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NUMER. FUNCT. ANAL. AND OPTIMIZ., 20(5&6), 473490 (1999)

A POSTERIORI FINITE ELEMENT ERROR ANALYSIS FOR
SYMMETRIC POSITIVE DIFFERENTIAL EQUATIONS*

JANG JOU! aND JINN-LIANG LIU*

tDeparment of Statistics, Ming Chuan University, Taipei, Taiwan
{e~-mail: Jouj@meu,edu.tw)
{Department of Applied Mathematics, National Chiac Tung University, Hsinchu, Taiwan
{e-mail: jinnlivf@math. netu.edu.tw)

Abstract. Based on the solution of local weak residual problems, conforming and nonconforming,
error estimators are presented and analyzed for finite element solutions of symmetric positive differential
equations in the sense of Friedrichs. These estimators are devised to treat the Friedrichs system in
a general setting in terms of application (hyperbolic as well as mixed-type problems), approximation
(h-, p- and hp-version finite element methods), implementation (no local boundary conditions and no
flux jumps across element boundaries) and a posteriori error analysis {very moderate conditions on
the system and on the approximation}. Three model problems of the Friedrichs system, namely, the
neutron transport equation, the forward-backward heat equation and the Tricomi problem are used to
illustrate the applicability of the weak residual error estimation,

1. Introduction. Over the last two decades, a posteriori error estimation in con-

nection with adaptive finite element methods for partial differential equations (PDEs)
has been a subject of active research. Although there are large amounts of literature
concerning the error estimation for elliptic and parabolic PDEs (1, 2, 3, 7, &, 9, 10,
11, 12, 13, 23, 24, 25, 26, 30, 31], comparatively very small have been addressed to
the PDEs of mixed-type, such as the Tricomi equation and the forward-backward heat
equation, or of hyperbolic type, such as the neutron transport equation.
The theory of Friedrichs’ symmetric positive system [16] has been shown very useful
for theoretical as well as numerical investigations for these types of problems [3, 6, 17,
18, 18, 27]. An error estimator, which is based on the solution of weak residual problems
and is referred to as a conforming error estimator herein, was first proposed in [20] for
the Friedrichs system and is applied primarily to the mixed-type problems. In [27], Siili
presents another estimator which is applied to the hyperbolic problems and is based on
a postprocess of residuals and normal flux on each element. The conforming estimator
was shown to be bounded below and above by the true error in the norm induced by the
bilinear form of Lesaint [19] whereas the postprocessing estimator was bounded below
in L%-norm.
In this article we propose two more estimators, one conforming and the other non-
conforming, which are also based on the weak residual formulation with, however, a
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474 JOU AND LIU

different bilinear form. In comparison with the previcus approach in [20], the present
formulation offers simpler implementation and more complete error analysis for the
resulting error estimators. It is shown that the present {conforming) estimator is iden-
tical to the previous one. However, the present approach is easier to be extended to
the nonconforming formulation which is not given in the previous work. Furthermore,
the weak residual error estimation is shown to be applicable to all the madel problems,
namely, the mixed-type as well as hyperbolic problems. Both conforming and noncon-
forming estimators are proved to have two-sided bounds by the true error in the norm
induced by the new bilinear form with very moderate conditions on the system and on
approximation that can be any one of 2, p and Ap finite element approximations.

The layout of the paper is as follows. In the next section, we briefly describe the
Friedrichs system and its finite element approximation by means of Lesaint's formula-
tion. The conforming and nonconforming error estimators are given in Sections 3 and
4, respectively. By examining all conditions made for the error analysis, the last section
illustrates the applicability of the estimators to the neutron transport equation, the
forward-backward heat equation and the Tricomi problem.

2, Preliminaries. Let {} C R? be a bounded region with a Lipschitz boundary Q2
and denote by H*(Q)), & > 0 integers, the Sobolev spaces equipped with the norms ||-||,.
As usual, H°(Q) = L*(Q). Define the product space [H*(Q)]™ := H¥(Q) x - - x H*({)
{m-times) with the corresponding norm denoted again by ||-||,. We denote in particular
[HY())™ by H(Q) for simplicity. Consider the boundary value problem: Given a
vector-valued function f(x) 1= (f,(x), -+, fm(x})t € [L*()]™, x = (#, 2o)= (z,¥), find
a vector-valued function u(x) = (u(x), -+ -, um{x))* satisfying the system of equations

{ ﬁu = Z?:l Jwig:—;'l—.twou = f in n (2 l)

Bu = (y — B)u =0 on 89,

where M;(x), 0 < i < 2, u(x), and B(x) are all m x m matrices and 8(x) = Y-, u(x)
M;(x) with v; being the components of the unit outward normal v on 8€2. The matrices
M;, 0 <1 < 2, are Lipschitz-continuous in z € 0, and M, and p are bounded in © and
on 3, respectively. We assume that the system is symmetric positive in the sense of
Friedrichs {16}, namely, that the following conditions hold:
e M, and M, are symmetric on £,
e the matrix C' = M+ M} - Efﬂ '%“:-"f’_i is positive definite in €}, i.e., there exists
a positive constant ¢ such that C > ¢I where [ is the identity matrix,
o the matrix p + p* is positive semidefinite on 92 (s is positive semidefinite for
simplicity), and
e Ker(p— ) @ Ker(g+ 3) = R™ on 8Q.
~ The formal adjoints £* and B* of £ and B are defined by

2
) a
..C Vv = — E l EEI(M,V) 4 M;V

B'v = '+ Bv.
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Let
@)= [ 09 - B dx, <gh>= [ g60 - hlgas
where g - h:=3"1" g:hi.

Following Lesaint’s formulation [19], the weak version of (2.1} is to find u € H(Q)
such that

Blu,v) = F(v) Yv € H(Q), | (2.2)
where
Blu,v) = %(ﬁu,v) o L)+ % < v >
Fv) = (£v).

The finite element approximation of (2.2) is to find uy € 5y, such that
B(up,v) = F{v) ¥Yv € 5, (2.3)

where S, is a finite element subspace of H{{2), which is associated with a mesh T}, =
{rli = 1,2,---,n} on (). Meshes are characterized by the mesh size parameter k. For
any two distinct elements (triangles or rectangles or both)  and 7; in T, N 75 is
either empty, a single vertex or a common edge. Two elements are said to be adjacent
if they have a common edge. For a given rectangle element let Agq; and 2min denote
the largest and smallest edge lengths, respectively. Then the element edge ratio is
defined by Fimin/hAmes. We always assume that the mesh T belongs to a regular family
of meshes on (2. Recall that, see e.g. [4, 14|, the family is regular if all angles of its
triangular elements and all edge ratios of rectangular elements are bounded below by
some constant ¢ > 0. Shape regularity does not require a mesh to be globally quasi-
uniform, but it does imply local quasi-uniformity of the mesh. We require all finite
element spaces to have locally affine bases [13].

One of very important properties that distinguishes the symmetric positive system
from the elliptic system of PDEs is that the bilinear form B is coercive in the [L2(Q)]™
norm but bounded by the [H'(Q)]™ norm, i.e.,

Ci|lwlls < B{w,w) < Gy ||wil] Yw € H(Q), (2.4)
where C; and C; are positive constants depending only on {1. In fact, the error estima-

tors proposed here are primarily motivated by this property.
 Note that, by (2.4), the symmetric bilinear form

%—B[w,v)-ﬁ-%B(v, w), Yw,v € H(Q),

defines an inner produet for the space H(Q2) = [H*({2)]™ and thus a norm
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Iwllg = vVB{w,w) Yw e H(Q).
Since £ + £* =, we see that
(Lw,w)+ (w,L'w) = (Cw,w) Yw e H()
and
Wi} = Bw, ) = 5(Cw, w) + 5 < ww,w > Vw € H(@).

Note that the matrix C is symmetric and positive definite. Define the bilinear form

Afw,v) = As(w,v) + Ao(w, v) (2.5)
with
Aw,v) = «;-[nCw-vdx
dofwv) = 7 [ oy wnyds
Then =

Alw,w) = B(w,w)

Obviously, the bilinear form A induces a norm, denoted by ||-||,, on H(), which is
identical to the B-norm, i.e.,

ol = Wl ¥w € H(Q). (2.6)

3. A Conforming Error Estimator. Our objective now is to estimate the true
error e = u — u, € H(Q) between the exact solution u € H(Q) of (2.2) and the
approximate solution u, € Sy of (2.3). Substituting u = u, +e into Eq. (2.2}, we have

Ble,v) = F(v) — B(us,v) ¥Yve& H(Q). (3.1)

Weak residual error estimators are derived by some approximation of (3.1). Since
uy, € 5, satisfies (2.3), we have the orthogonality

Ble,v) = F(v) — B(uy,v)=0 VYveES,. (3.2}

Consequently, in order to obtain a nontrivial approximation to e, we shounld consider
the approximation of (3.1} in a richer space S;, Sy € S; C H(Q), i.e., consider the
problem: Determine & € S; such that

B(e,v) = F(v) — B{us,v) ¥YveS;. (3.3)

However, the bilinear form B is not symmetric and it is more complicated and expensive
in terms of both implementation and computation than the bilinear form A. We propose
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here a more efficient formula for error estimation, that is, determine e, € H(12) such
that '

Aleg, v) = F(v) — B(u,,v) Yv e H{). (3.4}

Note that the existence and uniqueness of the problem (3.4) follows from the def-
inition of the bilinear form A and that the orthogonality {3.2) still holds for this error
problem. Similarly, there exists a unique &, € S5 such that

Aleg, v) = F(v) — B{us,v) Vv e S;. (3.5)

Since (3.5) is & standard finite element approximation of (3.4) and the bilinear form
A is symrpetric, it follows from Céa’s Lemma [14] that

"ea"éa”fl = inf ”en"'vllA- (3.6)
VESE

Let eg € S, be the solution of {3.5) in the original finite element space S,. By (3.2), it
is a trivial solution, i.e., ey = 0. Hence, we have

llea~&ali 4 < p flealt 4 (3.7)
with g € [0,1). The inequality will assume the equality with p = 1 if and only if
A(&,,&,) = 24(e,, 8,) = 2A(%,,8,) =0, (3.8)

which implies that p € [0, 1) provided Sy # Si. This suggests that the enlarged space S;,
can be defined on the current mesh T). By this we mean that more basis functions that
do not belong to S, are constructed on the present mesh without any re-meshing. These
functions constitute a complementary subspace S° to S; in S;. Apparently, for any fixed
mesh or equivalently any fixed mesh parameter A, the constant p is independent of the
. h and depends only o how many or how these complementary basis functions are
constructed as long as S¢ # D. We thus define the enlarged space by

Si =8, ®5°, Spn S = {0}, 5 £ {0}. (3.9)

LEMMA 3.1. Lete, e, and &, be the solutions of (3.1), (3.4) and (3.3), respectively.
Then

lealls = llefla (3.16)
T=pllell, < l&ls<llella, (3.11)

where p € [0,1) s a constant independent of the mesh size h provided (3.9) holds.
Proof. We first observe that

feals® = Afes,el)
= Fleg)~ Buy, e,}
Ble,e,)
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< Mellzleallp
= [lefl4 llealls

which implies ||e,||, < |je]|,- On the other hand,

I!e“B 2

It

Ble,e)

F(e) ~ B(uy,e)
Ale,, e}

< leallyflell

= |leall 4 llefl g,

which implies [le|[, < |le,l|,. We thus have (3.10). Analogously, we have the right
inequality of (3.11). The left inequality follows immediately from (3.7) and (3.10). O

Let v = sup{A(w,v}):we S, [[w|ly,=1, ve S |v],=1}. We then readily
have ¥ € [0, 1) by the definition of the space 5° in (3.9). However, it is not clear whether
the constant is uniformly independent of the mesh parameter £ for all adaptive meshes.
It is shown, for example, in [10] and [15] that this is indeed the case for both L*(£)- and
H'{{2)-inner product or their equivalence. Obviously, the inner product defined by the
bilinear form A, in (2.3) is equivalent to (L2(Q2)[™-inner product since the symmetric
matrix  is positive definite. This implies that there a constant y¢ € [0, 1) independent
of h such that

|4y (w, V)] < 7o [AL(w, w)]F{AL(v, V)] Vw € S,, v € 5. (3.12)

However, the corresponding strengthened Cauchy-Schwarz inequality to the bilinear
form Ay does not appear to be such evident due to the fact that the boundary matrix 4
may not be positive definite on its entire domain, i.e., on 92. It seems to be convenient
to treat the boundary condition in a more specific way. For this, we postpone our proof
of the inequality to the last section and assume for the moment that there exists a
constant v, € [0,1) independent of & such that for any w € 5, v € 5}

| do(w, V)] < 7, [Ao(w, w)]Z[Ao(v, V)]? . (3.13)
The above two strengthened Cauchy-Schwarz inequalities imply that
Alw, v)? [A;(w,v) + Ay(w, V)]
< 7 ([, WAV, V) + [olw, w)lE[Ao(v, v)]H)

7 [Ar(w, W) + Ao(w, w)][A(v, v) + Ao(v, V)]
¥ Alw, w)A(v,v), (3.14}

it

IA

il

where ¥ = max{ v¢, 7. }- We summarize as follows:

LemMa 3.2. If there exists a constant v, € [0, 1) independent of h such that (3.13)
holds for all w € S and v € S} in the enlarged space Sy, then there exists a constant
+ € [0,1) independent of h such that, for all w € S, and v € 5%,

AW, v) < 7 1w llavila-
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A conforming error estimator can be derived by a further reduction of the approx-
imation (3.5): Determine e € $° such that

Alef, v} = F{v} ~ B{u,,v) Vv e S- (3.15)

Lemmas 3.1 and 3.2 then yield the following well-known result for the conforming
error estimator [10, 11, 12, 13, 20, 23].

THEOREM 3.3. Let u € H(Q} and u, € Sy, be the solutions of (2.2} and (2.3},
respectively, and lef e = u —~ uy. If the conditions of Lemma 3.2 hold, then the reduced
conforming error problem (3.15) has a unigue solution e, € 5° such that

(1-piv1—72 el 4 < llesfia < ftell 4 » (3.16)

where the constanis v € 0,0} end pen, 1} are independent of the mesh parameter h.
We briefly remark on the estimated error e and that of {20}, which was derived
simply by replacing the bilinear form A by the original B form in the left side of
(3.15) and is denoted by ef. Following the proof of (3.10), it can be easily shown that
lleclls = llegll,. This shows that the present estimator is exactly the same as that of
{20]. However, in terms of the definition of both bilinear forms, the implementation of
the present estimator is simpler. Furthermore, in terms of error analysis, we remove the
saturation assumption of (20} and prove explicitly the strengthened Cauchy-Schwarz
ineduality. Finally, the present approach is easier to be extended to the nonconforming
formulation which, not given in the previous work, will be introduced in the next section.

4. A Nonconforming Error Estimator. The complementary subspace 3¢ would
resnlt (3.15) in a global system of linear equations if its basts functions have supports
across element boundaries. This apparently is not suitable for adaptive computation in
practice. On the other hand, if the basis functions have supports only on their individ-
ual elements, the resnlting error estimator may not be effective to estimate errors that
occur on the boundaries of elements if they are dominant ervors.

. Many estimators, primarily for the elliptic PDEs, have been proposed to handle
these errors (flux jumps) across elements, see e.g. (3,7,8, 9,10, 12, 25, 26, 30, 31}, All
those estimators involve the jumps and some may require certain boundary conditions
to hold for local problems. We present another way to treat the jumps for the symmetric
pasitive system. The objective of the treatment is to retain the weak residual term of
{3.15) without explicitly involving the jumps. The jumps are handled indirectly by a
proper construction of the basis functions of the complementary space S¢.

For simplicity, we assume that the approximation is linear, i.e., Sy consists of piece-
wise linear functions. The results in what follows hold for more general approximadion
with some technical modifications. We first introduce some notation. For any fixed
mesh Ty, let N(t;) denote the index set of j # i such that t; € Ty is an adjacent element
of t; € Th. With the nodal point at the center of the common (interior) edge of the
adjacent pair ¢; and ¢t; in T}, we construct a basis function 45 50 that it has the support
on £ Ut;. Note that ¢,‘j = qu,-. Let
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P 0 0
s=| O | a=| % | ep= . (41)
0 5 i
Define
5°=span{®};|1<I<m, 1<i<n, jEN(L)} c H). (4.2)

Based on this conforming subspace, we then construct a nonconforming subspace
as follows. For each element #; € Ty, let
2 $ij, on &
L I— 7 ]
iy = { 0, otherwise. (43)
Note that the halved-function is identified by a shape function on a fixed reference
triangle or rectangle { via an affine transformation that maps the reference element #

one-to-one and onto £;. We assume that the mesh T} contains at least two elements.
Let

- ¢é’ "[!
&l = . % = ¢6" , etc.. (4.4)
0
Define
SMt) = span{qs'r'|1<z<m, i€ N{t)} (4.5)
= #lw= ) Za‘ Y ¢ HQ)
> JEN{Y) I=1
S = SMt)e St i) b -8 S™(te) € H(Q) (4.6)
Syt = {viIvi= Y] Za‘ﬂqf (4.7)
JEN(E) I=1

= span{®}; |1 <I<m, jEN(K)} C S C HE)

Note that the coefficients d‘ * of (4.5) and (4.7) are the same. The basis functions of
Se(t )+ have support on the pa.tch subdomain

Tu(s) =t U (Ujemea ts) - (4.8)
The correspondence
m .
= > Zd‘" i esnt) —vi= Y S dfdl e s
JEN(E) I=1 JEN(E) i=1

defines a one-to-one and onto mapping from S™(t;) to 5°(¢;)*. Hence v, = ¥;. For
any connected open subset D of £2, define
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AD(W V) Ap 1(“’ V) + Ap D(W V) Vv, we (HI(D)Jm! (4‘9)

the restriction of A(-,} to D, with
Ap(w,v) = f Cw-vdx
Apglw,v) = f {pw- v +w.pv)ds,
4 Jonnop

and let {|-{| , , be the restriction of the A-norm to the closure of the set D. The following
two lemmas are direct consequences of the shape regularity preperty of the mesh T,
the affine property of the basis functions of S"({#;} and the finite dimensionality of S™(¢;)
(cf. [13)).

LEMMa 4.1, Forany ¥, =3 .. SEN(E) Zz-— " @“ € S"(4), t; € T, there exist two
positive constants O3 and Cy mdependent of h such that

Cs > Z“d’ &l <, <6 Y Z”d‘"@“

FEN{)} =1 FEN(E) =1

(4.10)

LemMma 4.2. For eny b € Ty, and j € N{(t;), there exists ¢ positive constant C,
independent of h such that

“Q “A & <G “@3”,4 % (4-11)

The equation {3.15} can now be localized on each element #; as follows. The test
and trial functions on the left side are taken to be the halved-functions of $*(t;). On
the other hand, these functions are extended from the element to form contimuous
basis functions on the patch subdomain 7}, (i) in order to account for both interior and
interface residuals on the element. More specifically, the conforming problem (3.15) is
maodified as to determine & € S™(¢;) such that, for each ¢; € T},

Au(8,%) = 5 (F(v?) ~ Blu,v)) 9, € (1), (412

where v € 5°(t;)*. Since each basis function @, of S°(t;)* has a support covering two
e]ements t; and £;, the factor 3 appeared on the r1ght side of equation {4.12) reflects the
average weight taken on each element provided that any two neighboring elements do
not differ too much, i.e., the mesh 7}, is locally quasi-uniform. Of course, the factor can
be tuned for general meshes. As can be seen below, our error analysis is not affected by
this factor so long as it remains as a constant independent of the mesh size. Moreover,
we do not need any extra boundary conditions for the localized problems {4.12) since
the construction of the conforming and nonconforming subspaces S%(t;)* and S"(t;)
takes not only both interior and fux errors but also the solvability of the problems into
consideration. Using the basis functions, we can rewrite {4.12) as

A (8, B = ;(F{@ij)—-ﬁ(um ) VB e 5. (4.13)
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The uniqueness and existence of €; is guaranteed since the bilinear form A is an inner
product of the finite dimensional space 5%(¢;}. Define

1

llezlla = (lee:llu) , L= D& D - D&, (4.14)

THEOREM 4.3. Let u € H(Q) and u;, € Sy be the solutions of (2.2) and (2.3),
respectively and let e = u—uy. If the conditions of Lemma 3.2 hold, then the estimated
error €} obtained by solving (4.13) has the following bounds

(L=p)v1i~7ell, < llez )l < Cellell s, (4.15)

where the constants v € [0,1), p € [0,1) and Cs are all independent of the mesh

parometer h.
Proof. Let €5 € S° be the solution of (3.15). By the definition of 5S¢ in (4.2), the solution

can be written as
m

="Z Z ZCI @iJ’

i=1 jEN(t;) i=1
where cﬁjﬁa.re the I-th components of the midpoint nodal values of e assaciated with
the adjacent pair ¢; and ¢;. Note that ¢; = ¢}; and ®}; = ¥, Vj € Nft;) and
the summations will visit each element twice. From (3.13) and {(4.13), for any fixed
1=1,2,---,n, we have
(e”@l") = (F(@ )'— B(uh!‘i ))
= -2&4.(62,‘;‘%)

for all j € N(#) and 1 €1 £ m. Define

el = €, on t{,

: 0, otherwise.

Then

dn
M
Ma
L.q

and

AufBued) = AuEn Y S8 = 1A, 30 3.

JEN() =1 JEN(y) =1
It follows that

leglty = Aleg,ef)

RSP DD IR S

izl JeN() =1

i
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[Fal

IA

Hence

Zn: 4“'i“.,- (éil ef)
3 il et

=1

53 (1l + 1ot )

i=1

3 (1egI + eI

Healla < fledlla

which together with (3.16) proves the left inequality of (4.15).
For the right inequality, we extend & = 3 . vy, 3 d;'; tIJ“ € S™(t;) to a new

function e] by

N

= Z Z d ; Bl

JEN(K) i=1

which has support on the closure of the extended subdomain 75 (). Note that e € S°

and
8l = An(®.&)
o As (&, Z Edi,zgf,i
et i<
= = Z E A(eﬁ,@i
J(_-'N{t‘ ) =1
= ?A(egre?)
< “.'2‘”‘32“,4,1",,(5} “e?HA,T,.(iJ‘ (4.16}
By Lemma 4.2, we have
|, H <G i, “ (4.17)
Hence,
e lfong = letla. + 2 lef ”i.c,-
FEN{L)

= f&ll. + X

2

JeEN(E) T i=1 At
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2

< |l&dls ., +Cs L

JeEN(t) =1 '

I

=l +a Y S las

JEN(E) 1=1 '

) cs i}

< el . + |l &ll%, .,
< Crl&lld ., (4.18)

where C7 = 1 + £&. From (4.16) and (4.18), we have

_ N{o®
1€l 4,0, < 5 llealla, g -
Therefore,
legis = > N&lk
i=1
- Cr -
< *—leeilli,nm
< ——maX{ITh(%)I}IIe"IlA
OCT
S ” a.“A: (419)

where |T,(7)| denotes the number of elements of the subdomain, which is less than or
equal to 5 {a rectangle having 4 adjacent elements at most). Combining (3.16) and
(4.19}, the right inequality of (4.15) then follows with Cg = "’@_ which is independent
of k. This completes the proof of the theorem. O

5. Model Problems. The purpose of this section is to apply the weak residual
error estimation to the following three classes of problems which exemplify the impor-
tance of the Friedrichs theory. Verification of the corresponding symmetric positiveness
to these problems can be found in the cited references. We only verify the conditions
posed in Lemma 3.2. As for numerical results, we refer to [20, 21].

The condition (3.9) holds for all hierarchical shape functions {for the complementary
spaces 5¢) such as those of [28]. It also holds for some particular shape functions such
as those of [20, 21], which are particularly constructed for the forward-backward heat
equation. If both conforming and nonconforming formulas (3.15) and (4.13) are used, we
obtain a general error estimation for all k, p and Ap finite element approximations. For
example, assuming that the current approximation is of order p, if the next hierarchical
shape functions of degree p+ 1 are internal modes, we use (3.13) to calculate the error
estimator. Otherwise, we use (4.13) for side modes.

We are now only left to verify the strengthened Cauchy-Schwarz inequality (3.13).
By a similar argument of {3.14), we can partition the bilinear form A4, into a finite
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number of bilinear forms Ar,, 1 = UT;, by restricting 4y to each one of the finjte
number boundaries ['; and prove the inequality for each individual bilinear form. Since
the matrix 4 may or may nat be positive definite on these individual boundaries, the
proof can be categorized into two cases according to the following two types of the
matrix pz. We say that the matrix g is tnverlible on I' if the determinant of the matrix
u# + p* is nonzero for all (z,y) € I and is noninvertible if the determinant is zero for
some (T,y) € I,

If the matrix 4 is invertible on I, the corresponding bilinear form Ar defines an inner
product, denoted by Ar-inner product, for the space [L%{I")]™, which is equivalent to
the L*(I')-inner product that induces the usual [Z*(I')]™ norm. The previous argument
in {10, 15] for the L*(Q)- or H'{{l)-inner product to prove the strengthened Cauchy-
Schwarz inequality goes word for word for the L*(I')-inner product and consequently
for the equivalent Ap-inner product. We therefore only have to prove for the case that
the matrix is not invertible.

Let ¢{7) be independent of the mesh parameter 4 and be a positive and bounded
continuous function for all 7 in the interval (0, 1). Let the bilinear form A be defined
by

A(w,v) = fl g(r)w(ryu{r)dr Yw,v e L*(0,1). (5.1)

« LEMMA 5.1. Let S and Sp be two nonempty finite dimensional subspaces of L*(0, 1}
such that 81 0 83 = {0}. Then there exists a constant ¥ € [0, 1) independent of A such
that

|Atw, )} <7 [, w)] " [Aw, 9] " vwes,ves (5.2)

Proof. The bilinear form obviously defines an inner product for £2(0, 1), which is a
fixed geometric operator on L?(0, 1) depending only on the function ¢ and determines
an "angle” between any two functions in the space. Since the basis functions of S and
_of 5y are finite and linearly independent, there must be a nonzero angle between any

two functions w € 51 and v € S, i.e., there exists a constant ¥ € [0, 1) independent of

% such that {5.2) holds. 0
Example 5.1. The Neutron Transport Equation.

Vu-d+u=f in Q=(0,1)x(0,1)
u=10 on &0,

where d = (1,1) and 82_ is the inflow boundary defined by
. = {{zyyedl:vizy) -d<0}
= {(0,9) :ye(0,) }U{(z,0:z€ (0,1} }.

This problem is symmetric positive (17] withm = 1, My = My = My =1, 8 =v-4d
and g = |#| = 1. Since the matrix y is invertible, the inequality (3.13) holds for this
example.
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Example 5.2, The Forward-Backward Heat Equation.

x‘ﬁy_ ¢zz = fl in 1 = (_1:1) X (U: 1)
#(+1,y) =0 Yy [0,1]

$(z,0) =0 ¥z €(0,1]

#(z,1) =0 ¥z e [-1,0].

Note that the equation changes its type as z changes sign in £2. There have been a

number of papers addressing to this kind of mixed-type heat equations, for further
references see (6, 29]. After the change of variables

un= (ula uﬂ)t = (e—ﬂ.lqu’ B—U.ly(ﬁz)t’

its corresponding system (2.1) is symmetric positive [6] with

-z -1 _f{=z 0 _f0lz =z _f evf
Ml"‘(_l O)JMZ'_(O 0)!MG‘-( 0 1)1f_( 0 H

and p shown in Table 5.1 where the boundary 8Q = ', U--- U T4. For the matrix 3,
we refer to [6].

Note that the boundary matrix p is noninvertible on all the boundary segments.
On the boundary segment Iy, for any w = (wy, wp)? € S and v = (vy, 1)t € SE, we
have

1
5(““'"' + W uv) = —zu vy

Assume that w, # 0 and v, # 0 since, otherwise, the strengthened Cauchy-Schwarz
inequality is trivially satisfied. Let ¢; € T}, be such an element that 8t;NT; is not empty,
Le., the intersection is an interval (a, b) for some @ and b such that —1 <a<b<0. By
Lemma 5.1, there exist two constants ¥; € {0,1), 2 = 1,2, independent of & such that

1
‘/ —(pw- v + w-pv)ds
stinr, 2

/b —zw1(z) vi(z) dz

1
[-‘ﬂ-(l - T} = b’?’) lﬂlﬁl dr

0
1
—b [ T ’lf?l'fh d’T
0
: S ¥
< ~a¥ (1 —7)a? dr} [f (1-1)o? d'r]
0

'/: 3 ¥
— 572 {/: Ttﬁfdr] [/01 T2 d'r]

= -a

1
/ (1 — 7)1 By dr
0 .




A POSTERIORI FINITE ELEMENT ERROR ANALYSIS 487

Table 5.1. The boundary matrix g of Example 5.2.

Iy = {z €[-1,0}, y =0} (‘;

I={z=-1,y€(01]}

[y ={ze[-1,0], y=1}

Is={z=1, yE[O,l]}

Te = {z €[0,1}, y =0}

(
(
Fy={z€(0,1], y=1} (
(
(

< max (5,5} [f (~a(1 —7) —w)mfdfr [[ (—a(l - )  br) 57 d,,-r

% 3
g [f p:w-wds] [f pv-vds]
8T oty .

where ¥ = max {7, %2} € [0,1). For all other segments, the proof proceeds in the same
way. Therefore, we have (3.13) for this example.
Example 5.3. The Tricomi Equation.

y¢z:_¢yy=fl in 3
%'—_0 on F1UF2UF3

¢z = ¢y on I'y.

Here the domain Q is bounded by the five curve segments [';, 7 = 1,---,5, which are
given in Table 5.2. The equation is hyperbolic in the region for y > 0, parabolic for
y = 0 and elliptic for ¥ < 0. This is a classical mixed-type problem for which Friedrichs
formulated it as a symmetric positive system in his renowned paper (16]. Using the
change of variables

FAN

u= (uls u?)t = (‘?S:nr ¢y)t:

the corresponding system can be obtained with

z+3 z+3 z+3
= _Qy Y _ —Y ] _ 0 v _ —zfl
M, ( ; _z:,),Mz“(g=23 _1),M0_(DU),f_( : ,

2
and y shown in Table 5.2. For the matrix 3, we refer to [18].
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Table 5.2. The boundary matrix u of Example 5.3.

Lrl—_—{xe{o',l], y'=%{z - 1)’} l %@(E@ _1yj
Li=f{a=1,ye L0} (75)

M= foe (L1l gm 1) : ( (I—-Exsfé;z —(a:2+ 3) j
Iy={z=-1,ye(-1,0} (;y 152;;)

s = {z € [-1,0, ¥’=} (z + 1)7} S ( jg ‘{g | |

The matrix x is invertible on I's and is noninvertible on the other segments. With
some transformations on I'; and on I's to straight lines, the proof of the strengihened
ineguality for all segments other than I'; is similar. We only prove for I';.

LeMMaA 5.2, For any given constants ¢ end d, denote the matriz

- ¢ cod
Hed = ( cd d? ) (5.3)
Then the strengthened inequality holds for the bilineer form A.4 defined by
b
Agdlw,v) = / ¢(s)pteaw - vds Vw, v € [L*a, b)]2 , {5.4)

where q(s) is a positive and bounded continuous function on the interval (a,d).
Proof. For any w = {wy, we)! € 5, and v = (v, va)! € §§, (5.4) can be written as

Aca(w, v} = [ b g(s) {cwy + dwa) {cvr + duvg) ds,

where (cw, + duw,) and (cv; + dv;) are linearly independent. The proof then proceeds

in a similar way as that in the previous example. O
Agsin, let {; € T, be such an element that 8; NI’y is not empty. For any w =
(wy, wa)t € S and v = (w, ¥)* € S§, we have, for -1 <ae <5 <0,

1 b
/ =(pw-v+ w-pv)dy = f =y + 2 pog + (—¥) p1,1] w-v dy
at;nlz 2 21
= Aro(w,v) + Ag1(w,v) + A1 1 (w, v), (5.5)
where the corresponding functions ¢(y} = -y, ¢(¥) = 2 and g¢(y) = —y are all positive

and bounded continuous functions on I';. Consequently, the bilinear form (5.5) satisfies
the strengthened inequality. We therefore conclude that {3.13) holds for the Tricomi

equation.
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