, . . . , q)

and

	̇ir = (ḋTirW
−1
i − dTi W

−1
i ẆirW

−1
i )ei

�
√
1 + dTi W

−1
i di

− 	i (2ḋ
T
irW

−1
i di − dTi W

−1
i ẆirW

−1
i di )

2(1 + dTi W
−1
i di )
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where

ḋir = �di
��r

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zi
�F

� fab
d if �r = fab

0 if �r = �a

ZiF
�d
��b

if �r = �b

and Ẇir = �Wi/��r = K̇ir − ḋirdTi −di ḋTir . Here, �F/� fab is clearly a binary indicator matrix and
the elements of �Ci/��a and �d/��b can be obtained straightforwardly.

The observed information Ihh, obtained by the negative of the second derivative of (8), has the
following components:

Ibb = 1

�2
N∑
i=1

(XT
i K

−1
i Xi + �i (	i + �i )nin

T
i )

Ib� = 2

�3
N∑
i=1

XT
i K

−1
i ei − 1

�2
N∑
i=1

�i (1 − �i	i − 	2i )ni

[Ibx]r = 1

�2
N∑
i=1

XT
i K

−1
i K̇irK

−1
i ei + 1

�

N∑
i=1

(�̇irni + �i ṅir )

I�� = − n

�2
+ 3

�4
N∑
i=1

eTi K
−1
i ei + 1

�2
N∑
i=1

�i	i (	
2
i + �i	i − 2)

[I�x]r = 1

�3
N∑
i=1

eTi K
−1
i K̇irK

−1
i ei + 1

�

N∑
i=1

(�̇ir	i + �i 	̇ir )
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2

N∑
i=1

[tr(K−1
i K̈irs) − tr(K−1

i K̇isK
−1
i K̇ir )] + 1

�2
N∑
i=1

eTi K
−1
i K̇irK

−1
i K̇isK

−1
i ei

− 1

2�2
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eTi K
−1
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−1
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N∑
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where

�̇ir = ��i
��r

= − �i (	i + �i )	̇ir

ṅir = �ni
��r

= − XT
i (W−1

i ẆirW
−1
i di −W−1

i ḋir )√
1 + dTi W

−1
i di

− ni (2ḋ
T
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��r��s

= Aei

�
√
1 + dTi W

−1
i di

− (ḋTirW
−1
i − dTi W

−1
i ẆirW
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− 	̇is(2ḋ
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−1
i di − dTi W

−1
i ẆirW
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i ẆisW

−1
i − ḋTisW
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−1
i ẆisW
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��r��s
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��a�b
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��r��s
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Zi

�F
� fab

�d
��c

if �r = fab and �s = �c

0 o.w.

APPENDIX B: PROOFS OF (16) AND (17)

By applying Proposition 4 of [6], the moment generating function of the conditional density in
(15) is given by

Myi |Yi (t) =
exp

(
tTl2·1 + 1

2 t
TX22·1t

)
�(t̃Ti (Yi − Xib))

∫
�(t(1)Ti (Yi − Xib) + t(2)Ti (yi − xib))

×(2�)−
/2|X22·1|−1/2 exp{− 1
2 (yi − l2·1 −X22·1t)TX−1

22·1(yi − l2·1 −X22·1t)}dyi

=
exp

(
tTl2·1 + 1

2 t
TX22·1t

)
�(t̃Ti (Yi − Xib))

�

⎛
⎝t̃Ti (Yi − Xib) + t(2)Ti X22·1t√

1 + t(2)Ti X22·1t(2)i

⎞
⎠ (t∈ R
)
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Differentiating Myi |Yi (t) with respect to t we get

M ′
yi |Yi

(t) = (l2·1 +X22·1t) exp(tTl2·1 + 1
2 t

TX22·1t)
�(t̃Ti (Yi − Xib))

�

⎛
⎝t̃Ti (Yi − Xib) + t(2)Ti X22·1t√

1 + t(2)Ti X22·1t(2)i

⎞
⎠

+
exp

(
tTl2·1 + 1

2 t
TX22·1t

)
�(t̃Ti (Yi − Xib))

�

⎛
⎝t̃Ti (Yi − Xib) + t(2)Ti X22·1t√

1 + t(2)Ti X22·1t(2)i

⎞
⎠

× X22·1t(2)i√
1 + t(2)Ti X22·1t(2)i

Substituting t= 0 into M ′
yi |Yi

(t), we complete the proof of (16). It therefore suffices to verify
that

E(yiyTi |Yi , h) = �
�tT

M ′
yi |Yi

(t)
∣∣∣
t=0

=X22·1 + l2·1lT2·1 + �(t̃Ti (Yi − Xib))

�(t̃Ti (Yi − Xib))

⎡
⎣ X22·1t(2)i l

T
2·1√

1 + t(2)Ti X22·1t(2)i

+ l2·1t
(2)T
i X22·1√

1 + t(2)Ti X22·1t(2)i

− t̃Ti (Yi − Xib)
X22·1t(2)i t

(2)T
i X22·1

1 + t(2)Ti X22·1t(2)i

⎤
⎦

Using the fact that cov(yi |Yi , h) = E(yiyTi |Yi , h) − E(yi |Yi , h)E(yi |Yi , h)T, the result (17) is
then proved.
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