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Abstract

Although there are two standard transport protocols, TCP and UDP, offering services in the Internet, the majority of
the traffic over the Internet is TCP-based. TCP-based applications can react to packet losses; however, many performance
problems have been recently observed in the Internet. To resolve these problems, several new TCP fast retransmit and fast
recovery algorithms have been proposed. This article surveys state-of-the-art fast retransmit and fast recovery mechanisms
of TCP to address the lost packet problem, and presents a description of some useful algorithms, design issues, advantages,
and disadvantages. The objective of this article is fourfold: to provide an introduction to TCP protocol; to discuss prob-
lems degrading TCP retransmission performance in the present-day Internet; to describe some proposed transport proto-
cols that solve a number of throughput issues; and finally, to gain new insight into these protocols and thereby suggest
avenues for future research. Based on our taxonomy, existing fast retransmit and fast recovery schemes of transport pro-
tocols are described in this survey.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The majority of the traffic over the Internet today
is carried by the Transmission Control Protocol
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(TCP). TCP is the protocol of choice for the widely
used World Wide Web (HTTP), file transfer (FTP),
TELNET, and email (SMTP) applications, because
it provides reliable data transport between two end
hosts of a connection as well as controls the connec-
tion bandwidth usage to avoid network congestion.
The behavior of TCP is therefore tightly coupled
with overall Internet performance.

The essential strategy of TCP is sending packets
to a network without a reservation and then react-
.
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ing to observable events. The original TCP is offi-
cially defined in [1]. It has a simple sliding window
flow control mechanism without any congestion
control. After observing a series of congestion col-
lapses in 1980s, Jacobson introduced several inno-
vative congestion control mechanisms into TCP in
1988. This TCP version, called TCP Tahoe [2],
includes the slow start, additive increase and multi-
plicative decrease (AIMD), and fast retransmit
algorithms. Two years later, the fast recovery algo-
rithm was added to Tahoe to form a new TCP ver-
sion called TCP Reno [3]. TCP Reno is currently the
dominant TCP version deployed in the Internet.

Improving TCP performance is an active
research area. Over the years, considerable research
regarding the knowledge on TCP has been carried
out [4–6]. TCP Reno can be thought of as a reactive
congestion control scheme. It uses packet loss as an
indicator for congestion. In order to probe the avail-
able bandwidth along the end-to-end path, the TCP
congestion window is increased until a packet loss is
detected, at which point the congestion window is
halved and a linear increase algorithm takes over
until further packet loss is experienced.

It is known that TCP Reno may periodically gen-
erate packet loss by itself and cannot efficiently
recover multiple packet losses from a window of
data. Moreover, the AIMD strategy of TCP Reno
leads to periodic oscillations in the aspects of the
congestion window size (CWND), round-trip delay,
and queue length of the bottleneck node. Recent
works have shown that the oscillation may induce
chaotic behavior in the network, thereby adversely
affecting overall network performance [7,8].

To alleviate the performance degradation prob-
lem of packet loss, many researchers attempted to
refine the fast retransmit and fast recovery algo-
rithms. New proposals included TCP NewReno
[9], Forward Acknowledgment (FACK) [10], Selec-
tive Acknowledgment (SACK) [11], dynamic recov-
ery [12], an Extension to the SACK Option (D–
SACK) [13], TCP with Faster Recovery (FR–
TCP) [14], Reordering–Robust TCP (RR–TCP)
[15], Duplicate Acknowledgment Counting (DAC)
[16], and TCP SACK+ [17]. In addition, TCP New-
Reno, FACK, and SACK are embedded in TCP
Reno; dynamic recovery, FR–TCP, and DAC are
based on TCP NewReno; and TCP DSACK, RR–
TCP, and TCP SACK+ operate at the sender of
SACK. All these algorithms provide performance
improvement to a connection after a packet loss is
detected.
Some schemes such as TCP Vegas [18,19], TCP-
Peach [20], TCP-Peach+ [21], TCP-Jersey [22], and
TCP Westwood [23] are called delay-based end-to-
end approaches, in which the sender estimates the
available network bandwidth dynamically by
measuring and averaging the rate of returning
acknowledgements (ACKs). TCP Vegas employs
fundamentally different slow start, conges-
tion avoidance, fast retransmit, and fast recovery
approaches to combat the inherent oscillation prob-
lem of TCP Reno and to mitigate the performance
degradation problem of the packet loss. TCP-Peach
is particularly designed for the satellite communica-
tion environment, where a large bandwidth-delay
product (BDP) is found. Amongst the four phases
of TCP, TCP-Peach replaces slow start and fast
recovery with sudden start and rapid recovery,
respectively. In sudden start and rapid recovery,
the sender probes the available network bandwidth
in only one RTT with the help of low-priority
dummy packets. In TCP-Peach+, the actual data
packets with lower priority replace low-priority
dummy packets as the probing packets to further
improve the throughput. Both TCP-Jersey and
TCP Westwood claim improved performance over
TCP Reno, while achieving fairness and friendli-
ness. Moreover, these two end-to-end approaches
maintain the network layer structure and require
minimum modification at end hosts and routers.

The taxonomy presented comprises two classifi-
cation schemes: one classifies the protocols with
respect to whether or not messages are exchanged
between two end hosts, and the other classifies them
with respect to their ability to recover multiple
packet losses. This paper also provides a classifica-
tion and survey of some existing protocols. Specifi-
cally, it shows how a selection of existing protocols
is classified with respect to our taxonomy. Remark-
ably, it follows from our classification that the
majority of protocols employ a relatively small set
of core principles. A subset of the protocols classi-
fied is further elaborated in a survey.

The remainder of this paper is organized as fol-
lows. Section 2 discusses the problems degrading
TCP retransmission performance in the present-
day Internet. Our taxonomy is presented in Section
3. Section 4 provides a survey of some existing fast
retransmit and fast recovery algorithms of transport
protocols that solve a number of throughput issues
and shows how they are classified with respect to
our taxonomy. Finally, Section 5 concludes the
paper with a brief summary of our proposed taxon-
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omy and a discussion of the insight gained in devel-
oping this taxonomy.

2. Problem statements

Several problems may adversely affect connection
performance when lost packets are retransmitted.
We summarize these problems as follows.

2.1. Self-clocking problem

The key mechanism that follows from the Packet
Conservation principle1 is self-clocking: the sender
uses returning ACKs2 as a ‘‘clock” to determine
when to send new packets into the network. Self-
clocking is a crucial mechanism that keeps the data
flowing on a TCP connection and protects the con-
nection from congestion. In fact, the loss of packets
is not a real problem for a TCP connection; it just
indicates the occurrence of congestion in the net-
work. However, the loss of self clocking is a serious
problem, since it causes the pipeline to empty. If the
pipeline empties, the TCP sender has to spend sev-
eral round-trip times (RTTs) to fill the pipeline
and restore the self-clocking. In other words, the
loss of self-clocking severely degrades TCP perfor-
mance, and must be avoided if at all possible. Fur-
thermore, when multiple packets are lost from the
same window of data, the TCP sender often incurs
a retransmission timeout (RTO) and substantial
performance degradation. This problem is particu-
larly acute for Web-based document transfers,
which are often so short-lived (e.g., 4–20 Kilobytes
[24]) that the TCP connection never reaches
steady-state before it terminates.

2.2. Slow-recovery problem

A TCP source constantly probes for available
bandwidth by increasing the congestion window as
long as no losses are detected. When a loss is
detected, either through duplicate ACKs (dupacks)
or through coarse timeout expiration, the connec-
1 This means that a new packet is not injected into the network
until an old packet leaves the network. Note, however, that the
Packet Conservation principle is only applied when the TCP
connection is in equilibrium, with a full window of data in transit
on the network (i.e., the ‘‘pipeline” is nearly fully loaded).

2 Due to the fundamental assumption that the network does
not supply any explicit feedback to the sources, today’s TCP
algorithms deal with network congestion through an end-to-end
control algorithm.
tion backs off by shrinking its congestion window.
If the loss is indicated by dupacks, TCP attempts
to perform a ‘‘fast retransmit” by retransmitting
the lost segments and a ‘‘fast recovery” by adjusting
the congestion window. On the other hand, the con-
gestion window is reset to its default value if the loss
is followed by a coarse timeout expiration. In either
case, after the congestion window is reset, the con-
nection requires several RTTs before the window-
based probing is restored to near-capacity (i.e., the
slow recovery depends upon the coarse timeout
expiration on long, fat pipes). This problem is exac-
erbated when random or sporadic losses3 (or a com-
bination of the two) occur. In this case a burst of
lost segments is wrongfully interpreted by a TCP
source as an indication of congestion, and dealt with
by shrinking the sender’s window. Such action,
clearly, does not alleviate the random loss condition
and merely results in reduced throughput. The deg-
radation depends on the BDP.

2.3. Out-of-order-delivery problem

In today’s Internet, deployment of systems that
introduce packet reordering in their normal course
of operation, regardless of their other benefits,
may be ill-advised. This is because TCP’s inability
to distinguish reordering from packet loss causes
the protocol to perform poorly on paths that deliver
packets out of order. Losses, falsely detected or gen-
uine, may cause TCP to send more slowly. Yet mis-
taking reordering for loss is not fundamental to
window-based congestion control. Rather, it is an
artifact of TCP’s fast retransmit mechanism, which
arbitrarily concludes that a packet must have been
lost if it is still missing at the receiver’s end after
three packets sent later have arrived at the receiver.
On a network path that reorders packets more than
minimally, this choice of three is too aggressive in
concluding loss; waiting longer before concluding
loss might reveal that the packet was not lost at
all, but only delayed en route.

To the extent that reordering occurs today, it is
generally perceived as a transient malfunction or
as an indication that a technology is maladapted
for use with TCP. Route oscillation for a destina-
tion among routes with different RTTs may cause
reordering [25]. Routers have been observed to
3 Random losses are here defined as losses not caused by
congestion at the bottleneck link, as is common in the presence of
wireless channels.
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cease forwarding while processing a routing update,
and intersperse the delayed packets with new arriv-
als, causing reordering [26]. The sender responds
with a fast retransmit, although no actual loss has
occurred. These repeated false fast retransmits keep
the sender’s window small and severely degrade the
throughput it attains. Requiring nearly in-order
delivery needlessly restricts and complicates Internet
routing systems and routers. However, such benefi-
cial systems as multi-path routing4 and parallel
packet switches5 are difficult to deploy in a way that
preserves ordering.

2.4. Retransmission-loss problem

There have been many works to avoid the RTO
of TCP that takes place in an unnecessary situation.
However, most current TCP implementations, even
if the SACK option is used, do not have a mecha-
nism to detect a lost retransmission and avoid sub-
sequent RTO. In other words, the packets
transmitted after the retransmission may also be lost
in such a congested situation, but a lost retransmis-
sion cannot be detected without RTO if there are in
sufficient ACKs (three dupacks) to trigger the fast
retransmit algorithm [5]. In this time period, a
TCP source may not send any new packets and
the performance therefore decreases. When the sub-
sequent retransmission timer expires, the slow start
threshold (SSTHRESH) is set to one half of the cur-
rent CWND and then the CWND is reset to its
default value; finally, the source restarts from a slow
start phase. Furthermore, a retransmission loss may
lead to out-of-order delivery. A retransmission loss
is not frequent in the Internet, so this problem
may seem to be insignificant. Nevertheless, the loss
of a retransmitted packet may actually be related
with various factors such as changing level of con-
gestion, queue management scheme, and bit error
rate in a wireless channel.
4 A TCP flow’s packets are routed over multiple and/or
divergent routes with distinct bottlenecks. This would increase
the total end-to-end bandwidth available to the flow and cause
significant packet reordering with different RTTs.

5 A promising technique for building inexpensive high-speed
routers is to use parallel forwarding and/or switching hardware.
Successive packets that arrive at a router, even on the same link,
may be forwarded and/or switched simultaneously by indepen-
dent hardware. This simple parallel approach ignores ordering
between packets processed simultaneously, and introduces reor-
dering when packets require different processing delays.
3. The taxonomy

As mentioned in Section 1, our taxonomy con-
sists of two classification schemes: one classifies
the protocols with respect to whether or not mes-
sages are exchanged between two end hosts, and
the other classifies them with respect to their ability
to recover multiple packet losses. The former classi-
fication scheme is presented in Section 3.1 and the
latter in Section 3.2.

3.1. Classification with respect to attached messages

Essentially, the length of a TCP header is 20
bytes if no TCP option field is used. In this article,
if an end node uses the TCP option, this TCP option
is called an ‘‘attached message.” Fig. 1 depicts the
classification scheme with respect to extra messages
attached to the TCP option between two end nodes.
As follows from Fig. 1, the protocols are classified
into two types: Do not use another message and
Require TCP option information. At the same time,
the schemes that require TCP option information
can be further divided in two groups depending on
whether the format of the TCP option is fixed or
variable.

1. Do not use another message: TCP source and des-
tination do not communicate with each other by
transmitting extra information attached to any
TCP option. TCP Tahoe, Reno, Vegas, NewRen-
o, Dynamic Recovery, FR–TCP, DAC, TCP-
Peach, TCP-Jersey, and TCP Westwood6 algo-
rithms belong to this kind of transport protocol.

2. Require TCP option information: Extra messages,
such as duplicate segments and received data
blocks, are added to the TCP header by the recei-
6 Although TCP-Jersey and TCP Westwood do not need the
TCP option between a source and a destination, they use the
explicit congestion notification (ECN) field of the TCP header to
alert the sender of incipient congestion.
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Table 1
Classification of transport protocols in our taxonomy

Protocols
type

Require extra
message
(format)

Handle
multiple
packet losses

Deal with lost
retransmitted
packets

One No No No
Two No Yes No
Three Yes (variable) Yes No
DAC No Yes Yes
SACK+ Yes (variable) Yes Yes

Type one includes TCP Tahoe and TCP Reno; type two, TCP
Vegas, TCP NewReno, Dynamic Recovery, FR–TCP, TCP-
Peach, TCP-Jersey, and TCP Westwood; and type three, SACK,
FACK, D–SACK, RR–TCP, and TCP-Peach+.
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ver to inform the sender which packets were
received. For example, SACK, FACK, D–
SACK, RR–TCP, SACK+, TCP-Peach+ mecha-
nisms use the TCP option with variable formats
to let the source obtain more information about
successful packet delivery.
3.2. Classification with respect to multiple packet

losses

Transport protocol schemes can be categorized
into schemes that cannot deal with multiple packet
losses and schemes that can handle multiple lost
packets or lost retransmitted packets. A diagram
showing this classification is presented in Fig. 2. A
protocol that cannot deal with multiple packet
drops within a single window of data operates at a
very low rate and loses a significant amount of
throughput. On the other hand, a TCP source
may effectively utilize bandwidth and obtain high
performance, because a protocol can handle multi-
ple lost packets or lost retransmitted packets.
7 Jacobson devised a more accurate way of estimating this
value.
4. Survey of existing fast retransmit and fast recovery

schemes

This section surveys a selection of the fast
retransmit and fast recovery mechanisms of existing
transport protocols and classifies them with respect
to our taxonomy (see Section 3). Table 1 shows how
the following protocols are classified: TCP Tahoe,
TCP Reno, TCP Vegas, TCP NewReno, FACK,
SACK, Dynamic Recovery, D–SACK, FR–TCP,
RR–TCP, DAC, TCP SACK+, TCP-Peach, TCP-
Peach+, TCP-Jersey, and TCP Westwood. More-
over, Fig. 3 shows the relationships between these
protocols, and a classification of these mechanisms
with multiple layers is plotted in Fig. 4, where type
one includes TCP Tahoe and TCP Reno; type two,
TCP Vegas, TCP NewReno, Dynamic Recovery,
FR–TCP, TCP-Peach, TCP-Jersey, and TCP West-
wood; and type three, SACK, FACK, D–SACK,
RR–TCP, and TCP-Peach+. A survey of these fast
retransmit and fast recovery algorithms is also pre-
sented in the following sections.
4.1. TCP Tahoe

Jacobson assumed that losses due to packet cor-
ruption are much less probable than losses due to
buffer overflows on the network. Therefore, when
a loss occurs, the sender should lower its share of
the bandwidth. This is done by reducing its CWND
to half the size at which the loss was found. In addi-
tion, the reasoning behind this value of one-half is
that a decrease in the throughput should be equal
to the multiplicative increase in the queue length
in the network upon congestion.

The implementation of this multiplicative
decrease is through the SSTHRESH. When a loss
occurs, half the value of the CWND just before
the loss is recorded in the SSTHRESH. The connec-
tion then resorts to slow start by setting the CWND
to 1 packet. Slow start increases the CWND expo-
nentially until it reaches the SSTHRESH from
which it will perform an AIMD until the same thing
happens again or the connection is terminated.

In order to determine that a packet is lost, Tahoe
times the delay of the packet – from the sender putt-
ing a packet into the network to the time at which
Tahoe receives the ACK for that packet. This value
is known as the RTT. From this value (and the
aggregation of timed pairs), Tahoe uses an RTO7

to see if there is a packet loss. If an ACK is not
received before this RTO, then the sender would
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be confident that the packet is lost and that it should
resend the packet to enable reliable delivery and
movement of the window.

Another way of detecting a loss in TCP Tahoe is
through the use of dupacks. Dupacks are similar to
normal ACKs because they acknowledge the pack-
ets as well as tell the sender that the receiver is
expecting to receive the next packet. However, the
difference between a dupack and a normal ACK is
that while a normal ACK acknowledges one or
more previously unacknowledged packets, a dupack
re-acknowledges the same packet as the previous
ACK. An example of this is if a packet was lost,
but all packets after the lost packets were received.
Consider that a packet with the sequence number
n was lost, and so the receiver could not send an
ACK for it to the sender. When packet n + 1 arrived
at the destination, the receiver told the sender that it
is still expecting packet n by sending an ACK with
the number n. Similarly, the receiver upon receiving
packet n + 2, would send another ACK saying that
it is still expecting packet n. These two ACKs for
packet n + 1 and packet n + 2 are known as
dupacks. Furthermore, a dupack does not provide
the sender any new information except that the
receiver is still awaiting packet n.

Typically, Tahoe waits for three dupacks before
inferring this loss by the RTO, and hence immedi-
ately resends the packet. In other words, Tahoe
assumes that the receipt of three dupacks actually
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indicates loss and then quickly retransmits the
(derived) lost packet without waiting for the RTO
to expire. This occurs because the RTO is relatively
quite long, and it could stall the TCP transfer. This
mechanism is called fast retransmit, which resends
the lost packet when receiving three dupacks, sets
the SSTHRESH to half the CWND, and then sets
the CWND to one segment. In addition, this forces
TCP to enter slow start again. TCP Tahoe can find a
lost packet and retransmit it in as short a time as
possible; however, it does not deal well with multi-
ple packet drops within a single window of data.

4.2. TCP Reno

TCP Reno introduced major improvements over
TCP Tahoe by changing the way in which it reacts
to detecting a loss through dupacks. There are two
ways in which TCP Reno detects packet loss. One
is based on the reception of three dupacks, and
the other is based on RTO. When a source receives
three dupacks, the fast retransmit and fast recovery
algorithms are performed. The source then immedi-
ately retransmits only the packet that is supposed to
be lost but not subsequent ones, without waiting for
a retransmission timer (also called a coarse–grained
timer) to expire (the fast retransmit mechanism),
and then the fast recovery mechanism is performed.
(1) The slow start threshold is set to one-half the
current window size. (2) The congestion window is
set to the slow start threshold plus three times the
packet size. (3) Each time the sender receives a
dupack, it increments the congestion window by
one packet and sends a new packet. (4) When the
first non-duplicated ACK arrives, the congestion
window is set to the slow start threshold.

If a serious congestion occurs and there are insuf-
ficient surviving packets to trigger three dupacks,
the congestion will be detected by a coarse–grained
retransmission timeout. When the retransmission
timer expires, the slow start threshold is set to half
the current congestion window size and then the
congestion window size is reset to one; finally, the
source restarts from the slow start phase.

The fundamental problem here is that fast
retransmit algorithm assumes that only one packet
was lost. This may result in loss of ACK clocking
and timeouts if more than one packet are lost.
Moreover, Reno encounters several problems with
multiple packet losses in a window of data (usually
of the order of half a window). This usually happens
when invoking fast retransmit and fast recovery.
Reno invokes them several times in succession, lead-
ing to multiplicative decreases in the CWND and
SSTHRESH. This impacts the throughput of the
connection. Further, ACK starvation may occur
because of the ambiguity of dupacks and the
dynamics of the CWND. This is because the sender
reduces the CWND when it enters fast retransmit.
The sender then receives dupacks that inflate the
CWND, requiring it to send new packets until it fills
its sending window in fast recovery. It then receives
a non-dupack and exits fast recovery.

However, due to multiple losses in the past, this
ACK will be followed by three dupacks signaling
that another packet was lost; consequently, fast
retransmit is entered once again after another reduc-
tion in the SSTHRESH and CWND. As this hap-
pens several times in succession, the left edge of
the sending window advances only after each suc-
cessive fast retransmit and the amount of data in
flight (sent but not yet acked) eventually becomes
more than the congestion window (halved by the
latest invocation of fast retransmit). As there are
no more ACKs to receive, the sender stalls and
recovers from this deadlock only through a timeout,
which causes a slow start.

In short, the fast retransmit and recovery algo-
rithm of TCP Reno allows a connection to quickly
recover from isolated packet losses. But when multi-
ple packets are dropped from a window of data,
TCP Reno may suffer serious performance prob-
lems. This is because it retransmits at most one
dropped packet per round-trip time and further,
the congestion window size may be decreased more
than once due to multiple packet losses occurring
during one round-trip time interval. In this situa-
tion, TCP Reno operates at a very low rate and
loses a significant amount of throughput.

4.3. TCP NewReno

NewReno has modifications of the fast retrans-
mit and fast recovery of TCP Reno. These modifica-
tions are intended to fix the Reno problems without
the addition of SACK and are wholly implemented
on the sender side.

In TCP Reno, partial ACKs8 bringing the con-
nection out of fast recovery result in a retransmis-
sion timeout in the case of multiple packet losses.
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In TCP NewReno, when a source receives a partial
ACK, it does not exit fast recovery [5,8]. Instead, it
assumes that the packet immediately following the
most recently acknowledged packet has been lost
and hence retransmits the lost packet. Thus, in
the case of multiple packet losses, TCP NewReno
will retransmit one lost packet per round-trip time
until all the lost packets from the same window
have been recovered, avoid requiring multiple fast
retransmits from a single window of data, and
not incur retransmission timeout. It remains in
the fast recovery phase until all the outstanding
packets at the start of that phase have been
acknowledged. The implementation details of
TCP NewReno are as follows:

1. Multiple packet loss: A fix for fast recovery to
prevent starting fast retransmit and fast recovery
in succession when multiple segments are
dropped in the same window. So far, when enter-
ing fast retransmit, the packet with the highest
sequence number was sent. NewReno performs
retransmission and fast recovery algorithm, sim-
ilar to Reno. However, the difference between
NewReno and Reno is that when a new ACK
arrives, NewReno checks if the ACK covers the
highest sequence number when fast retransmit
was invoked. If not, this ACK is a partial ACK
and signals that another segment was lost from
the same window of data. As such, NewReno
retransmits the segment reported, as expected
by the partial ACK and resets the retransmission
timer, but does not exit fast recovery. On the
other hand, if the new ACK covers the highest
sequence number, NewReno will exit fast recov-
ery but set CWND to the SSTHRESH and per-
form congestion avoidance.

2. False fast recovery: NewReno records the highest
sequence number ever transmitted after a retrans-
mission timeout. Whenever three dupacks are
received, NewReno performs a test to see if it
should enter fast recovery. If these ACKs cover
the sequence number saved at the previous time-
out, then this is a new invocation of the fast
recovery. In this case, NewReno will enter fast
recovery and perform the related actions. If these
ACKs do not cover the sequence numbers and
acknowledge the receipt of already queued seg-
ments at the receiver, NewReno will not enter
fast recovery. A sender exits fast recovery only
after all the outstanding packets (at the time of
first loss) are acked.
NewReno makes a small change to a connection
source: it may eliminate TCP Reno’s wait for a
retransmission timeout when multiple packets are
lost from a window. Although this can avoid the
unnecessary window reduction, the downside is that
NewReno may take many RTTs to recover a loss
episode, and it must have enough new data around
to keep the ACK clock running. In other words, the
recovery time of NewReno is still too long.
4.4. DAC

DAC operates at the sender side of TCP New-
Reno during fast recovery. The sender keeps some
variables to store the expected number of dupacks
for a packet loss if its retransmission is not lost
again. The congestion window size just before the
first fast retransmission is stored in another variable
Scwnd. During fast recovery, the sender counts the
number of dupacks for a packet loss. If it receives
more dupacks for the packet loss than the stored
value, it determines that its retransmission is lost
again and retransmits it without awaiting its RTO.
DAC denotes the expected number of dupacks for
the ith lost packet in a window by DACi. When
the first fast retransmit is performed, the sender is
not aware of how many packets are lost in a window
but only knows that at least one packet is lost.
Therefore, DAC1 is always equal to Scwnd � 1.

In order to simplify the complexity in the real
Internet, there are five assumptions for the DAC
algorithm:

1. Packet is assumed to be lost independently with
probability p.

2. The sender has infinite packets to send so that the
congestion window is always fully incremented.

3. All packets are assumed to have a same size.
4. DAC does not consider the effect of delayed

acknowledgment [5] so that the receiver delivers
an ACK every time a good packet is received.

5. As the size of an ACK packet is considerably
small compared to a data packet, an ACK packet
is assumed not to be lost.

DAC requires simple changes to TCP implemen-
tation only on the sender side and is consistent with
current TCP specifications. The DAC algorithm can
improve loss recovery of TCP NewReno by avoid-
ing the unnecessary RTOs caused by retransmission
losses; however, its quantitative improvement is not
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Fig. 5. Structure of Dynamic Recovery.

9 In fact, each of these packets causes the receiver to send a
dupack to the sender, since these packets have sequence numbers
larger than the sequence number(s) of the lost packet(s).
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significant and it is a rather great improvement con-
sidering the effect of RTO on the performance of
TCP.

4.5. Dynamic recovery

The dynamic recovery algorithm is intended to
replace the fast recovery algorithm, which recovers
lost packets when a TCP connection is congested.
In addition to packet recovery, the other goal of
the dynamic recovery algorithm is to probe the
new equilibrium of a TCP connection during the
recovery period. The changes required by the two
algorithms are only on the sender side of TCP. No
modifications are required on the receiver side.
The structure of dynamic recovery is shown in
Fig. 5.

Dynamic recovery is a congestion recovery algo-
rithm, and it dynamically sets the threshold value
that determines the end of the congestion recovery
period. In addition, the threshold value varies with
the number of packet losses. This threshold is set
to the value of the TCP sender state variable snd.nxt
at the time that the most recent packet loss was
detected. The recovery phase ends as soon as
snd.una advances to or beyond this threshold,
which may be significantly different from the value
of snd.nxt at the time the first packet loss was
detected. Furthermore, in the dynamic recovery
algorithm, the sender continues to send out new
data packets per RTT even during the congestion
recovery period. Thus, a sender not only recovers
from packet losses, but also probes the new equilib-
rium of the connection during the congestion recov-
ery period. The following paragraphs provide
further details on the dynamic recovery algorithm.

1. Preamble – the active number: The key to the
dynamic recovery algorithm is knowing the num-
ber of ‘‘active” data packets flowing through a
connection, and not just the number of outstand-
ing packets on a connection. In the congestion
recovery phase, the outstanding packets of the
connection can be divided into three groups:
active, inactive and dropped. The active group
is the set of data packets that are in transit, which
may include retransmitted packets and packets
that might be lost at the network bottleneck.
The inactive group is the set of data packets that
were transmitted during the past RTTs and have
already arrived at the receiver, but have not yet
been acknowledged9. The dropped group is the
set of data packets that were lost during the past
RTTs.Needless to say, the outstanding packets as
a whole do not represent the data packets in the
pipeline any more. Only the active group repre-
sents the data packets in the pipeline. Therefore,
the CWND is no longer adequate for congestion
control in the congestion recovery period. A new
state variable actnum is thus introduced to indi-
cate the number of active data packets in the
pipeline during an RTT. At the end of the first
RTT of the congestion recovery period, actnum
replaces the CWND as the means to provide flow
control on the sender side. Once the congestion
recovery period ends, flow control responsibili-
ties are returned to the CWND.

2. The dynamic recovery algorithm: As with fast
recovery, dynamic recovery is triggered by a fast
retransmit. However, in the dynamic recovery
algorithm, the CWND is not immediately halved.
Instead, it remains unchanged until the end of the
recovery phase, since it is not used for congestion
control in dynamic recovery.

At the beginning of the first RTT of the conges-
tion recovery phase, the number (dupwnd) of
dupacks received on the sender side (i.e., the number
of data packets in the inactive group) is initialized to
zero. As dupacks arrive, the sender injects two new
data packets for every three received dupacks. At
the same time, the state variable dupwnd counts
the number of dupacks received. The end of the first
RTT is indicated by the first arrival of non-dupacks.
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At the end of the first RTT of the congestion recov-
ery period, the active number actnum assumes the
role of sender flow control for the rest of the conges-
tion recovery period. The variable actnum is ini-
tially set to dupwnd*2/3, which is the number of
new data packets sent out during the first RTT of
the congestion recovery period. This period is called
the damping phase.

In the second phase of the dynamic recovery
algorithm, called the probe phase, the sender
increases the value of actnum by one10 for every
RTT, similar to the congestion avoidance algo-
rithm. This process continues until the end of the
congestion recovery phase, or until the detection
of further packet losses. Since the TCP state vari-
able snd.nxt is updated during each partial ACK,
any further packet losses during the congestion
recovery phase can be detected by a partial ACK
that is beyond the snd.nxt value at the time the first
packet loss was detected. If further packet losses
occur, the dynamic recovery algorithm will reset
actnum to zero and let the sender re-enter the damp-
ing subphase directly, without waiting for three fur-
ther dupacks. After the sender recovers the most
recently lost packet11, it exits the congestion recov-
ery period and enters the congestion avoidance
phase. At that time, the role of flow control is trans-
ferred back to the CWND; the sender assigns the
current value of actnum to the CWND and sets act-
num to zero again.

From the above description, the first RTT of the
congestion recovery phase is important because the
role of flow control on the sender side is transferred
from the CWND to the active number actnum.
Note that the first lost packet is recovered in the
damping subphase, and the remaining lost packets,
if any, are recovered in the probe subphase. Fur-
thermore, during the probe subphase, the sender
continues to probe the new equilibrium of the
TCP connection. The sending TCP can distinguish
between the two phases by testing if actnum is zero.
However, there is a lot of scope to improve and
prove the dynamic recovery algorithm. For
instance, simulation study only covered a small
10 Note that the dynamic recovery algorithm obeys the rule of
multiplicative decrease and linear increase for the number of new
data packets transmitted in the damping and probe subphases,
respectively.
11 This state is indicated by the arrival of a new ACK that is

beyond the last updated snd.nxt at the time the last partial ACK
arrived.
number of network scenarios and there is no analy-
sis of the dynamic recovery scheme. More scenarios
with different topology and traffic settings should be
tested and more analytical models of performance
improvement and some measurements over real net-
works may be definitely needed to validate the
algorithm.

4.6. FR–TCP

Before discussing FR–TCP, an available band-
width estimation (BWE) is introduced. This is
because FR–TCP sets the CWND and the
SSTHRESH according to the BWE value. In addi-
tion, the authors also proposed another modifica-
tion of FR–TCP, called Gradual Faster Recovery
TCP (GFR–TCP), to increase the output rate dur-
ing fast recovery if possible.

1. Available bandwidth estimation at the TCP source:
To overcome the lack of information on the
actual available bandwidth while the congestion
window is still growing, FR–TCP estimates the
available bandwidth by looking at the reception
rate of ACKs. In [14], the authors assumed that
the TCP connection has a heavy backlog and
that it suddenly experiences congestion at the
bottleneck. In such conditions, it is likely that a
timeout expires or three dupacks are received.
In the meantime, the source has been transmit-
ting at a rate greater than the available band-
width. In that case, the rate of ACKs is
proportional to the rate of data delivered to the
destination, providing a good estimate of the
(reduced) available bandwidth.If a sporadic or
random loss has occurred, the rate of received
ACKs is only marginally affected, and the band-
width estimation will show little change. The
basic idea is to use such an estimate of the avail-
able bandwidth to set the SSTHRESH and to
compute the CWND. The rate of ACK is esti-
mated through exponential averaging. The aver-
aging process is run upon the reception of an
ACK, including dupacks (since they signal the
reception of data, although out of sequence). It
is detailed by the following pseudo-code:
if (ACK is received) {
sample_BWE = pkt_size*8/
(now – lastacktime);
BWE = BWE*alpha + sample_BWE*

(l�alpha);
}
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where pkt_size indicates the segment size in bytes;
now, the current time, and lastacktime, the time
the previous ACK was received. The parameter
alpha determines the smoothing operated by the
exponential filtering. In all the simulation experi-
ments in [14], alpha = 0.8 was used. It should be
noted that since the segment size is usually not
fixed, the value pkt_size could be set as the aver-
age size of the last n received segments. A similar
problem arises with regard to dupacks, since they
do not carry information on the size of the
received segment. In this case, the average size
computed before the reception of the dupack is
proposed for use, and the average size is updated
only when new data are acked.

2. FR–TCP: This behaves like Reno as far as the
sequence of actions following a triple dupacks
or a coarse–grained timeout expiration are con-
cerned. The modifications of FR–TCP to set
the CWND and the SSTHRESH based on the
BWE value are as follows:
� triple dupacks:
SSTHRESH = (BWE*RTTmin)/a;
CWND = SSTHRESH;

� coarse–grained timeout expiration:

SSTHRESH = (BWE*RTTmin)/a;
CWND = 1;
where RTTmin is the smallest RTT recorded by
TCP for that specific connection and a is a reduc-
tion factor. Assuming the minimum RTT
excludes queuing delays, this scheme (ideally)
converges to a situation where the transmission
rate is equal to the actual available bandwidth
between source and destination.The rationale
for this strategy is quite simple. TCP Reno, after
a repeated ACK or a timeout, sets the
SSTHRESH to CWND/2. This translates into
an output rate equal to CWND/2*RTT (i.e., half
the output rate when the timer expired or the
third dupack was received). Instead of perform-
ing this ‘‘blind” reduction of the congestion win-
dow, FR–TCP uses the estimate of the available
bandwidth to set the SSTHRESH equal to a frac-
tion 1/a of BWE �RTTmin. In simulations, the
authors used a = 2, since they had experimentally
verified that in the presence of one or few TCP
connections, a good choice for a is 1, whereas
in the presence of many TCP connections, a bet-
ter choice is a = 2 or greater.

3. GFR–TCP: In slow start, TCP grabs the band-
width rather quickly (exponentially). In contrast,
in congestion avoidance, it takes a relatively long
time for TCP to reach the maximum available
bandwidth. If TCP experiences consecutive seg-
ment losses, the SSTHRESH becomes very small,
and this leads to congestion avoidance with a
very small congestion window. Subsequently,
even though the network capacity may increase,
TCP does not detect the bandwidth change and
still widens the congestion window linearly.
Thus, while there is a need for a bandwidth-
aware window-decreasing algorithm (as in FR–
TCP), a way to recognize when the output rate
can be safely increased is also required. GFR–
TCP handles the latter case.

The key idea of the GFR–TCP algorithm is two-
fold. Firstly, it minimizes the modifications to TCP
modules, still achieving the performance equivalent
to FR–TCP. Secondly, the algorithm is quite inde-
pendent of the regular TCP congestion control
scheme and can be applied to any TCP flavor –
Tahoe, Reno, etc. The pseudo-code for the algo-
rithm is shown below.

If (CWND > SSTHRESH) AND ðCWND <
BWE �RTTminÞ
SSTHRESHþ ¼ ðBWE �RTTmin�
SSTHRESHÞ=2;

The parameters above have been defined earlier.
The core of the algorithm is to monitor the band-
width in congestion avoidance and periodically
increase the SSTHRESH if the conditions allow it.

According to [14], FR–TCP and GFR–TCP have
two advantages: avoiding unnecessarily small win-
dows and source-side implementation; however,
the authors did not consider the friendliness and
fairness toward other connections not employing
these two methods in their simulations. Further-
more, refinements of the bandwidth estimation pro-
cess as well as of some tuning parameters of the
algorithms have not been study. Therefore, without
more simulations, analysis, modeling, and real
network experiments, it is hard to believe that
FR–TCP and GFR–TCP solve the performance
reduction problem caused by slow recovery upon
a coarse timeout expiration on long, fat pipes, and
the reaction to random segment losses.

4.7. SACK

Another way to deal with multiple packet losses
is to tell the source which packets have arrived at



12 The sequence number of the first byte of unacknowledged
data.
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the destination. SACK does so exactly. TCP adapts
accumulated acknowledgement strategy to
acknowledge successfully transmitted packets; this
improves the robustness of acknowledgement when
the path back to the source features a high loss rate.
However, the drawback of accumulated acknowl-
edgement is that after a packet loss, the source is
unable to determine which packets have been suc-
cessfully transmitted. Therefore, it is unable to
recover more than one lost packet in each round-
trip time.

The SACK option field contains a number of
SACK blocks, where each SACK block reports a
non-contiguous set of data that has been received
and buffered. The destination uses ACK with the
SACK option to inform the source that one contig-
uous block of data has been received out of order at
the destination.

When SACK blocks are received by the source,
they are used to maintain an image of the receiver
queue, i.e., which packets are missing and which
have been received at the destination. A scoreboard
is set up to track these transmitted and received
packets according to previous information in the
SACK option. For each transmitted packet, the
scoreboard records its sequence number and a flag
bit that indicates whether the packet has been
‘‘SACKed.” A packet with the SACKed bit turned
on does not require to be retransmitted, but packets
with the SACKed bit off and a sequence number less
than the highest SACKed packet are eligible for
retransmission. Whether a SACKed packet is on
or off, it is removed from the retransmission buffer
only when it has been cumulatively acknowledged.

SACK TCP implementation still uses the same
congestion control algorithms as TCP Reno. The
main difference between SACK TCP and TCP Reno
is the behavior in the event of multiple packet losses.
SACK TCP refines the fast retransmit and fast
recovery strategy of TCP Reno so that multiple lost
packets in a single window can be recovered within
one round-trip time.

However, there are two shortcomings of SACK.
One is that a maximum of 3 or 4 SACK blocks will
be allowed in a SACK option. A SACK option that
specifies n blocks will have a length of 8� nþ 2
bytes, so the 40 bytes available for TCP options
can specify a maximum of 4 blocks. In addition, it
is expected that SACK will often be used in con-
junction with the Timestamp option used for
round-trip time measurement (RTTM), which takes
an additional 10 bytes (plus two bytes of padding);
thus, a maximum of 3 SACK blocks is allowed in
this case. Accordingly, if there are several non-con-
tiguous sets of data at the destination, the sender
may not know the whole situation from the SACK
option. The other drawback is that if the receiver
runs out of buffer space, it will discard the
‘‘SACKed” packets but not report this information
to the sender. The sender will not retransmit these
‘‘SACKed” packets before it is acknowledged by
the Acknowledgment Number field in the TCP
header.
4.8. FACK

FACK was developed to decouple the congestion
control algorithms from the data recovery algo-
rithms. It uses the additional information provided
by the SACK option to maintain an explicit mea-
sure of the total amount of outstanding data in
the network. In contrast, Reno and Reno with
SACK both attempt to estimate this by assuming
that each dupack received represents one segment
that has left the network. The FACK algorithm is
able to do this in a straightforward way by introduc-
ing two new state variables, snd.fack and retran
data. In addition, the sender must retain informa-
tion on data blocks held by the receiver; these data
blocks are required in order to use SACK informa-
tion to correctly retransmit data. In addition to
what is needed to control data retransmission, infor-
mation on retransmitted segments must be main-
tained in order to accurately determine when they
have left the network. The goal of FACK is to per-
form precise congestion control during recovery. By
accurately controlling the outstanding data in the
network, FACK can improve the connection
throughput during the data recovery phase. The
details of FACK are as follows:

At the core of the FACK congestion control
algorithm is a new TCP state variable in the data
sender. This new variable, snd.fack, is updated to
reflect the forward-most data held by the receiver.
In non-recovery states, the snd.fack variable is
updated from the acknowledgment number in the
TCP header and is the same as snd.una12. During
recovery (while the receiver holds non-contiguous
data), the sender continues to update snd.una from
the acknowledgment number in the TCP header,
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but utilizes information contained in TCP SACK
options to update snd.fack. When a SACK block
is received that acknowledges data with a higher
sequence number than the current value of snd.fack,
snd.fack is updated to reflect the highest sequence
number known to have been received plus one.

FACK sender algorithms that address reliable
transport continue to use the existing state variable
snd.una, and congestion management is altered to
use snd.fack, which provides a more accurate view
of the state of the network. The FACK mechanism
also defines awnd to be the sender’s estimate of the
actual quantity of data outstanding in the network.
Assuming that all unacknowledged segments have
left the network:

awnd = snd.nxt13�snd.fack.

During recovery, data retransmitted must also be
included in the computation of awnd. The sender
computes a new variable, retran_data, reflecting
the quantity of outstanding retransmitted data in
the network. Each time a segment is retransmitted,
retran_data is increased by the segment size; when
a retransmitted segment is determined to have left
the network, retran_data is decreased by the seg-
ment size. Therefore, TCP’s estimate of the amount
of data outstanding in the network during recovery
is given by

snd.nxt�snd.fack + retran_data.

Using this measure of outstanding data, the
FACK congestion control algorithm can regulate
the amount of data outstanding in the network to
be within one maximum segment size of the current
value of the CWND:

while (awnd < CWND) sendsomething();

The FACK congestion control algorithm does
not need special requirements for sendsomething();
the SACK algorithm is sufficient. Generally, send-
something() should choose to send the oldest data
first. FACK derives its robustness from the simplic-
ity of updating its state variables: if sendsomething()
retransmits old data, it will increase retran data;
otherwise, it advances snd.nxt when sending new
data. Correspondingly, ACKs that report new data
13 The sequence number of the first byte of unsent data.
at the receiver either decrease retran_data or
increase snd.fack. Furthermore, if the sender
receives an ACK that increases snd.fack beyond
the value of snd.nxt at the time a segment was
retransmitted (and that retransmitted segment is
otherwise unaccounted for), the sender knows that
the segment that was retransmitted has been lost.

Reno invokes fast recovery by counting dupacks.
This algorithm causes an unnecessary delay if sev-
eral segments are lost prior to receiving three
dupacks. In the FACK version, the CWND adjust-
ment and retransmission are also triggered when the
receiver reports that the reassembly queue is longer
than three segments. If exactly one segment is lost,
the two algorithms trigger recovery on exactly the
same duplicate acknowledgment. The recovery per-
iod ends when snd.una advances to or beyond
snd.nxt at the time the first loss was detected. Dur-
ing the recovery period, the CWND is held con-
stant; when recovery ends, TCP returns to
congestion avoidance and linearly increases the
CWND. In the FACK implementation, a timeout
is forced if it is detected that a retransmitted seg-
ment has been lost (again). This condition is
included to prevent FACK from being too aggres-
sive in the presence of persistent congestion.

There are several unresolved issues surrounding
the FACK mechanism. For example, FACK may
not avoid unnecessary inflation of the congestion
window through delay-sensing techniques. FACK
addresses persistent congestion (when halving is
not a sufficient window reduction); however, there
is no clear explanation that the proposed algorithms
are the best or optimal among the many possible
medium window reductions. Moreover, the produc-
tion Internet may lack adequate attention to issues
of congestion and congestion detection. Many rou-
ters are incapable of providing full bandwidth with
delay buffering and do not signal the onset of con-
gestion through mechanisms. Although the FACK
algorithm is designed to help in times of congestion,
it is not a substitute for these signals in the Internet
layer. The transport and internet layers must work
together to improve the behavior of the Internet
under high load.

4.9. D–SACK

D–SACK is an extension of the SACK mecha-
nism. It proposes telling the sender about duplicate
segments at the receiver with similar sequence num-
bers. As such, D–SACK requires that if a duplicate



Table 2
RR–TCP algorithms

Algorithm Description

DSACK–FA DSACK–R + fixed FA ratio
DSACK–FAES DSACK–FA + enhanced RTT sampling
DSACK–TA DSACK–FA + Timeout avoidance
DSACK–TAES DSACK–TA + enhanced RTT sampling
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segment is received, the receiver should send an
ACK containing the duplicate data as its first
SACK block. The sequence number space of the
duplicate data is independent of the value of the
ACK field in the TCP header. In addition, D–
SACK allows the TCP sender to infer the order of
packets received at the receiver when it has unneces-
sarily retransmitted a packet. A TCP sender could
then use this information for more robust operation
in an environment of reordered packets, ACK loss,
packet replication, and/or early retransmit time-
outs. In other words, D–SACK is a useful tool for
the TCP sender to obtain more information about
duplicate packets. If the receiver does not imple-
ment D–SACK, the sender will not be able to detect
a false fast retransmit and behaves identically as it
would in standard SACK. However, there are some
drawbacks in the D–SACK mechanism. First, D–
SACK cannot include all the information in its
option of an ACK because of the limited TCP
header space. Second, the absence of separate nego-
tiation for D–SACK implies that the TCP receiver
could send D–SACK blocks when the TCP sender
does not understand this extension. In this case,
the TCP sender will simply discard all D–SACK
blocks and process the other blocks as it normally
would. Therefore, the information in the D–SACK
option may be useless to the sender.

4.10. RR–TCP

In [15], the authors propose mechanisms to
detect and recover from false retransmits using the
D–SACK information. This is because the D–
SACK scoreboard data structure stores the per-
packet state at the sender concerning recently trans-
mitted packets and offers a natural framework for
storing per-packet reordering-related information:
whether a fast retransmit is false, the duration of
false fast retransmit, and the reordering length a
packet experiences. However, the measurement of
the reordering length is more nuanced. There are
two phases to sampling the distribution of reorder-
ing lengths experienced by packets: measuring the
reordering length for each packet and aggregating
these samples into a histogram of reordering lengths
recently observed on the connection path. There-
fore, the authors propose several algorithms used
in RR–TCP for proactively avoiding false retrans-
mits by adaptively varying dupthresh, which is a
parameter used by fast retransmit and is fixed at
three dupacks to conclude whether the network
has dropped a packet. The various algorithms used
are listed in Table 2.

In the DSACK–FA algorithm, the dupthresh
value is chosen to avoid a percentage of false fast
retransmit by setting it to the percentile value in
the reordering length cumulative distribution. The
percentage of reordering the algorithm avoids is
known as the FA ratio.

In the DSACK–FAES algorithm, the DSACK–
FA algorithm is combined with an RTT sampling
algorithm that samples the RTT of retransmitted
packets caused by packet delays.

The DSACK–TA algorithm uses cost functions
that heuristically increase or decrease the FA ratio
such that the throughput is maximized for a connec-
tion experiencing reordering. The FA ratio will
increase when false retransmits occur and the FA
ratio will decrease when there are significant
timeouts.

In the DSACK–TAES algorithm, the DSACK–
TA algorithm is combined with an RTT sampling
algorithm that samples the RTT of retransmitted
packets caused by packet delays.

Hence, RR–TCP can record each fast retransmit
start time and the amount of window reduction in
the retransmitted packet scoreboard entry. If the
fast retransmit is later identified as false, RR–
TCP will record the interval between the start
and end of the false fast retransmit, during which
period the window was unnecessarily halved.
According to [15], the DSACK–TA algorithm per-
formed the best when compared with the other
algorithms. But there still remain problems for
consideration:

1. To maximize throughput, a sender would like to
choose paths with disjoint bottlenecks on which
to send. Can the sender devise a system that
allows a sender to identify paths with disjoint
bottlenecks?

2. What happens when two paths have different loss
rates? If the sender naively keeps a single window
size, and has no knowledge of the different loss
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characteristics of the two paths, what behavior
results? Is the sender unfair (too aggressive) on
either path under any circumstances? Compare
the throughput the sender achieves with that
achieved by two individual flows, each routed
separately over one path.

3. Suppose a TCP sender is directly informed of the
number of paths to be used, and the loss rate on
each path. Use this information to ‘‘color” pack-
ets appropriately; marking them for which paths
they should take. How close to the sum of the
actual available bandwidths on each path can a
sender achieve, without sending too aggressively
on any one path?

4.11. TCP SACK+

Similar to DAC, TCP SACK+ detects whether a
retransmitted packet is lost or not based on new
packets transmitted after the retransmitted packet.
Therefore, whenever a sender performs a retrans-
mission, it stores the highest sequence number of
the packets that have been already transmitted. If
the retransmission of a packet loss fails, the new
packets transmitted after the packet loss also deliver
dupacks. In a window, SACK+ denotes the highest
sequence number for the hth packet loss by Sh. If the
right edge of the first SACK block included in any
dupack is greater than Sh, it means that the retrans-
mission of the hth packet loss was not successful. As
a result, if there is at least a new packet transmitted
after a retransmission, a sender can decide whether
the retransmission is lost or not based on the infor-
mation in a dupack the new packet generates.

As mentioned, SACK+ detects a lost retransmis-
sion on the basis of the well-transmitted packets
after the retransmission. This means that if conges-
tion is so heavy that no packet should be sent,
SACK+ does not transmit additive packets by
detecting a lost retransmission. This is because the
packets transmitted after the retransmission may
also be lost in such a congested situation. However,
a retransmission loss detected assures that there has
been a heavy congestion. Therefore, it should be
considered as two indications of congestion; this
leads to decreasing the congestion window twice,
as specified in [27].

TCP SACK+ can be implemented with simple
changes only to the sender part of TCP and it is con-
sistent with the conservative principle of window
management of TCP. However, a retransmission
loss is not frequent in the real Internet; therefore,
the improvement of TCP SACK+ may seem to be
insignificant.

4.12. TCP Vegas

In TCP Vegas, as in TCP Reno, a triple-dupli-
cate ACK always results in packet retransmission.
However, in order to retransmit the lost packets
quickly, Vegas extends Reno’s fast retransmission
strategy. Vegas measures the RTT for every
packet sent based on fine–grained clock values.
Using these fine–grained RTT measurements, a
timeout period for each packet is computed.
When a duplicate ACK is received, Vegas checks
whether the timeout period of the oldest unac-
knowledgement packet has expired. If so, the
packet is retransmitted. This modification leads
to packet retransmission after just one or two
duplicate ACKs. When a non-duplicate ACK that
is the first or second ACK after a fast retransmis-
sion is received, Vegas again checks for the expi-
ration of the timer and may retransmit another
packet. Note that packet retransmission due to
an expired fine–grained timer is conditioned on
receiving certain ACKs. This technique enables
the faster detection of losses and recovery from
multiple drops without restarting the slow start
phase if the retransmission timer does not expire
before. Hence, it allows dealing with a problem
that Reno suffers from considerable, namely, mul-
tiple drops in the same data window.

After a packet retransmission is triggered by a
dupack and the ACK of the lost packet is received,
the congestion window size is reduced to alleviate
the network congestion. There are two cases for
Vegas to set the congestion window size. If the lost
packet has been transmitted just once, the conges-
tion window size will be three fourth of the previous
size. Otherwise, Vegas considers the congestion to
be more serious, and one-half of the previous con-
gestion window size is set into the current conges-
tion window. Notably, in the case of multiple
packet losses occurring during one RTT and trigger-
ing more than one fast retransmission, the conges-
tion window is reduced only for the first
retransmission.

If a loss episode is severe enough that no ACKs
are received to trigger the fast retransmit algorithm,
eventually, the losses are identified by a Reno-style
coarse–grained timeout. When this occurs, the slow
start threshold is set to one-half of the congestion
window size; then, the congestion window is reset
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to two and finally, the connection restarts from slow
start. The flowchart of TCP Vegas is shown in
Fig. 6.

4.13. TCP-Peach

TCP-Peach, a congestion control scheme pro-
posed for satellite networks, uses dummy segments
(that must be treated as low-priority segments by
all intermediate nodes) to probe the availability of
network resources. If all the dummy segments are
acknowledged, then the sender interprets this as evi-
dence that there are unused resources in the network
and accordingly can chosen to increase its transmis-
sion rate. In TCP-Peach, corruption errors are not
explicitly notified, but instead implicitly accounted
for by the capacity estimation strategy. TCP-Peach
contains the following algorithms: sudden start,
congestion avoidance, fast retransmit, and rapid
recovery. The congestion avoidance and fast
retransmit algorithms may be those proposed either
in TCP Reno or by TCP Vegas. TCP-Peach’s flow-
chart is shown in Fig. 714.

The rapid recovery first maintains the classical
fast recovery conservative assumption that all seg-
ment losses are due to network congestion because
the TCP layer does not know anything about the
exact causes for the losses, i.e., due to network con-
gestion or link errors. Accordingly, the sender
halves its CWND, as in TCP Reno. In order to
probe the availability of network resources, the sen-
der transmits a certain number nDummy of dummy
segments. Note that the value for nDummy will be
derived subsequently. The ACKs for the dummy
segments will be received after the ACK for the lost
data segment, i.e., they will be received when the
sender is in the congestion avoidance phase.

If the segment loss is due to congestion, then the
congested router can serve CWND segments
approximately per round-trip time. As a result, the
network will accommodate CWND/2 data seg-
ments, which have high priority, and CWND/2
dummy segments out of the nDummy dummy seg-
ments transmitted during the rapid recovery phase.
Therefore, the sender must not increase its conges-
tion window when it receives the first CWND/2
ACKs for dummy segments. In fact, these ACKs
cannot be considered as a sign that the loss was
14 The flowchart of TCP-Peach+ is the same as that of TCP-
Peach. The difference between TCP-Peach and TCP-Peach+ is
presented in the next section.
due to link errors. This will prevent the sender from
increasing its congestion window when the first
CWND/2 ACKs for dummy segments are received
during congestion avoidance. After receiving
CWND/2 ACKs for dummy segments, the sender
increases its congestion window by one segment
each time it receives an ACK for a dummy segment.
If all dummy segments are ACKed to the sender, the
congestion window reaches its value before the seg-
ment loss was detected. Note that the retransmitted
segment may get lost. Let tRetr be the time when the
lost segment is retransmitted. If at time
ðtRetr þRTO), no ACK has been received for the
retransmitted segment, this segment may be lost.
Accordingly, the rapid recovery is terminated and
the sender executes the sudden start because the loss
may be due to heavy network congestion.

In short, TCP-Peach is based on the replacement
of slow start and fast recovery algorithms with sud-
den start and rapid recovery procedures, which rely
on the introduction of dummy segments to probe
the bandwidth availability of the network. TCP-
Peach requires all the routers along the connection
to implement some priority mechanism at the IP
layer so as to discard dummy segments in the pres-
ence of congestion.

4.14. TCP-Peach+

In TCP-Peach, dummy segments are transmitted
in rapid recovery to resume the CWND rapidly from
decrement due to segment loss caused by a link
error. Although it solves the problem of throughput
degradation in satellite networks over Fast Recov-
ery, when the link error is high and multiple segment
losses occur within one window of data, the through-
put degradation is still large. Therefore, quick recov-
ery is proposed to recover from high link errors.

Similar to the case of TCP SACK, the authors
adopted the SACK option field in TCP-Peach+ to
avoid retransmitting out of order segments received
at the destination. At the sender, a data structure
called a scoreboard is maintained to update infor-
mation about cumulatively ACKed and SACKed
segments. During quick recovery, a variable called
pipe that represents the estimated number of seg-
ments outstanding in the network is maintained.
The variable pipe is incremented by one when the
sender either sends a new segment or retransmits
an old segment. It is decreased by one when the sen-
der receives an ACK that reports new data has been
received at the receiver and has left the pipe. When-
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ever a SACK arrives, the retransmit timer is also
reset. When the ACK for the segment arrives right
before quick recovery is entered, ACKing all data
that is outstanding before quick recovery, the sender
exits quick recovery and begins congestion avoid-
ance normally.
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4.15. TCP-Jersey

TCP-Jersey adopts slow start, congestion avoid-
ance, and fast recovery from Reno but replaces
Reno’s fast retransmit with explicit retransmit and
introduces the rate control procedure. The flow dia-
gram of TCP-Jersey is shown in Fig. 8. The only dif-
ference between Reno’s fast retransmit procedure
and Jersey’s explicit retransmit procedure is that
unlike Reno’s retransmit procedure, which halves
the current congestion window before starting the
retransmission, explicit retransmit maintains the
current CWND. It leaves the adjustment of the con-
gestion window to the rate control procedure. The
operation of the rate control procedure is also quite
simple. The procedure sets the SSTHRESH to the
optimum congestion window size computed based
on its available bandwidth estimator (ABE), and
sets the CWND to the SSTHRESH if the connec-
tion is in the congestion avoidance phase. The sen-
der receiving a module in TCP-Jersey operates as
follows. Upon entry, it invokes the ABE procedure.
If an ACK is received without the congestion warn-
ing (CW) mark, it proceeds as Reno (i.e., invoking
slow start or congestion avoidance depending on
whether or not the CWND is below the
SSTHRESH). If the received ACK or the nth
dupack is marked with the CW bit, it calls the rate
control procedure to adjust the window size and
proceeds with slow start or congestion avoidance
if it is an ACK; otherwise, it enters the explicit
retransmit if it is the nth dupack. When the nth
dupack is received without the CW mark, TCP-Jer-
sey renders the packet drop caused by a random
error and therefore enters explicit retransmit with-
out adjusting the window size.

4.16. TCP Westwood

In TCP Westwood, the congestion window incre-
ments during slow start and congestion avoidance
remain the same as in Reno, that is, they are expo-
nential and linear, respectively. A packet loss is indi-
cated by (a) the reception of 3 dupacks or (b) coarse
timeout expiration. In case the loss indication is 3
dupacks, TCP Westwood sets the CWND and
SSTHRESH as follows:

if (3 dupacks are received) {/*congestion avoid */
SSTHRESH = (BWE*RTTmin)/seg_size;
if (CWND > SSTHRESH) CWND =

SSTHRESH;
}

In the pseudo-code, seg_size denotes the length of
a TCP segment in bits. Note that the reception of n

dupacks is followed by the retransmission of the
missing segment, as in the standard Fast Retransmit
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implemented by TCP Reno. In addition, the window
growth after the CWND is reset to the SSTHRESH
according to the rules established in the Fast
Retransmit algorithm. During the congestion avoid-
ance phase, TCP Westwood is probing for extra
available bandwidth. Therefore, when n dupacks
are received, it means that TCP Westwood has hit
the network capacity (or that in the case of wireless
links, one or more segments were dropped due to
sporadic losses). Thus, the SSTHRESH is set equal
to the window capable of producing the measured
rate BWE when the bottleneck buffer is empty. The
congestion window is set equal to the SSTHRESH
and the congestion avoidance phase is entered again
to gently probe for new available bandwidth. Note
that after the SSTHRESH has been set, the conges-
tion window is set equal to the slow start threshold
only if CWND > SSTHRESH. It is possible that
the current CWND may be below the threshold.
This occurs after time-out for example, when the
window is dropped to one. During slow start, the
CWND still features an exponential increase as in
the current implementation of TCP Reno.

In case a packet loss is indicated by a timeout
expiration, the CWND and SSTHRESH are set as
follows:

if (coarse timeout expires){
CWND = 1;
SSTHRESH = (BWE*RTTmin)/seg_size;
if (SSTHRESH < 2) SSTHRESH = 2;

}

The rationale for the algorithm above is that
after a timeout, the CWND and the SSTHRESH
are set equal to one and BWE, respectively. Thus,
the basic Reno behavior is still captured, while a
speedy recovery is ensured by setting the
SSTHRESH to the BWE.

5. Conclusion

This paper presents a taxonomy for fast retrans-
mit and fast recovery mechanisms of some existing
transport protocols. The taxonomy comprises two
classification schemes. The first scheme classifies
protocols with respect to extra messages attached
to the TCP option between two end nodes. In this
scheme, protocols are classified into two types: do

not use another message and require TCP option

information. The second classification scheme classi-
fies protocols with respect to their retransmission
behavior when multiple packets are lost. Therefore,
transport protocol schemes can be categorized into
schemes that cannot deal with multiple packet losses
and those that can handle multiple lost packets or
lost retransmitted packets. The article also shows
how existing protocols are classified according to
this taxonomy and surveys a subset of the classified
protocols.

A good fast retransmit algorithm should distin-
guish between a real lost packet from an out-of-
order delivery packet and perform a retransmission
of what appears to be the missing segment as soon
as possible, without waiting for a retransmission
timer to expire; on the other hand, a good fast
recover scheme should allow high throughput under
light or moderate congestion, especially for large
windows; further, it should increase the output rate
safely when the bandwidth has available resources.
Hence, the proposal of a simple and efficient fast
retransmit and fast recovery algorithms is not easy.
Moreover, TCP is widely used over all kinds of net-
works such as wireless, Wi-Fi, and WiMAX. Fast
retransmit and fast recovery algorithms may face
new challenges in these networks. Therefore, there
is still scope for improving fast retransmit and fast
recovery algorithms.

In summary, this paper presents a taxonomy for
fast retransmit and fast recovery mechanisms of
some existing transport protocols. This taxonomy
provides a unified terminology and a framework
for the comparison and evaluation of this class of
protocols. In addition, the insight provided by the
taxonomy and survey in this paper may be used to
guide future research in this area. Studying TCP
behavior is still an active area of research and
requires further investigation since several mecha-
nisms beside the ones described in this article rely
on this type of estimation. Simulation results
obtained by comparing different protocols and a
theoretical study of the transport protocols will be
discussed and developed in the forthcoming article.
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