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Conjugated polymers are class of organic semiconductors with bandgap from 2 to3 eV Due to its

high electronluminescence quantum efficiency and large optical nonlinearity, conjugated polymers

have become promising materials in two important areas of optoelectronics applications: light-
emitting—diode(LED) (with poly(phenylene vinylene)(PP V) and optical switch(with
polydiacetylene(PDA)). In addition, conjugated polymers can be used as “plastic conductors”

the interesting optical and electronic properties of conjugated polymers are believed to be due to the
7 -electrons delocaized along the carbon backbone., Elect-on-electron and electron-lattice

interactions are strong, which makes the theoretica] study on this subject challenging. This project is
my third one on this topic. In this year, I will concentrate on the following fundamenta] physical
properties of conjugated polymers, which are, however, closely related to their application aspects.

(1) Stokes Shift

film, the excitons are likely to be quenched and decay nonradiatively. The origin of this quenching
mechanism will be identified, and the rate will be calculated.

(3) Singlet-triplet transition and triplet energy
The relative population of the triplet and singlet excitons is >rucial for the luminescence efficiency.

The energy of the triplet excitons and the S-T transition(via spin-orbital coupling) will be studied.

4) Photoconductivity

The ionization process of excitons into charge carriers wil] be studied in the sub-picosecond time

scale
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oscillator strengths of the emission sidebands with the experimental photoluminescence spectra for the various
poly(p-phenylene vinylene) derivatives. Using this coupling constant, we predict that the absorption one-
phonon sideband is as important as the zero-phonon sideband for the ideal systems, Taking the cxperimental
data of the peak absorption coefficient as input, we obtain th optical gain coefficient for a wide range of
exciton densities. The gain is found to be determined by the exciton density n,, by a general expression .98
X107, cm?, which is in g00d agreement with experiments. [80163—1829(99)06243—8]

L INTRODUCTION

Conjugated polymer has been identified as a promising
candidate for future optoelectronic applications!. Encouraged
by the discovery of their electroluminescence,2 an enormous
amount of research has been conducted to further explore the
possibilities of electro-optical devices based on conjugated
polymers. A nature step forward is the search for lasing ac-
tions. Preliminary optically pumped polymer lasers have
been demonstrated.*~6 The effort to develop these prototypes
into realistic coherent light sources with preferably electrical
pumping has, however, encountered major difficulties, In or-
der to solve these difficulties, more works need to be done on
not only the technical issyes such as device fabrications, but
also the basic physics of lasing mechanisms in conjugated
polymers. This paper is motivated by the latter.

Lasing takes place when the gain overcomes the loss in an
optical resonator. For gas lasers with typical three or four-
level operation, gain is achieved by the population inversion
between the two active levels. Due 1o the inversion, the rate
for the absorption from the lower state is smaller than the
rate of stimulated emission from the upper state. In the case
of inorganic semiconductor lasers, gain occurs between two
bands of extended states, re., the conduction band and the
valence band. instead of two discrete active states. Upon cur-
rent injection, the conduction-band bottom is occupied by the
electrons and the valence-band top is occupied by holes. Ab-
sorption near the band edge is then depleted, while stimu-
lated emission is enhanced at the same time. In other words,
the current injection causes a spectral shift between the ab.-
sorption and the emission, which grows with the carrier den-
sity and therefore injection current. As a result, net gain
anses. Though conjugated polymers are also direct band-gap
semiconductors, which exhibit gain upon pumping, the sce-

nar1o for gain seems to be quite different from above. One of

the most important differences is that even before oplical
pumping or current injection, a significant spectral shift be.-
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tween the absorption and emission, i.e. Stokes shift, exists
for conjugated polymers. Due to this shift, the emitted pho-
ton has a reduced chance to be reabsorbed and the optical
gain is possible without electronic population inversion. The
Stokes shift, common in organic materials, is usually due to
the eleztron-phonon coupling, which causes vibrational re-
laxatioss after electronic excitations. With the Stokes shift,
lasing can occur without electronic population inversion, in
contras: to the conventional compound semiconductors.

In tais paper, we study theoretically the phonon side-
bands i1 the absorption and emission spectra and the resul(-
ing Sto<es shift due to electron-lattice coupling for one ide-
alized infinite periodic chain. The significance of extrinsic
factors like the inhomogeneity broadened density of states
(DOS) will be investigated afterwards. The theory developed
by Pollinann, Buttner, and Matsurra’$ (PBM) for polar inor-
ganic se¢miconductors s adapted for the description of con-
Jugated polymers. Besides dimensionality, one of the major
differences between conjugated polymers and polar semicon-
ductors is the type of the electron-phonon coupling. While
the coupling for polar semiconductors is of the Frohlich type.
the cougling for the covalently bonded conjugated polymers
is of deformation nature.

If the oscillator strength of the absorption is not domi.
nated by the zero-phonon band. there will be a subsequent
relaxatios among the vibrational levels from the higher pho-
non states to the zero-phonon state after optical excitation.
Such a relaxation is sometimes referred 1o as the genuine
Stokes stift. This shift reduces the overlap between the emis-
sion and the absorption spectra, and favors the achievement
of gain. We predict that for ideal systems the oscillator
strength of the absorption is evenly shared by the one- and
zero-phor on band, while the emussion is dominated by the
zero-phor on band. The mirror symmetry common for small
organic molecules is therefore broken. Moreover, this result
implies the possibility of a genuine Stokes shift of one opti-
cal phoncn energy, contrary to the interpretations of some

14 242 ©1999 The American Physical Society
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stte-selective experiments.” ' we shall come back to this
point in the Discussion

Because our calculation 1s only for one single chain, the
absorption and emission coefficient for a realistic solid-state
sample can be determined only up to a common proportional
constant, which includes factors like transition dipole matrix
clement and chain packing density. We determine the con-
stant from fitting with the experimental absorption coeffi-
cient, then calculate the gain coefficient for arbitrary exciton
density. We found that near the one-phonon emission band
there is a universal relation between the peak gain coeflicient
and the exciton volume density. independent of the chain
packing density and geometry. This resuft gives a relation
between the resonator loss and the threshold exciton density
" required for lasing in practical resonators. The agreement
with the experimental estimates is quite reasonable.

This article is organized as follows: In Sec. II, we present
our model Hamiltonian and the Lee-Low Pines (LLP) unj-
tary transformation. In Sec. I, the variational approach to
derive the wave functions and energy is introduced. In Sec.
IV, we calculate the optical transition matrix elements and
present our results on the absorption and emission spectra
with phononside bands. In Sec. V, we study the gain coeffi-
cient for arbitrary exciton density and compare the theoreti-
cal predictions with experiments. Sections VI and V]| are the
discussion and the conclusion, respectively.

II. THE EXCITON-PHONON HAMILTONIAN

Poly(p-phenylenevinylene) (PPV) is idealized as an one-
dimensional lattice. Each unit cell contains cight carbon at-
oms, with one p, orbital at each carbon atom. The mr-electron
bands are formed by the superposition of these p, orbitals.
~ The total number of 7 electrons is equal to the total number
of carbon atoms. Simple tight-binding calculation shows that
PPV is a direct band-gap semiconductor. Because optical
absorption and emission near the band gap involve transi-
tions between the valence and the conduction bands only, the
problem can be simplified from eight bands to only two
bands. The system then consists of an electron and a hole
interacting with each other and with the longi[udinal-optical
phonons. It is convenient 1o write an effective Hamiltonian
for the system

H:H“+M&Hnw, (1)
with
2 2
p( h
= t ot V(r - 2
C2m, 2m, (re=r) 2
and

The three terms in 4 are for the electron-hole system of
exctton, phonon, and their interaction, respectively. H“,,,
will be derived below. Pty 15 the momentum operator for
electron (hole). M.y are the effective mass of the conduction
and valence bands, respectively. V(r) is the effective Cou-
lomb attraction between the electron and the hole. s is the
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phonon branch index, and # is the crystal momentum. The
m-clzctron band edge is chosen o be at k=0 (Ijl and a
are the phonon creation and annihilation operators, respec.
tivel,.

Ir contrast (o the Frohlich type coupling in polar semicon-
ductors, the electron-phonon coupling in conjugated poly-
mers are of deformation nature. Its explicit form can be ob-
tained as follows, Consider the interaction Hamiltonian
H,_, between conduction-band clectron and phonon firs(.
From the crystal momentum conservation, the matrix ele.
mentof 4, between conduction-band Bloch states k) and
k") must be of the form

<k/,Ht"p,k>: E é:‘q(a;\.qﬁ_a:‘1/)5k’,k+q . (4)

sq

For d:formatjon type of interaction, the coupling constant
£,4 approaches to a finite value as ¢—0. Since the exciton
is com posed of Bloch states near the Brillouin zope center,
We ony need lo consider clectron scattering in that region,
where &9 can be replaced by its value at 9=0, denoted
simply by & below. In fact, from the relation (k[Hf‘,,lk)
=&.(a,9tal,y), £, is identified to be (he change of the
conduction-band edge due to the 9=0 mode of the lattice
displacement with normal coordinate Xs.q» Which is equal 1o
(aA\.‘q+a;q)/\/—2_ in the second quantized form. The lattice
displaczment vector uj.(R) for the ith carbon atom in the nth
unit ce.l can be expressed in terms of the normal coordinate
Xs.q by

) 1 i .

q.s

N is the total number of unit cells in the chain. R, 1s the
location of the nth uni cell. M is the mass of the carbon
atom. € (q) are the polarization vectors. (=18 label the
carbon atoms in each unit cell. The dependency of the
conduction-band edge ¢, on X:.o0 1s through the modulation
of the happing integral between neighboring carbon p- orbit-
als by tke lattice displacement. Assume that « 1s the change
in the hopping integral per unmit length of the bond-length
change. The bond-length change is of the order of ju'l.,
which is in turn of the order of \f‘fz/ZNM( w.(q), so we have

. Og, [ A (6)
ée_-(yf\/.\'.() “ 2NM(.U)0’

assuming that all the phonon branches are dispersionless and
share the same frequency w,. This relation gives only the
correct order of magnitude for the clectron-phonon coupling
constant £, The cxact expression for &, depends on the
polarization vectors €,(q) of the phonon modes. Instead of
solving tte complete lattice dynamic equation 1o obtain all
the polarization vectors, we introduce a phenomenological
dimensior [ess parameter 7., and assume that the coupling
constant £ s independent of the branch index y. by

ﬁ
2NM

§:’:§(‘: 77((1




14244

7. represents the strength of the clectron-phonon coupling.
Similarly, for the valence band we can calculate the modu-

lation of the valence-band edge by the lattice displacement of

the normal phonon modes X, and obuain the correspond-
tng hole-phonon coupling constant ¢, . The lattice structure

of PPV is invariant under Inversion respect 1o the center of

the benzene ring. Therefore, the set of eight polarization vec-
tors e»(.‘q for each mode (5.9) must be either even or odd
upon inversion. The energies of the electronic bands at g
=0 is actually the cigenvalues of a §x § Symmetric matrix
A. with A, equal 1o the hopping integral between carbon site
tand j. A is invariant upon lattice inversion when the lattice
15 in the equilibrium configuration. When the lattice is dis-
placed from the equilibrium configuration, the matrix is
modulated A -4+ AA. One can show that for even polar-
ization vectors, AA is odd upon lattice inversion. On the
other hand, AA is even upon lattice inversion for odd polar-
1zation vectors. There is a bandedge modulation to the linear
order in the displacement only when AA is even, Moreover,
we found that for such AA . the modulation of the conduction
band and the valence band are always exactly the same in
size but opposite in sign. Therefore, we have the general
relation — ¢, =¢, =¢. However, because hole is the vacancy
of the valence band, the matrix elements between the one-
hole states are opposite in sign to the matrix elements of the
corresponding valence-band states. In other words, we have
,,(k’lH,,_,,lk),,=—U(k’th_plk)v up to a constant. Here,
[k), is the one-body valence-band Bloch state, while k), is
the many-body Slater determinant with one hole in the oth-
erwise filled valence band. So we have Eh=—§&,=¢. Finally
in the real-space representation, the exciton-phonon interac-
tion Hamiltonian becomes

Hell*l7:He*P+Hh*f’:Ek §(e"”v+e"l’h)(a‘\_'q+ab“_‘>q)’
B

with

A
£=nan/ INM g (9)

"e.n are the one-dimensional coordinates of the electron and
hole, respectively. In this interaction Hamiltonian, 7 is the
only filting parameter.

Expressed in terms of the center-of-mass and relative co-
ordinates of the exciton, the total Hamiltonian becomes

2 2

F +
H:?A? + Z +ﬁ(1)0\§; a_\.‘,‘,aj_‘

+> e piira, +he ]+ Vir), (10)
x.k

Here M=m,+ni, is the total mass, u=m_m, /M is the re-
duced mass. R = o1y is the center-of-mass coordinate, and
P=re= ey s the relative coordinate. p(r) is defined as

pA(r)Ecxp(/ﬂvzkr)+cxp(1’x,kr) (1)
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with the ratio s, =m M and 5, = ny /M. Next. we perform
the Iee-Low-Pines (LLP) transformation '
center-of-mass degree of frecdom

Lo remove the

Hi=U, 'HU],U,;cxp[i( 0-> ka,f“cz,\_k)/e" (12)
sk
The t-ansformed Hamiltonian becomes
ﬁ2Q2 pZ
H =5t —+V(ir) + ) ) o
Y, I (r) 2 f[PA(’)aN”H&-]
- ) mkk'
+; ﬁQ(/{,Q)a,\.ak*Fka’ Wakak'akakv,

(13)

with
ROk # W n
= — et —
(k. Q)=hw, M oM (14)

Q is the total momentum of the system, which is conserved
and taken as a ¢ number here. Note that we have included the
summation over the phonon branch index s into the summa-
tion over wave number & implicitly.

This Hamiltonian is of similar form with the exciton-
phonon Hamiltonian for conventional three-dimensional po-
lar inorganic semiconductors studied by PBM."® I addition
to dimensionality, there are two major differences between
the Hamiltonians for conjugated polymers and polar semi-
conduciors. First the & dependency of the coupling constant
is different. The coupling is a constant for the polymers, but
proportional to 1/k for the polar semiconductors. Second, the
electron-phonon coupling and hole-phonon coupling in p,(r)
have the same sign for polymers, but different in polar semi-
conductors.

IIL. VARIATIONAL SCHEME

Following the work of PBM. the trial ground state (W) of
the who e system is chosen 10 be of the form

I\I/>:¢er(r)U2[FA(r)]!O>ph' (15)

.. (r) 1t the exciton trial wave function. fO),,,, is the phonon
ground state. U, is a displacement operator such that the
phonon trial ground state is 2 coherent state

Url Fi(r)]=exp 2 Fr(nay=Furall. (16
Fy(r) is ur variational function. We define
HQEUEI[Fk(’-)]h’lUZ[FA(")]v (17)
and
HOEI,,,<()fHZf0>I,,,, (18)
such that ‘he trial ground-state energy (WIH W) 15 cqual to

((b(llHo[l"k(r)]I(/)y\). The variational ground state is deter-
mined by the minimum conditions
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s
SFor) el Hol et @, ) =0 (1),

9
gm<<fmiﬁo[ﬂ(r)]l¢“>:o (1. (19)

Duz 1o the wanstational symmetry of the system. the phonon
variational function should be of the form!?

- é 1y v 1y K
l'k(r):m(fie W= frenikr. (20)

So the first of the two minimum conditions is replaced by

1)
(@ |Holp, )= 0. 21
(9f2<¢)“‘ ()'¢e > ( )

A. Phonon displacement trial functions

We proceed with condition [ in Eq. (19} first. For given
exciton trial wave function ®..(r), condition I gives the
phonon trial functions F(r) as functionals of ®... In terms
of fi, the minimum condition becomes

b} - SF(r) &8 ~
;;;;:<¢eleol¢ex>_<¢e.\'l éfi WH()’¢(X>—O.
(22)

Assuming the inversion Symmetry of the exciton wave func-
tion &, (ry= b {—r), the equations can be solved

U H GO +RIA) - (1466,
(1+RHUY)(1 +R3k?)G?

2 A GO +RUD +(14 GG, 23
fv:-\,

‘ (14 RN (1+ R~ G2
where G,=(¢, |e™"|¢,.), and Ri2=Vhi2m, wq is the so
called polaron radius. Note Gy is real due to the symmetry of
b,.(r). The dependency of the phonon trial function Sy on
the exciton trial wave function ¢, (r) is now only through
the quantity G,. We now substitute  Eq. (23) into

(d)“fHo[Fk(r)],qﬁ,,r), and cxpress the expectation value in
terms of G,

(d)l‘\ll{oi(/)l’\>:<(/)(‘IIH//1’A’[(7/)(W>

2-2 A wg

R

Here, Hyee=pl2u+ V(r). I, are certain dimensionless
integrals defined below. ag=h*pele is the exciton Bohr
radius. R is the exciton Rydberg ﬁz/Zﬂaé. The lattice con-
- stant a 1s written as dpag . In addition, we define the dimen-
sionless polaron radijus R, as R,/ay and the dimensionless
electron-phonon coupling constant « by

_ a h 5
(1-ﬁw0 M wy @5

14245
For the explicit forms of the Integrals [y, 15, and [5. the
integration variable & is changed (0 4 dimensionless variable
- 1.2 42 S . .
1=k, such lhat/”(r)r]k - The function G(1) is defined
as G,/“R, The integrals are

N * dt 5 4, 12 3 )
Iy = ot {[s.f (O +1s /402

F2asaf (NG,

> dr | 5
/fzf A=+ G, (26)

Here, 7 is m,/m,; . Note the integrals 155 are expressed in
terms >f the function G (1), which depends only on the ex-
citon trial wave function b.(r). In order to  obtain
<¢exl[~"free‘d)e.r> and the in[cgrals ll.ZJ in <¢e(‘HOl¢)e\'>‘ we
need to chose a definite form of the variational exciton wave
function Der(1).

B. Exciton trial wave function

Without the electron-phonon coupling, an exciton in the
polymer chain can be modeled as a one-dimensional hydro-
gen atem with Coulomb interaction cut off at small djs-
tances. In fact, the binding energy of the one-dimensional
hydrogen atom is infinity without a cutoff '3 Because our
two-bard effective mass approach 1s valid only for Bloch
states within the first Brillouin zone, the real-space cutoff for
the Coulomb interaction is the lattice constant a, whose cor-
respond ng momentum-space cutoff is at the Brillouin zone
boundary. The corresponding Schrodinger equation is

ﬁz d2¢
55 Vi e=E¢. (271
2u g2

The cutcff Coulomb potential is

jrﬂ>a

Vir)= 5 (281

[rl<a.
€a

Here, € i« the dielectric constant along the chain. We assume
that the main effect of exciton-phonon interaction is Lo (ntro-
duce a modified electron-hole Coulomb attraction. So we
take the variational trial wave function for &b, (r) as the
solution >f the Schrodinger equation for V(ry with €
changed ‘0 €,. The subscript v ‘means variation. The
modified 3ohr radius, denoted by «y is then

5

ﬁ_

ag= (29

et
me e,




14 246

W take ay as our variational parameter (o minimize the
system total energy. Following the work on Loudon, we de-
fins three dimensionless variables

2
a 2pag 2r
= —_ A= \/ .= 3
‘ &) fLZ lEl >\Clo ( 0)

anc express the solution and energy eigenvalue in terms of
them. & is now our variational parameter. For the ground
state, A and § are related by the cquation

“25‘) I
+x—0. (31)

I
N

[n terms of the new variable Z, the cutoff length of the Cou-
lomb potential is 20=206/\, and the dimensionless ground-
state wave function is

( I ao)\z 12 ] )
N *h_*_ 7
cos ) 4a ~J, [N
W(z)= L | (32)

Ce*fz(zlnz-x), 72>

The constant C is determined by the continuity condition

B
cos(—l+6>\2)”zx
_—

26 285 1
— 8/A R
e (A lnx )\)

The actual wave function &..(r) is related to ¥(z) by

_ 1 Zr)
b lr)= \/mtll(m . (34)

The dimensionless quantity N(&) is equal to Tolw(2))%dz,
such that 7|, (r)[?dr=1. Now we substitute the trial
wave function ¢,, with variational parameter § into the ex-
pression for the quantity G(k) in Eq. (23)

G(1,6)= f [¥(z)[2e! o280y, (35)

—x

2N(5)

where 6y=a/ay as defined above. After substituting G(1, 8)
into Egs. (23), (26), and (24), we obtain the variational
ground-state cnergy as the function of a single variational
variable 8. The ground state is then determined by minimiz-
ing the function. The vibarional excited states can be ob-
tained by applying U, 0 states containing one or more
phonons. Their energy can be obtained by calculating the
expectauon values of H, for them. For example, for states
with one phonon at £, the energy is I,,,(()[chﬂZ!O),,,,.

[V. OPTICAL ABSORPTION AND EMISSION
A. Oscillator strengths

The optical absorption of conjugated polymers occurs
through the creation of an exciton. This process is character-
ized by the oscillator strength f and the optical absorption
coefficient a, both of which are related to the corresponding
exciton transition-matrix element:

HSIN-FEI MENG AND VINCENT CHIA-HUNG CHANG
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f: (./E '[)""2'

m

(36)
2 o) g -
hva(hv)= c'(,E 19,12 8¢ E,=Ey—hv),
"

wher: €j+Cq are proportional constants and hvis the energy
of the photon. The subscript m characterizes the states of the
phonon. £, 1s the electronic band gap plus the ground-state
energy of our Hamiltonian in Eq. (). E, is the energy of
phonons in the final stae of the optical transition. The exci-
ton rnsition-matrix element for this process P, is given by

pm:g./\;](_fu{«)]exp ,}:, (FE(0)ay,

‘Fk(O)uZ»\)}fm)} b, (0)

=e MF exp( —g/2)

X(O'exp[; FT(O)akp‘.J[nOQS‘,A(O), (37

where the factor gis

2 é: 2 2
§=2 |Fy(0)=n ¥ (,ﬁ) (fi=1D)?
k.y k l(,()O

2 :

)(fi ~f)2 (38)

(24

2
=nn* (
2hMa)

\

Here, n is the number of even optical phonon modes. € is the

unit po arization vector of the electric field, va 1s the di-
pole transition-matrix element between the valence- and
conduction-band states. From the excilon transition-matrix
element, we can calculate the total oscillator strength for the
transiticn to states with a certain number of phonons. For
transitions to the states with one exciton plus zero, one, and
two phcnons, the oscillator strengths are respectively given
by

f‘o’:Aqu)“((mzexp( —g)
f”’ij“”g, (39)

f(z):f(())gz/z'

The dipole transition-matrix clement, the polarization vec-
tors, and the proportional constant are all absorbed in the
new constant A. L is the chain tength. 1 is clear that the
relative strength among these transitons depends on the
magnituce of g. To calculate & we need o know the param-
eter Vnr, where 7 is the dimensionless clectron-phonon
coupling constant. We extract this number from the experi-
mental e mission spectra of the conjugated polymers. The
transition rate, as expected, is proportional to the system size
L.

Excitor radiative recombination occurs mainly after re-
laxation trom higher phonon states to zero-phonon state. It
then emit; a photon and transits to the electron-hole ground
state (no :xciton) plus some phonons. We first assume that
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the total momentum O of the exciton in the initial state is
- zero. This is true for Zero-temperature transition. The tem.-
perature dependence can be taken INto account later. The
corresponding exciton transition-matrix clement for decay is
similar (o that of the absorption:

P, = Q-be,{(rrz]cxp{z (F¥(0)ay,

k.s
- /fk(O)a"._\)][O)} G50 (40)

= e»/l;IA*_U{ exp( —g/2)

X(Ofexp[; F:(O)ak“\]}m)} B (0). (41)

The total emission rate for the various phonon final states is
proportional (o the square of the above matrix element inte-
- grated over the energy of the emitted photon. For an exciton
with strictly zero total momentum, the emission rate (o the
Zero, one, and two phonon states are give by

hO=AL|,,(0)|%exp(~g).

h=ArL exp(~g)[¢,(0)|2n|Fy|2, (42)

2
n
MI=AL D)0 3 [FF P

Because of momentum conservation, only the phonon with
Zero momentum can be emitted in the one-phonon process,
and the two phonons must be of Opposite momenta & and
—k in the two-phonon process. To be selfconsistent, the
emission rate should remain finjie as the chain length L goes
to infinity. As shown in Eqgs. (9) and (15). the quantity F,
scales as L™ "2 The emission rates for the one and two pho-
non processes, indeed, do not scale with [. However, the
. zero-phonon emission rate (0 g proportional to L. This
problem can be fixed only when we consider the case of
finite temperature.

AL finite temperature, the exciton total momentum  is
allowed to thermally fluctuate and become nonzero. How-
ever, the final state, electron-hole ground state with no pho-
non, has a total momentum equal to zero. From momentum
conservation, the rate is nonzero only for initial states with
2ero total momentum, which, as the length L of the polymer
chain becomes large, occupics a phase space scaling with the
mverse of L. The transition rate is the product of /% and the
probability that the exciton momentum ¢ =0. Since the (wo
factors have inverse scaling with respect (0 L. the physical
fate stays finite as L goes 1o infinity. We assume that the
probability distribution is determined by a Bolizman distyi-

bution
L 2pnin ﬁ3Q2)
P(Q)=— ex ( - . 43)
e L m* p, b 2m* | (

By the periodic boundary condition, Q takes the discrete val-
ues 2mm/L, with m being an integer. The normalization of
the probability distribution is determined by
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L x
2 P(Q)z;f_ﬁ/)(Q)dQ:l. (44)

Because of the momentum conservation, only cxcitong with
=1 can decay radiatively. Thus the temperature-dependent
zero-phonon emission rate Fo(T) is given by

l‘o(T):h”’% P(ng,o:/z”’f P(Q)8(Q)dQ

28K
:/ﬂ‘”P(()):Alg/),\Ve'ﬁ'\/ B* . (45)
m

Now the zero-phonon CMISSION rate is now finie as L be-
comes infinity. The above formula Eq. (45). however, im-
plies strong temperature dependence of the zero-phonon
emission rate, which is not observed experimentally. The
reason is that the sharp Dirac & function 8(Q) above should
be, in reality, replaced by a distribution function with finjte
width AK . The strict momentum selection rule is smeared by
defec's or environmental inhomogeneity, which break the
discrete translational invariance. So, we replace the Dirac §
functisn in Eq. (45) by a Lorentzian distribution LOQAK)
=(7TAK)_1[1+(Q/AK)2]"' with width AK. The zero-
phoncn emission rate becomes

_PIL0:aK)dg

x

Ijo(T)zh(O)f

27 ]

L wAK

=4O r(T;AK)

2
= 1,k - .
Alg(0)]%e ax(TAK). (46)
The dimensionless parameter #(75AK) is equal to

I

L x
r(T;AK)=ﬁji P(Q) ydQ

2]

ES

1
\/‘;JO ‘ v

' —

———de. (47)
€
1

]

i
AEB

Here, AE is the corresponding energy range and we assume
that it equals (AK)22M. 1 is basically the fraction of the
thermal probability distribution that 1s within the range of
AK. Waen the lemperature goes 10 sero. r approaches one
accordir gly.

While such replacement has stigniticant effect on the tem-
perature dependence of the zero-phonon emission rate. it
does not affect other phonon bands. For one or more phonon
emissior, there is always a continuum of available final
states with arbitrary phonon momentum. In addition, the
transition rate ') is not sensitive (o the exciton momentum
Q. Thus, the one-phonon emission rate '™(T) at finite tem-
perature zan be written as
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lwn(T):h(lJZ P(Q)ﬁl\’AQ:h“)Z [)(Q)
K.Q 0

xﬁ SK—=Q)dK=ptt) (48)

Here, O is the momentum of the exciton (initial state) and K
is the momentum of the emitted phonon (finat state). The &
function above indicates that the momentum conservation is
strictly enforced. Clearly, it does not matter whether we use
a & function or a distribution with finite width. The formula
also shows that the one-phonon rate is insensitive to T and
AK. The case for two-phonon emission rate s similar, 1.e.,

FTy=p2 (49)

Our model thus predicts a mild temperature dependence for
zero-phonon emission rate while the multiple phonon emis-
Ston rates are temperature independent.

B. Line shapes

Now we turn to the line shapes of the absorption and
emission spectra. So far, we consider only a single chain, and
the line shape of the spectra is give by Eq. (36). However in
real sample the inhomogeniety broadening seems to domi-
nate over the theoretical line shapes. We observe that the
experimental linewidth is 70 meV at 20 K, which is much
larger than the theoretical linewidth, i.e. the thermal energy
kgT. This difference shows that the experimental broadening
is of disorder origin, instead of intrinsic origins like thermal
fuctuation and electronic bandwidth. Consequently, in order
to make a reliable prediction on the gain profile, we choose
not 1o use the theoretical line shapes. Instead, we attach
Gaussian distributions with adjustable width to the phonon
bands with the corresponding oscillator strength. In Sec.
IV.C, a fitting of our prediction with the observed emission
spectra will be described, which shows almost perfect match
and confirms our assumption of Gaussian distributions here.

The absorption rate @.(v) as a function of the photon
frequency can be written ag

a((V):ac.o(V)+at.,(l/)+a[2(l/), (50)

with

| v— ! 2
a (v)=fUF (), Fiv)= — exp| — )
\/770'7 4

(51)
The subscript ““¢™ denotes chain. £ s the absorption os-
cillator strength for the ith sideband obtained in Eq. (39), and
F.(v) the Gaussian distribution centered at the peak frequen-
cies v of the sidebands in the absorption spectrum. o is the
line broadening for the absorption spectrum. It is convenient
to factor out the physical dimension and define a dimension-

less line-shape function a(v):

LA @, (0)f%e ¢
V)= G, 52)
(v \/;UT alv (

where «(v) s given by
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alv)= \/Tra‘,’[}],( vitoF (v)+ %ngz( V)] (53)

Now, we consider the absorption coefficient . [oor a real
sample made out of a large number of chains, the absorption
coeflicient a(v) s proportional to the single-chain absorp-
tion -ate « (v) times the volumn density of chains, which is
determined by chain packing geometry. We can combipe the
chair density, the factor LA, (0)]2e "¢ in Eq. (52) and the
proportional constant into a common dimensionful constang
B for all the phonon sidebands and write

a(v)=Ba(v). (54)

B has the same unit of cm ™! as the absorption coefficient .
Sunilarly, the recombination rate Y(v) for an exciton in
a single chain can be written as

Y V) =y olv)+ Yalw)+ vy, (v, (55)

with

Yl v)=T"G (1),

I v—uf :
Gilv)= = exp| — .
VTo;

(56)

Gi(v) s the Gaussian distribution centered at the peak of the
phonon sideband in the emission spectrum. Plugging in the
oscilla or strength I')| we have

Aalg,|?e
bl (57)

— €
Vo)

Ye(v)

The dirnensionless function Y(v) is

_ | 2 L ,
Yr)=mo* AKar(T;AK)QO(u)+g,z[FO[~gl(y)
L n? .
- [FeF 760, (58)
a 2 k

When there are N excitons in the chain, the photon emis-
sion rate becomes

Y WIN =LA, [Pe " 4(n, a)y(v). (59)

[y

where n, =N, /L is the chain exciton density. #, a is the
number of excitons per unit cell. For the same reason as in
absorption, the photon emission coefficient y(v.n, ) for a
real samole can be written s

y(v,n(,\):[}n{,la?(u). (60)

The facter B here is the same as the one in Eq. (54) since the
absorpticn and emission processes do not differ in chain
packing zeometry and dipole matrix elemen( The optical
spectra are thus determined Up to a common lactor B, which
can only be fixed by comparing with the experiment. Com-
bining the absorption spectrum and the stimulated emission
spectrum, we can obtain the gain cocefficient of the sample.
This will be discussed in Sec. Vv
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FIG. 1. The observed emission spectrum of PAOPV fijm at 300
K. The solid line indicates the theoretical fitting using three Gauss-
1an distributions corresponding 1o zero-, one- and two-phonon emis-
sion.

C. Comparison with experiments and predictions

We uy to fit the recently observed'* emission spectra of
the various conjugated polymers by three equally spaced
Gaussian distributions, as suggested in Eq. (55). Figure 1 is
the fitting for poly(dioctyloxy phenylene vinylene) (PdOPV)
film at 300 K. As clearly shown in the figure, the data
perfectly match the sum of three Gaussian distributions.
This is also true for PAOPV film at 10 K, PdOPV solution at
300 K and poly(Z-methoxy,S—(Z'ethyl)-hexyloxy-phenylene-
vinylene) (MEH-PPV) solution at 300 K. From the fitting,
we can determine o, v¢ and I'?. For simplicity, we assume
that the absorption and emission roughly share the same
broadening, i.e., o7=07. From the ratio of [? ang re,
we can deduce the product of 7. the effective electron-
phonon coupling constant, and /. They always appear to-
gether in the calculation. The wave function ¢,, and associ-
ated variables such as f,'('z are evaluated using the variational
method described in Sec. III. We choose m,=0.1 17m and
my,=0.0658my, here my is the free-electron mass.'® The di-
. electric constant € is set to 3. The wave number of the pho-
non is deduced from the spacing between the emission pho-
non sidebands, which corresponds to 1454 cm™!. With
Jnn, we can calculate the factor g€ in Eq. (38), which deter-
mines the oscillator strength of absorption. Thus we obtain a
prediction for the absorption spectra. This prediction will be
used n the next section to discuss the optical gain. Direct
comparison of the predicted absorption spectrum with ex.
periment is so far difficult, because the phonon structures arc
washed away by the chain length distribution and other

TABLE . The ratio among the experimental emission phonon
sidebands T, | the fitted electron-phonon couling constant \“';77. the
corresponding phonon displacement factor . and the fited momen-
tum smearing AK are shown for various samples and conditions

= ‘*\\;‘;

Material Uo/ly o, VI g aAK
PAOPV (ilm 300 K 0.91 33321 094 017
PAOPV film 10 K 1.14 3.23 21 094 019
PAOPV solution 300 K 1.37 333 21 094 007

MEH-PPV solution 300 K 1.27 3.12 22 103 008

— "
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FIG. 2. The ratios of the one phonon (solid line) and two pho-
non erission rates (dashed line) to the zero phonon emission rate as
a func:ion of the effective coupling parameter \/qn,

broad:ning mechanisms. On the other hand, the ratjo be-
tween ") and (O determines the parameter Ak The fit-
ting for the 300 and 10 K PdOpV film data gives Ak equal to
0.17%a and 0.19/4, respectively. The fact that they are so
close confirms our explanation of the lemparature depen-
dence. The results of \/;77 and AK for four kinds of conju-
gated >olymers are shown in Table 1.

The effective electron-phonon coupling constant 7 may
be different for other conjugated polymers. In Figs. 2 and 3
we plct the strength of the higher phonon sidebands relative
to the zero-phonon band for the absorption and the emissjon
Spectra as functions of \/'—177- For larger Jnz, the phonon
modes are more displaced in the excited state with respect to
the grcund state. The spectra are consequently more domi-
nated ty the higher phonon bands.

V. OPTICAL GAIN

Excitons are created through either optical excitation or
electror -hole current injection. In addition to the spontane-
ous decay discussed in the previous section, excitons can
also de :ay radiatively through stimulated emission. There-
fore, in the presence of excitons, an electromangetic wave
propagating in the polymer sample may expericnce net gain
and be «mplified. Gain is achieved when stimulated emission

5 Absorption Rates Ratio

) —
0 1 T 3 1
n
FIG. 3. The ratios of the one-phonon (solid line) and two-

phonon absorption rates (dashed line) to the zcro-phononﬁbS()rpIlon
rate as a finction of the effectjve coupling parameter v 7.
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FIG. 4. The ratio of [’y over I'; as a function of temparature T.

has a higher rate than absorption. It is more likely to occur in
the emission spectral region where overlap with the absorp-
tion spectrum is minimal, Our calculation on the relative
strength of the phonon sidebands shows that, due (0 vibra-
tional relaxation, there is a significant redshift of the emjs-
sion spectrum relative (o the absorption. Such shift reduces
the spectral overlap and favors gain. Below, we first study
the gain coefficient for arbitrary frequency and exciton den.
sity, then compare our prediction with the experiment.

The gain coefficient &(v) is the difference between the
emission coefficient and the absorption coefficient

8r)=vy(v.n, )= a(v)=Bg(v), (61)

with

g(v)=(n,a)y(v)-a(v). (62)

It depends only on the intrinsic properties of the polymer
chain, ie., y(v) and a(v), as well as the number of exciton
N, in the chain. With the dimensionful constant B pulled
out, the function g(v) is dimensionless. For a given frequncy
v, net gain is achieved when g(v)>0. In other words, the
threshold exciton density nZ-' 1S given by

0.047 gla ,
|
i
}
0 czr
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FIG. 5. Optical ¢ain coefticients &{v) of PAOPV film ar 300 K
with exciton densities ., cqual to 0.004 (solid line), 0.002. 0.00]
(dashed line) and 10 ° (crossed line), normalized so that the peak
absorption rate a,, 1s cqual o 1.
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FIG. 6. Optical gain coefficients g(v) of PdOPY film at 300 K
with exciton densitics n., equal to 0.4 (solid line), 0.3, 0.2 (dashed
line}, end 0.1 (crossed line}, normalized so that the peak absorption
rate a ., is equal to |.

(v)
(v)

In the emission spectral region where overlap with the ab-
sorpticn spectrum is small, we have

~ |

r o _
n,a=

(63)

Q1

y>a, nla<l. (64)
nexa 15 the fraction of the valence-band electrons that are
excitec to the conduction-band and form excitons. Therefore,
in this case gain will occur even though only a small fraction
of electrons in the valence band are excited (see Fig. 4).
The optical gain depends on the constant B. Though we
cannot calculate B, it can be inferred from the experimental
data. Especially the maximum of the absorption coefficient
a,, car be measured directly. Let us discuss PdOPV film at
room te mparature as an example. According to our model, in
this case the maximum of the absorption occurs at the center
of the zero-phonon band Vo, i€, an,=a( V)= B. Hence the
calculable dimensionless function g is equal (o the gain co-
efficien: g(v:n,,) divided by «, . In Figs. 5. 6, and 7. we
plot the dimensionless function g(v) a, for various exciton
densities n,.a. As shown in Fig. 5, gain indeed occurs for
the spe:tral region around (he one-phonon emission band

&/ am

-1}

FIG. 7. The gain coefficient g(v), emission rate and absortion
rate (dashzd lines) of PAOPV {ilm at 300 K with exciton densitics
1, equal to 0.1, all normalized so that the peak absorpuion rate a,,
is equal t¢ 1.




400 /

18
, n (10°)
0 T T I T v RN

FIG. 8. The gain coefficient as a function of the exciton vol-
umne density n, at the maximal gain frequency of vy,

once the exciton density is above 10~* per unit cell. The
- Maximum absorption a,, for PPV filn has been estimated'
to be about 2.3x10° ¢m~! Since a, =B, we have B
=23X10° cm™! We denote this value as B for reference.

We concentrate now on the gain profile near the maximal
gain frequency vy According to our model calculation,

¥(v$)=6.4 and a(v$)=0.004. For comparison with experi-
ments, it is convenient (o use the volume density of exciton,
ny, instead of the chain density n,.. ng is related to n,. by
no=n,alvg, where vy is the primitive cell volume. The
density of the unsubstituted PPV unit cell has been
estimated'® (o be 7.5x 102! em™?, corresponding to a primi-
tive cell volume vg of 1.3X107%2 cm?. In Fig. 8, we plot
the gain coefficient as a function of the exciton volume den-
sity ng at v$. The onset of gain at the peak of the one-
phonon emission band viisatn, a=63x10"4, The corre-
sponding threshold exciton volume density ng for gain is
therefore 4.8 10'® ¢m=3,

So far, we considered only the optical gain due to the
. active medium of conjugated polymers. In order to make a
practical estimate on the exciton density required for lasing
action in a resonator, we also need to know the resonator loss
coefficient a,(v), which arises from the losg mechanisms
such as free-carrier absorption, scattering from optical inho-
mogeneities, and imperfect mirror reflection. «,(v) is, of
course, sensitive to material and mirror quality and is ex-
pected to vary from case to case. The actual threshold of
lasing is determined by the competition between the active
medium gain ¢(v) considered above and the resonator loss
a,(v). Lasing occurs only when the former is larger than the
latter.

It this actual threshold chain density », « is much larger
than the ratio hetween y and @, the formula can be simpli-
fied significantly. For frequencies close 1o viLy=10%a. Itis
hence a good approximation to ignore « in Eq. (61) if
neax 107" jc.

gv)=Byn, ay( v)=Bgyugngy. (65)

With this approximation, our prediction for the gain coeffi-
cient can be casily generalized to polymers of different struc-
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“ABLE [I. Based on the experimental threshold exeiqon density

My, our predicted resonator loss a (theo) is compared with the ¢x.
perimental estimate a, (cxp).

e ———
Ref. 4

Refl. 17 Ref 5
— _— _
nole<p)fem3 1.4 1% 7.4%10"7 ~ 10"
a,(theo)fem ™! 2.7% 10 146 ~20
a(esplem™! 1.8x10? 10~100 10~ 100

—

tures. For PPV polymer samples with other packing geom-
etry, the primitive cell volume v and the constant B are
diffe-ent from Ug and By. However, B is proportional (o the
dens ty of chains. Therefore, the product of B and the primi-
tive cell volume is a constant, te., By =By, assuming that
one chain contains roughly identical numbers of primitive
cells. The gain coefficient for a sample with an arbitrary ¢ js
then

g:Bvlz(ﬁ/:BovonO&:}lXlO‘”&nO cm’ (66

where: no=n,.alv is the exciton volume density for this
samp e. Note that this formula is independent of v. It thus
applies to samples with arbitrary packing geometry and den-
sity, ncluding even polymer blends for which the active
polymer(PPV) is dispersed in an inert matrix. The equation
above gives a relation between the resonator loss «, and the
actual threshold exciton volume density ng

a,=3.1x 107"yl cm?. (67)

For PAOPV at room lemperature, y=6.4 at the peak gain.
Thus,

@, =1.98X 107 "%] cm2. (68)
This trzatment can be easily generalized to other PPV deriva.
tive that are similar. The above relation holds for room-
temparature PdOPV samples of any form.

To heck the relation Eq. (68). we obtain the correspond-
ing resonator loss cocfficient a,(theo) from the threshold
density nOT estimated by the various experimental groups.
a,(theo) is then compared with the experimental values
a,(exp). The results are shown in Table II for the experi-
mental data by Tessler er af {Ref. 4), Frolov er al. (Ref. 17}
and W:gmann et al. (Ref. 5). The difference between the
theoretical predictions and the experiment data on the reso-
nator loss coefficient are within 50%. No adjustable param-
eter is introduced in this comparison. This check confirms
the reliability of the relation Eq. (67). The values of né(cxp)
for Refs. 4 and 17 are estimated from the cxcitation laser
pulse energy, focus area, and the ratto between exciton life-
time and the pulse duration. For Refl 5.1t is given by the
author. The condition N =103 s satisfied in all cases.
We esti nate the values of a,(exp) by separating it into two
parts: & = a + «,, . where the former is duc (o inhomogene-
ity scattzring and the latter tmperfect mirror reflection. oy, 15
equal to (In R)/2d, where R is the mirror reflectance and o is
the resonator length. « is assumed (o take the usual magni-
tute of 0~100 cm '.'® [y Ref 4, «,, is esumated (o be
L8X10° em™" with d=100 nm and R=0 7 The scattering
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toss is much smaller and can be neglecied in this cage. For
the case of Ref. 7. @, 1s estimated o be .18 cm ™! with
d=45 cmand R=02 | is much smaller than the scatter-
ing loss and can be 1gnored. There is no mirror used in Ref.
5 and the surface reflectance in unknown; we assume that the
foss is also dominated by the scattering just like Ref. 17,

V1. DISCUSSION

We present in this article a model! o study the interaction
of the excitons and the optical phonons in conjugated poly-
mers. In our model, there s only one adjustable parameter 7,
the strength of the electron-phonon coupling. The value of /]
is different for different kinds of polymers since the lattice
dynamic equation depends on the backbone structure as well
as the side groups of the polymers. 7 is a combination of the
phonon polarization vectors €,(k), and is, in principle, cal-
culable. 7 should be of order one, because the polarization
vectors are all properly normalized. However, it is too com-
plicated to calculate 7 this way. For PPV, each unit cell
conrtains eight carbon atoms. There are a total of sixteen
degrees of freedom even if we consider only the motion of
the atoms within the benzene plane. The normal modes will
include fourteen optical phonon branches plus two acoustic
branches. The lattice dynamic equation is thus quite in-
volved. Instead of calculating jt microscopically from the
lattice structure, we determine the value of 7 by fitting the
experimental data of the relative oscillator strength of the
photoluminescence phonon sidebands. However, it turns out
that the strength of the zero-phonon band has an observable
temperature dependence. In order to fit the temperature de-
pendence of the zero phonon emission oscillator strength, we
introduce another parameter AK, which is the smearing of
the momentum selection rule. The optical transition is al-
lowed as long as the difference between the initial and final
crystal momenta is within AK. The microscopic origin of the
smearing includes, for example, lattice distortion, which
breaks the discrete translational Symmetry, and the emission
of acoustic phonons in the process. As discussed in section
IV, the oscillator strength of the one and two phonon side-
bands in the luminescence spectrum are hoth independent of
AK, while the strength for the zero-phonon band depends on
AK mildly. The electron-phonon coupling constant 7 is thus
determined by the ratio between the one phonon and the two
phonon luminescence sidebands, since this ratio s indepen-
- dent of the extra parameter AK In other words, even though
the value of AK may vary slightly from sample to sample,
this uncertainty has no effect on the determination of the
intrinsic adjustable parameter 7. In Sec. IV, 7 for two PPV
derivatives (MEH-PPV and PAOPV), both in film and solu-
tion, are determined. Their values differ by at most 7%, We,
therefore, consider this value quite reliable. By fitting the
experimental ratio between the strengths of the one- and
zero-phonon sidebands, we determine the momentum smear-
ing parameter AK. For our samples, it is about 0.17/a,
which is about 6% of the size of the first Brillouin zone. This
is also quite reasonable. One of our main results is that once
the electron-phonon coupling constant 7 is determined by
fitting the luminesence Spectrum, we can use it (o predict the
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reletive phonon sidebands of the absorption spectrum. For
the absorption spectrum, none of the sidebands depend on
the momentum smearing AK. They depend only on one
single parameter 7 through the factor 8(7n), as seen in Fig.
3. Ais shown in Sec. IV, the one-phonon sideband is ag in:»
poriant as the zero-phonon band, if the material quality can
be i nproved to suppress the imhomogenicly broadcning The
larg> weighting of the onc-phonon band reduces (he overlap
betvreen the absorption and the emission spectra and gives
rise to gain in the emission spectral region. In Sec. V we use
the calculated absorption spectrum together with the experi-
men:al emission Spectrum to make quantitatjve predictions
on the gain spectrum of the polymer sample.

The existence of a genuine Stokes shift has been ad-
drested by some site-sclective photoluminescence (PL) ex-
perinents recently.®!? [n those experiments, the excitation i
chos:n 1o be deeply inside the low energy tail of the absorp-
tion spectrum o ensure that only long chains are excited, so
that 10 subsequent exciton migration (o other chains oceurs
before emission. The work by Heun et al. shows tha for
PPV films the zero-phonon band of the PL jg quite close 1o
the e ccitation energy,'® whereas Samuel er al. found that the
energy of the zero-phonon band is unresolvable but the one-
phonon band is about one optical phonon energy below the
excitetion energy. Those authors, thus, concluded thar the
site-s:lective absorption is dominated by the zero-phonon
band n the absorption spectrum, implying there is no excited
state relaxation among the vibrational levels, ie., a vanishing
genuiie Stokes shift. However, such interpretation is some.
what over simplified, because in the site-selective experi-
ments the polymers are most likely to be excited to the zero-
phoncn states even if the oscillator strength of the higher
phonon band is larger than the zero-phonon band. The reason
is that the excitation is in the lower energy tail of the DOS.
where the population of chains is supposed to increase €xpo-
nentialy with their electronic transition energy. Therefore.
for a ;iven excitation energy, the population of the chains
whose zero-phonon band matches the excitation is much
larger han the population of the chains whose higher phonon
bands matches the excitation. This is simply because the
electronic energy of the former I$ one or more optical pho-
non enzrgy above the latter. For PPV film, the DOS is esti-
mated 1o be a Gaussian distribution with variance about 46
meV." Since the optical phonon cnergy is about 0.2 eV, for
a given excitation energy the population of the chains excited
to the one-phonon states is about only one percent of the
population of chains excited 1o the zero-phonon states.
Therefcre, unless the oscillator strength of the one-phonon
band is one hundred times larger than the zero-phonon band.
the site-selective absorption is always dominated by the
zero-phonon band. Such dramatic contrast in the oscillator
strengtks s, of course, very unlikely. In other words, the
interpre ation of such experiments s complicated by the
sharp DOS decay in the energy tail, and the lack of excited
state enrgy relaxation cannot be used to rule out the possi-
bility of dominant higher-phonon oscillator strength for one
single caain,

Even though conjugated polymers behave like semicon-
ductors n many aspects, the gain mechanism s quite differ-
ent from the conventional semiconductor lasers based on
-V conpounds. In compound semiconductors there is ba-
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steally no Stokes shift due 10 excried state lattice relaxation.
Gain is achieved only when the pumping is so strong that the
mital states are depleted and the final states are filled, ie.,
when the quasi-Fermi level for the electrons is pushed up
mnto the conduction band and the quasi-Fermi level for the
hole 1s pulled down into the valence band. Under such pump-
ing level, the absorption and emission spectra are displaced
with respect each other (o allow a net gain. In other words,
the intensity of the pumping beam must be in the nonlinear
regime where the absorption starts 1o saturate. In conjugated
polymers, no such depletion is required because the vibra.
tional relaxation in the excited state automatically provides
the redshift of emission respect to absorption, even when the
pumping intensity is still low in the linear regime, where the
absorption remains basically the same as the ground state.
This situation s actually similar to the case of excimer laser,
for which population inversion is automatically realized be-
cause excimers form only in the excited state. The only dif-
ference is that for excimers the Stokes shift is due to the
intermolecular distance relaxation, while for conjugated
polymers it is due to the intrachain lattice relaxation involv-
ing extended phonon modes.

In Sec. V, we check our theoretical prediction on the re-
lation between the lasing threshold and the resonator loss
with experiment data. Our prediction of the resonator mirror
loss agrees with the experiment within 50% (Ref. 4). In the
case of the scattering loss, accurate comparison with the ex-
periment is impossible because the optical characteristics of
the polymer films used in the experiment are not specified.
Nonetheless the predictions are all in the right order of mag-
nitude (Refs. 17 and 5). We also estimate the minimum
threshold exciton density for lasing to be realized in PPV
samples. In the experiment of the Cambridge group,” one end
of the 100-nm resonator containing the polymer film is a
distributed Bragg reflector with reflectance of about 70%.
The corresponding loss is about 1.8x (S cm™'. The total
fesonator loss is expected to be dominated by the mirrors.
We found that to overcome a resonator loss of the order of
10* em™!, a4 volume exciton density of the order of
10% em~ Y g required. This is much larger than the typical
lasing threshold of about 10'8 em ™ for conventional com-
pound semiconductor laser, However, if the DBR is replaced
by a high-reflectance mirror, the resonator loss can be re-
duced to the residual loss from mechanisms like light scat-
tering by optical inhomogeneity and defect absorption. The
loss is usually of the order of only 10=100 cm™". The vol-
ume exciton density required to overcome this loss is pre-
dicted 10 be only of the order of 10'7 ¢m™*. This threshold
density 1s then smaller than that of the conventional sem;-
conductor lasers. The corresponding exciton number per
PPV monomer n,.a, is as low as 10™*. This is the range
shown in Fig. 5. So in principle gain can be realized in
high-reflectance resonators when there is only one exciton
per ten thousand PPV monomers. Unfortuantely, when a
polymer sample is sandwiched between two mirrors of high
reflectance, it can no longer be optically excited from outside
casily. The question now i whether it is possible to generale
excions 1o the density of the order of 107 cem™? through
clectric current injection. This corresponds 10 the level of
excitations required for electrically pumped polymer laser.
The obstacle to electric pumping of conjugated polymer laser
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is twofold. One is the difficulties of carrier injection. Another
is re ated (o the fact that, even i curreny can be easily in-
jected, the electrons and holes form both singlet and triplet
excitns, with a rough ratio of 1:3 based On spin statistics. In
Most cases, the triplet exciton encrgy is actually lower than
the s.nglet. The singlet ratio is thus even lower than 259
Only singlet excitons will undergo optical transitions. The
corresponding total exciton density required for electric
pumging  polymer laser with  residual  loss  of 10
=100 em™! is therefore around 10" ¢m~%, comparable 1o
the typical density for compound semiconductor Jasers. Sull,
as discussed above, the corresponding total number of excl-
ton per PPV monomer js only less than 10™* There is no
funda nental reason preventing the realization of such exci-
ton density, if the injection problem can be solved.

Photoinduced absorption due 1o interchain excited state,
which spectrally overlaps with the stimulated emission. hay
been reported 1o be an important factor to diminish the gain
for some polymer samples. It has been argued that interchajn
species, identified as excimers or polaron pairs, have a domi-
nating quantum yield. 22" ych claims are, however, contra.
dicted by other works on the absolute PL guantum
efficiency,”? and some controversies remain. Even though
interchains species do seem 1o appear in high-quantum yield
for sorie polymers such as CN-PPV, 2 their polulation can
be controlled by the side groups. For example, large and
bulky side groups will presumably isolate the polymer back-
bones ‘rom each other and prevent the formation of inter-
chain s»secies. In this paper, we do not attempt (o include the
effect ¢f such species.

The wavelength at which the gain coefficient is maximal
depends slightly on the side groups of PPV. In general, the
emission spectrum of unsubstituted PPV is blueshified with
respect to other soluble derivatives. The possible reason is
that the former is polymerized only after coating on the sub-
strate, while the latter can be directly spin coated in the poly-
mer forin. The effective conjugation length of unsubstituted
PPV filia is therefore expected to be smaller than films made
of other derivatives. This explains its higher band gap and
emission spectrum. Qur theoretical calculations do not as-
sume ary particular value of the band gap. Therefore, the
predicticns on the gain coefficient around the one-phonon
emissior peak does not depend on where it actually is. For
cxample the peak is at 2.35 eV (547 nm) for PPV. and |95
eV (631 nm) for MEH-PPV.

VIL CONCLUSION

Startirg from a model Hamiltonian for the exciton.
phonon coupling, we study the absorption and luminescnece
spectraincluding the phonon side bands. The clectron-
phonon coupling constant is the only fitting parameter. de-
termined by fitting the experimental ratio between the one-
and two-phonon sidebands in the photoluminescence spec-
trum. We then calculate the absorption spectrum and predict
that the 01e phonon band is as important as the zero-phonon
band. This is contrary to the case of luminescence, which s
dominatec. by the zero-phonon band for the samples we con-
sidered. The gain coefficient js calculated based on the re-
sults. We derive a general relation between the resonator loss
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and the volume exciton density required for lasing threshold,
applicable to PPV samples with arbitrary packing geometry
and density. Our result is in good agreement with the expert-
ments for both high- and low-loss resonators. For low-loss
resonator with loss of 10—-100 ¢m™!. the threshold singlet
exciton density required for lasing action is of the order of
10" ¢cm™* This 1s, o our knowledge, the first theoretical
work that makes quantitative predictions on the gain spec-
trum of such systems. The implication on the feasibility of
polymer laser based on PPV is discussed.

_— .
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Abstract

It is usually assumed that the ground state lattice configuration of polyacetylene is a dimerized chain. We found that
the energy can be further reduced by an overall chain length contracticn, which leads to a new bond length order
parameter, in addition to the well-known bond alternation order paramneter. For quasi-particles like solitons and

tions are found for the polaron solution. Polyacene, a ladder polymer, is alsc studied with the inclusion of the bond length
order parameter. The ground state is predicted to be a non-alternating st -ucture, with zero energy gap and unusually

PHY SICa 3
MS. Mo.R0 8%

T09° 904 t0et tant toun vaus ol

high electric conductivity. © 1999 Elsevier Science B.V.
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1. Introduction

Conjugated polymers are quasi-one-dimensional
systems with electron and lattice degrees of free-
dom. In most theoretical studies [1,2], the lattice
part is treated classically, i.e., within the adiabatic
approximation. The lattice configurations of both
ground state and the excited states are determined
not only by the o-bond elastic potential energy, but
also by the coupling between the n-electrons and
the lattice. Consider polyacetylene as an exam ple. If
there were no electron-lattice coupling, it would

*Corresponding author. Tel: + 886-3-5731955: fax: + 886-
3-5720810.

E-mail address: meng@cc.nctuedu.tw (H.-F, Meng)

have only >ne carbon atom per unit cell, and the
total number of electrons would fill half of the
single n-bznd, since there is one n-electron per
carbon p, orbital. However, according to Peierls
instability 3], a one-dimensional system with a
half-filled tand can lower its ground state energy
by a dimenzation with doubled unit cell. In other
words, a uniform bond length becomes an alterna-
tion of short and long bonds, with their average
{and therefcre the total chain length) remaining the
same. The cuestion that whether the energy can be
further lowered by a tripling or quadrupling of the
unit cell stil. remains. This question is solved, more
recently, by Kennedy and Lieb [4] with a rigorous
proof that the dimerized state with doubled unit
cell indeed has the lowest energy for a periodic
lattice with the nearest-neighbor electron hopping
integral varving linearly with the bond length.

0921-4526/99/% - see front matter © 1999 Elsevier Science B.V. All rights reserved.

Pil: S0921-4526(99)00238-0
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The purely dimerized structure is not, however,
the most general form of lattice distortion caused
by the coupling between the n-electrons and the lat-
tice. An over all lattice contraction or stretch can-
not be ruled out in the first place. In other words, it
is possible that the total energy can be further
lowered if, in addition to the alternation, the
change of the average bond length is allowed.
Simple calculation does show that the force exerted
on each g-bond by the n-electron coupling has
a uniform part as well as an alternating part. Such
force, therefore, cannot be completely counter bal-
anced by a pure dimerization. In view of this, we
introduced the second kind of order parameter: the
bond length order parameter, in addition to the
well-known bond alternation order parameter.
These two bond order parameters (BOP) must be
treated at equal footing in considering the lattice
configurations and electronic structures for both
the ground state and the quasi-particles. Through
explicit calculation of the total ground state energy
as a function of the BOPs, we found that there is
indeed an overall bond length contraction due to
the electron-lattice coupling. Therefore, for a given
set of physical parameters, the electronic band-
width and the band gap are different for the cases of
including one and including two BOPs. The second
BOP has a even more pronounced effect on the
properties of the quasi-particles such as solitons,
polarons and bipolarons. Both of the BOPs have
non-uniform profiles around the quasi-particles.
Because the BOPs are coupled to the electron wave
functions through a set of self-consistent equations,
the electron spectrum and wave functions are also
changed significantly by the inclusion of the new
bond length order parameter.

Another kind of conjugated polymer that illus-
trates the dramatic effect of the bond length order
parameter is polyacene: the simplest ladder poly-
mer. Because polyacene with a very large number
of monomer units has not been synthesized, the
magnitude of its band gap, il any, has been theoret-
ically controversial. Most of the theoretical studies
predict the existence of an energy gap in the range
of 0.3-0.5 eV. We study the ground state of poly-
acene by including both of the two bond order
parameters, and found that the dimerized config-
uration with a gap is unstable against the non-

alternating configuration. The consequence is that
the finite band gap disappears in the true ground
state con iguration. We thercfore predict that poly-
acene is a gapless semiconductor, for which the
thermally excited carriers dominate doping at most
temperatures. DC conductivity is expected to be
much higher than other conjugated conducting
polymers. We made explicit calculations and found
that, in addition to being large, the conductivity has
an unusual temperature and doping dependency as
compared with other more typical conjugated poly-
mers like polyacetylene.

This paper is organized as follows. In Section 2,
we obtain the true ground state of trans-polyacety-
lene by minimizing the tota] energy with respect to
the two uriform order parameters. In Section 3, the
self-consis ency equations in the continuum limit
for the quasi-particles are derived. The intra-gap
energy levels and the BOP profiles of solitons and
polarons zre obtained by solving the continuum
equations 1umerically. The case of non-degenerate
ground state polymer is also discussed. In Section
4, the second BOP js applied to polyacene. We
make a sunmary and conclude in Section 5.

2. New bord order parameter and true ground state

We start with the Su—SchriefTer—Heeger (SSH)
model [5] with the Hamiltonian

Hgoy = ‘S [to — o(uyy, — w)]

1,8

1 t
X((fy15616 + CisClvis)

+2:§(u,+1 ‘ul)z- (1)
It is the simplest Hamiltonian that satisfies the
Kennedy-L eb criterion [4]. Here cls and ¢, are
the creation and annihilation operators of electrons
at lattice site: / with spin s. u; is the displacement of
the carbon atom at site . The constants to, o, K,
are the electron hopping integral, electron-lattice
coupling, and lattice elasticity, respectively. As dis-
cussed in Section 1, this model is usually solved
with the dimrization ansatz. Uy —u = (— 12u
the bond alternation order parameter u is a
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constant for the ground state. Such a lattice distor-
tion keeps the total chain length unchanged. Now
we go beyond the ansatz and allow the lattice
constant of the new unit cell, with one short bond
and one long bond, to be different from twice ol the
onginal unit cell. The difference is denoted as 2w. In
other words, the lattice can be stretched (w>0)or
contracted (w < 0). The dimerization ansatz is re-
placed by

sy — U = 2w+~ 1)2u. (2)

The Hamiltonian in Eq. (1) becomes
H= =% [to — 2aw — ( — 1)2au]
is
t 1
X(Cl415C15 + cfcrs 1s)
K 2 2
+ 52 (4w’ + 4u?). (3)
!
One can easily get the ground state energy E, [5]
4N KN
Eo = ——1E(1 — 2% + 7(4142 + 4w?), 4
T

with t' =ty — 2awgy and 2/ = 2oup/t'. N( > 1) is the
total number of carbon atoms in the chain. For
convenience, we rewrite Eq in terms of the dimen-
sionless variables.

EO(X’ J’)

Eo(x-}’) = N

S [ I T |

(5)

Here E(1 — 2%) is the elliptic integral. 7, X, y, and
z are dimensionless parameters defined as A=
20%[(nto K), x = 2au/ty, y=2aw/t,, and z=
x/(1 ~ y). The ground state values of » and w can be
obtained by minimizing Ey(x, y) with respect to
xand y. If x,y < 1 (ie. z < 1), the elliptic integral
can be expanded as

El—z)>1+2p- -2 (6)

and the total energy per electron £p becomes

EO(Xa y)

_ ‘ﬁ(cl(y)xz 2 4 o + cs(w),
" N

with
Ciy) = :
1 y 2(1 _y)a
G = — 5l —y ¢y ]
=TTy "E Ty
yZ
Ciy)= - (1 —Y)+4,.
A
Through t1e minimal energy condition
B _o o,
Ox oy
we find the solutions x, and Yo
Yo = =27,
= 4ex ; : +1)+ : : (8)
Yo =%exp =55 220

The corresponding ground state BOPs are

2tq 1
uo—7exp[—<2i +2—Z)]. 9)

The conventional result of the SSH model without
w can be reproduced if we set w = O(y = 0) in Eq.
(7). The second kind BOP W 1s in general not zero
as long as ‘here is an electron-phonon coupling.
The negativ:: w, implies the whole chain is contrac-
ted. The band gap E, also depends on w,. The
mathematical relations between observable quant-
ities (band gap and bandwidth) and the model
parameters (tg, a, K) are thus corrected by the sec-
ond BOP. So far there would be no difference in
experimental predictions with or without wo if we
consider onl; the ground state, because the effect of
the constant wy is equivalent to redefining a new
electron hopping integral ' =1, — 2aw,. The
value of ¢’ s obtained, after all, by fitting the
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expertmental spectrum. However, many new inter-
esting features arise if we consider the quasi-par-
ticles, in which w and u in Eq. (2) do vary in space.
So we need to make the generalizations u — (/) and
w — w(l). They cause “bag-like” or “kink-like” vari-
ations not only in u(l) but also in w(l). This features
are the subject of the next section.

3. Continuum equations for quasi-particles

In order to obtain the lattice configurations and
the electron wave functions associated with the
quasi-particles, we take the continuum limit for
convenience. Takayama et al. [6] derived a set of
continuum equations which couple the electron
wave functions and the first BOP u(l} self-consis-
tently. We generalize the TLM equations in order
to incorporate the second BOP w(l). The single
electron wave function |¥,) is expanded as

125 =Y duall), (10)
[

[I> is the carbon p, orbital at site . We start with
the eigenvalue equation for ik

a¥ix + l(r1,1+1)¢1+1,k F - -y, = 0. (11)

rip+y 1s the bond length between site | and I+1,
and r;,, ) is the hoping integral. In terms of the
BOPs, «(r,,y,) s expressed as  f(r,,, )=
to = —H—~1)'4,, with
4; =4dou(l). We seek solution of the form
Vix = e*[u(l) + (~ Vio (0], u(!) and v(l) are
slowly varying functions of /. Given the occupation
numbers n,, the total energy E is given by

E=Z V(rl.l+l)+zgknk- (12)
1 X

The self-consistent equation for the BOPs are de-
termined by the minimal condition 8E/dr, ;. , = 0.
It can be easily shown that

0g dt("11+1) *
P Fa— +f ). (13
Orissy dry 4 Wi 1 wHLIJ//l.k)( )

Q =2ow() and

From Eqs. (12) and (13), the minimum condition
becomes

dv dr
dr = rz (lp;'fkl//l-# 1k + l//;ﬁ l.k!r//l,k)”;\-. (14)
Li+t Li+1 g

The is actually the balanced force condition. The
RHS is th: force exerted on the ¢ = bond between
site and | + 1 by the n-clectron coupling. It has in
general a uniform part in addition to an alternating
part. More specifically, it is of the form q -+ (~ 1)b.
A purely dimerized structure, with the LHS pro-
portional 10 ( — 1), can never satisfy the balanced
force condition. Substituting

dv K | dr
= +(=1)4,), = —a
drigs, C-'<l 2( : I) drise
(15)
and

Vi = ML) + (= 1iv, (1))

into Eqgs. (11), (14) and taking the continuum limit
la—x, u(l - au(x), 4; - A(x), and

u(l+ 1) - \/c;uk(x + a)

Ox

o~ a(uk(x) + aauk(x)>,

ol + 1) > /av(x + a)
~ ,/c;(vk(x) + ang‘ix)), (17)

we obtain the following continuum equations

u(x) = — iZaIOaLg‘(x)
o4
+ 4000 ~ 5290,

+ i[ZaQ(x)aug\ix) + aa—g(\,i)uk(x)]; (18)

& 0(x) = 12a, Oavk)(cx) + A(x)u(x) — gag(j)

- 1[2a9(x)% + ath(x)vk(x)J,

u(x)

X ox
(19)
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? a y P -0.998 — —
Q) = ao® [i(a uk(\)uk()‘) r —
K 4 ox
-1
a *
g (X)vk(x)> + C.c}nk, (20) a
Ox 2 1002 |
¢
daon’®
A(x) = — X 2 LX) + v (0, (x)) -1.004
k
aod 1.006
+ 52 (X)) + vE(x)ue(x)) | (21) -
20x
(@)
In order to arrive at those equations, we have to 12
identify both the average parts (e.g. 2,) and the t ﬁ
alternation parts (e.g. ( — 1)'4,) of both sides of Egs. g:g |
(11) and (14). Since all the functions U (x), vi(x), 04
A(x) and Q(x) are assumed to be slowly varying, ;3 02
higher  order  terms like (@%/0x?)u, (x), z _02 |
(0%/0x%)u (x)(92/0x?) A(x), and (0%/0x1)Q(x) are ne- 04 |
glected. When Q(x) is set to zero, Eqs. (18), (19), and gg I
(21) reproduce the TLM continuum equations. = J
Since Egs. (18)21) cannot be solved exactly, we 12 * : : *
make iterations and choose TLM’s exact solutions ) 205 0 s x;’a 5o s

{i, Dy, A(x)} [6,7] as the starting point. First, we
substitute &, and B, into Egs. (20) and (21) to find
a new @,(x) and 4;(x). Then we substitute
@,(x), 4,(x) back into the electron wave function
Egs. (18) and (19) to find new iy, Dy, and then
bring them back into Egs. (20) and (21) to find
Q,(x) and J4(x)..., and so on. Of course, the nor-
malization condition for the wave functions u, and
v, are kept through out the iteration.

Before presenting the quasi-particle solutions, we
first consider the ground state, for which both of
the BOPs are uniform and the solution is trivial.
For the discrete Hamiltonian in Section 2, we have
Qo =2awy = — 21,1, Using the parameters
to =23eV, K =20eV/A% and « = 4.55 eV/A, we
have Qo = — 1.3eV. In the continuum approxima-
tion, Q, = — 1.03eV is obtained for the ground
state using the same set of parameters, [t is close to
the discrete model, which indicates that the con-
tinuum limit is a reasonable approximation. Be-
cause it is the band gap that is actually observable,
we use a slightly different set of parameters below
for the continuum limit in order to fit the half band
gap 4o of 0.7 eV. The values we use are t, = 3eV,
K'=20eV/A® and « = 4.45eV/A.

Fig. 1. (a) The second kind of BOP {bond length contraction) is
shown for a scliton located at x = 0. The dotted thin line is the
constant value Q, for the ground state. The physical parameters

o

arechosenasiy, = 3, 2 = 4.49 eV/A,and K = 20eV/AZ. (b) The
bond alternati»n order parameter 4(x) (solid line) for a soliton is
shown. The dstied line denotes 4(x) without the inclusion of
Qx) (TLM mc del). This figure shows a slight central-symmetry
breaking of 4(x).

In Figs. 1(a) and (b), 4(x) and €(x) for a soliton
are shown. .14 and Q, are their ground state values.
The fact that the variation is small can be under-
stood as follows. The charge-conjugate symmetry
[7] is an ircportant feature of the TLM model. It
means that ‘or every positive cnergy level ¢, with
solution {u, v}, there is a ncgative energy level
¢~ = — ¢4 withsolution {iv, — iu! Since the exist-
ence of Q(x) does not change the charge-conjugate
symmetry o° the original equations in the TLM
model, bott the continuous band and discrete
intra-gap levels still keep the mirror symmetry with
respective to the Fermi level at zero energy. In
solitons, there is only one intra-gap level located at
the Fermi level and with the second BOP it is
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impossible to cause any energy shift to this intra-
gap level. One can then imagine that the local
lattice structure around the center of the soliton
will not have a significant change. Clearly such
constraint does not apply to polarons which have
two intra-gap levels symmetrically located at the
opposite sides of the Fermi level. Figs. 2(a) and (b)
show the BOPs for a polaron. As expected, the
changes of BOPs in the polarons are much larger
than that in the solitons. The inclusion of Q(x) can
cause energy shifts to these two levels without
breaking their mirror-symmetry. We find that the
intra-gap level above the Fermi level moves up-
ward to the conduction band, while the other level
below the Fermi level moves downward to the
valence band. The magnitude of the energy shift of
ey (e-) is 0.034eV (—0.034eV), ie., about 7%
change compared with TLM model without Q(x). It
is also seen in Fig. 2(b) that 4(x) of a polaron loses
the central inverse symmetry. This is no surprise
because it can be seen in Eq. (21), where the spatial
symmetry of the derivative part on the right-hand
side is opposite to the first part.

For the non-degenerate ground state conjugated
polymers with an extrinsic hopping alternation
such as cis-polyacetylene, the Hamiltonian is

H= —Z[[o — 20w —(— 1)"<%e + 2au)]

Z (4w? + 4u?),

n

i
X (Cn+ l,scn,s + C;,SCIH- l.s) +

N[ X

(22)

with to = (1, + t,)/2. le =1t — 1, (say, t; >1,) is
the extrinsic hoping alternation parameter. The
total energy per electron £o(u, w) of the ground state
can be readily obtained from Eq. (4) by replacing
22" = (x4 t./2t,)/(1 + y):

4 1
Fo(x, ) = %[ = (=L =2+ e M]

4t t, \?
~22p <
- [ l(y)(x + 2[0> In

2
+ Dz(y)<x 4k > + D3(y)<x 4l )
2 to

+ Da(y)], (23)

095 —
-l rE——_ ~
S -tos
=
x
G .
-1.is
Ll N
0 40 30 200 .10 0 10 20 30 40 so
(a)

Ap(X)/ Ao

20 3 4 S0
(b) x/a

Fig. 2. Simila- to Fig. 1, we show the bond length order para-
meter (a) and he alternation order parameter (b) for a polaron.
The dotted lire in (b) is the usual polaron profile in the TLM
model.

with
1
Dy(y)= — m,
1 l 1
Dy(y)= — imln‘”l -y + ot M=y
/2t
Diy(y)= —- 27 O,

y?

2
D)= 1=y 2 1 20
A

4,

Minimizing he ground state energy as in Section 2,
we get similar results that the chain is contracted as
well as dimerized. The parameters t, = 2.5¢eV,
@ =463eV/A K =21 eV/A% andt, = 0.17¢V are
adopted to it the band gap of 2.05 eV? for cis-
polyacetylenz. The cnergy minimum is found to be
atug =0.040 A, and w, = — 0.138 A. In the con-
tinuum limi', we can follow the same steps in
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Section 2 to get the self-consistent equations similar
to Eqgs. (18) and (19), except the replacement of 4(x)
by A4,(x)=4i(x) + 4,. The intrinsic part 4,(x)
satisfies precisely the same relation as Eq. (21), and
the extrinsic part 4, is equal to t.. The self-consis-
tent equation of Q(x) is the same as Eq. (20).

4. Conjugated ladder polymer

Ladder polymers are conjugated polymers with
at least two conduction paths in parallel. They
share many of the properties with the polymers
with a single conjugation path. In particular, many
of the ladder polymers support polarons and bi-
polarons [8]. Polyacene is the simplest ladder poly-
mer. The polyacene chain, with two identical
backbone in parallel, can be viewed as two strongly
interacting chains of trans-polyacetylene (see Fig.
3(a)). Polyacene is yet to be synthesized as a poly-
mer with a large number monomer unit [9]. The
electronic structure of polyacene has been the ob-

(a)

(b)

(c)

Fig. 3. (a) The chemical structure of polyacene. There is one
carbon atom at each vertex. (b) Parallel ordered dimerization
configurations. (c) Anti-parallel ordered dimerization configura-
tion.

ject of meny theoretical studies {11-14]. Due to the
lack of direct experimental evidences, there is some
controversy about the existence and the size of the
energy gi.p duc to bond alternation. Among the
works that support its existence, the predicted
values of the gap have been in the range of 0.3-
0.5eV.

In this section, we study the electronic structure
of polyacene, with both of the two bond order
parameters (alternation and contraction) taken
into account in the search for the true ground state
configuraiion. We predict that the dimerized con-
figuration is unstable against a non-alternating
configuration. The result is a gapless band struc-
ture, cont-ary to most of the previous theoretical
works.

4.1. Gapless band structure

Let us consider a single chain of polyacene
consisting of 2N sites. It can be treated as two inter-
acting cha ns of polyacetylene. Each chain of poly-
acetylene is described by the SSH Hamiltonian:

Hi= =5 [ty + (= ou; .y, — Ujn)]
X (C}n+lcj,n + hC)
K 2
+ EZ (uj,n+1 - uj,n) s (24)

where j = |, 2 denotes the chain index. The inter-
chain hopring is described by

H = -5 ti[el nean + h.c.]. (25)

Here u;, wre the displacement coordinates and
¢ the annihilation operator at the nth lattice site
on the jth chain. For simplicity, spin indices are
omitted. The interchain hopping integral ¢, is of
the form

to=30t + (= 1)t,],

with ¢, = t, for the case of polyacene. Now we look
for the ground state configuration of polyacene by
minimizing the total energy, with the ansatz that
Uin+1 = Ujn =w+(—1)'u;. The reason that we
allow u to be j-dependent will be clear later. The
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Hamiltonian becomes

H= Z [—(to — 2aw) + ( — 1) 2au;]
j.on
X (C]T',ncj.n+l + h.c)

+) - %ro[l + (= clacan + hoc)

+ Z g[(Zuj)2 + (2w)?]. (26)

One can introduce the annihilation operators aj,
and b, for electrons belonging to the conduction
and valence bands, respectively, through the rela-
tion

1 ikna n :
Cjn = \/N;ek [(—1)a; + ibj],

~n/2a < k < nf2a. 27

Then H; can be diagonized by the Bogoliubov
transformation

Ay = COS Ojkotjk + sin Ojkﬁjk’
bjk = COS 0jkBjk —_ Sin 0jkajk, (28)
provided that tan(20,)= — 4(2t9)" ! tan(ka),
with 4; = dou;. We then have

H; = Z Ek(a}kajk - ﬂ}kﬁjk)a (29)
X

and H, becomes
I ..
H = — EZ {[(005(011( —0) + 1sin(0;, — 0,,))
k

< (afeoz + Blfa) + hic ]

+ [( = sin(0y, — 0,,) + icos(0y, — 05,))

X (@B — Blectar)) + h.c.]}, (30)
with
Ey = [4tf; cos(ka) + 42 sin(ka)]'/2. (31

The full Hamiltonian can now be diagonized for the
case of u; = u, (parallel ordering, see Fig. 3(b)) and
Uy = — u, (anti-paralle] ordering, sce Fig. 3(c)). We

find that the anti-parallel ordering case is always
encrgeticelly favorable. Below we set u; = u, and
uy = —u then calculate and minimize the ground
state energy with respect to w and w. The energy
dispersior. of the two bands &.+ (k) below the Fermi
level are

e = —

2
<Zo + 4['2) — (4% — Aé)sinz(ka)J

+-2 (32)

where t' =ty — 2aw, and gap parameter 4, = 4qu.
The two band above the Fermi level ¢, (k) are
equal to — ¢, (k). The band gap(atka = + n/2)is

[2
Eg=2\/;§+10—t0.

The total energy per electron turns out to be

4 t5 K
= 4/2 _O_E ) 2 4 2
£ n\/t +4 (Z)+2(4u + 4w?), (33)

with

At — 42
4r* + 2/4°

In the following we adopt the physical parameters
for polyace ylene and search for uy and w, that
minimizes &. Surprisingly, the minimal value of  oc-
curs at up =: 0 and wy = — 0.119 A. The fact that
uo =0 at the minimum appears to be a general
property of the function &u, w), and does not de-
pend on the particular choice of the physical para-
meters. The dimerization order parameter u, =0
implies 4, == 0 and E, = 0. Polyacene, therefore,
should be classified as a “gapless semiconductor.
Its band structure and density of state are plotted in
Fig. 4. Since he density of state near the Fermi level
(¢r = O)is sir gular, many properties are expected to
be different from the conventional metals or
semiconduct >rs. The Interesting point here is that
the consider: tion of bond length alternation para-
meter w ma<es our result qualitatively different
from the others. In fact, a nonzero uo and E, do
develop if we force the bond length order parameter
w to be zero.
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Fig. 4. The band structure (a) and the density of states (arbitrary
unit) (b} of the ground state of polyacene.

4.2. High DC conductivity

Doping-induced quasi-particles with strong lat-
tice distortion are widely believed to be the main
charge carriers in most conducting polymers. For
a gapless polymer, the quasi-particles like solitons
or polarons are unstable compared with the Bloch
electron, whose energy can be arbitrarily small.
One then expects that the transport properties of
polyacene to be very different from other more
conventional conducting polymers. The carriers
contributing to the conductivity include electrons
(conduction band) and holes (valence band). For
both bands, the electric conductivity is

o= — CJ%G(S)%dC, (34)

where N, is the number of polyacene chains per
cm?, and

a(e) = e’v(e)(e)p(e). 35

Here f5,1,p are the Fermi distribution function,
carrier relaxation time, and density of state, res-
pectively. The carrier velocity v is equal to
(1/m)de/ok We apply a model developed by Conwell
[15] for one-dimensional organic semiconduc-
tors to caiculate the relaxation time 7. The interac-
tion Hariltonian of the electrons  with LA
phonons is

He—ph =N" HZZ gk,qclt+qck(bq + bf—q)s (36)
q

where b, i the annihilation operator for a phonon
with wave vector g, and ¢, is the annihilation oper-
ator of a zonduction or valence state with wave
vector k. ""he electron-phonon coupling constant

Gi.q 1S

h 1/2
Okq = i4a<2Mw > [sin(k + g)a — sin ka]. (37)

q

M is the total mass of the unit cell, and « is the
electron-lattice coupling constant in the SSH
model. In cne-dimensional system, scattering basi-
cally take rlace between + kand T k because the
acoustic mode scattering is essentially elastic. In
such cases ‘ve have

h 1/2
kg = i8a<; Mo ) sin ka. (38)
< q

The relaxat on time 7 can be expressed as 1/r =
1/tem + 1/1,,,. The subscripts “em” and “abs” indi-
cate phonor emission and absorption, respectively.
The formule. for them are derived by Conwell

1 2
. -h—ngf(?(s — hwy)ple — hwy Xny + 1)
« (L‘fo(ﬁ - hwu))
1 —fole) '

2n
= 7!1:3(’)(80 — (& + hwy))p(e + hawy)ny,
abs

% <L“f0(3 + thk)),

39
[ /o) 9
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where @ is the step function. The density of state
ple) for polyacene is

P alte = 2uay)?

. <sin[2 cos” [ﬂﬂ) s

(to — 2awy)

Substituting Eqs. (39) and (40) back into Eq. (35)
and including both the electrons and the holes, we
obtain the electric conductivity ¢. Because of its
peculiar gapless band structure, one expects that
under low doping level the thermal electron will
dominate, and the conductivity is independent of
the doping concentration, contrary to the conven-
tional conducting polymers like polyacetylene.
Fig. 5 shows our numerical results of the conductiv-
ity of polyacene as a function of dopant level at two
opposite temperature limits. Results for polyacety-
lene, a typical one-dimensional semiconductor with
a band gap of 1.4 eV, are also shown for compari-
son. One sees that the conductivity of polyacene
remains unchanged for T = 300 K. For T = 0.1K,
its conductivity keeps constant until the dopagt
concentration reaches as high as 104 carriers/A.
For polyacetylene, the conductivity increases lin-
early with the dopant concentration. In Fig. 6, we
show the temperature dependency of the conduct-
ivity. Instead of an exponential growth, the con-
ductivity is proportional to the temperature below
200 K. Sommerfeld expanston of Eq. (34) in T ac-
tually leads to a positive linear term and a negative
quadratic term.

5. Conclusion

Dimerization has been believed to be the only
effect the electron-lattice coupling causes to the
lattice configuration for the ground state of con-
Jugated polymers. We found that the chain length
contraction also happens simultaneously. The con-
traction leads to a new bond length order para-
meter, which varies in space around quasi-particles
like solitons and polarons. A set of self-consistent
equations is derived and solved numerically for the
order parameter. The resulting electron spectrum
for polaron is quite different from the case that only

e

o Polyacenc at T=300 K

~~ Polyacenc at T=0.1 K

6 3 PAaLT=10K e

- S PA 1 T=300 K -

6 -

- 2 T

80 7

) -

e -

0 1 2 3
log( neop/ms )

Fig. 5. Comgarison of the DC conductivity (o) of polyacene and
trans-PA under various dopant concentrations. The dopant
concentratior n, = 10"’//“\. and o, denoles the conductivity of
trans-polyace ylene for Rgo, = 1, at 300 K.

45 h——\

O( x 10 S/em)
- ~ hoe
A ~ (¥ w w

o
“w

i _

0 100 200 300 400 500
T{K)

=3

Fig 6. The temperature (T) dependence of the DC conductivity
(o) of polyacen: without doping is shown One can see that ¢ is
almost linear in T below about 200 K_

dimerizatior is considered. The polaron mobility,
which is detzrmined by the particular form of lat-
tice distortion around the carrier, will also be modi-
fied significantly. By including the bond length
order pararr eter, we also predict that the ground
state configuration of polyacenc is a gapless
semiconductor, contrary to many previous sugges-
tions that it 1as a gap around 0.4 ¢V. Due to such
a peculiar tand structure, polyacene is a much
better conductor compared with other conducting




PHYSB 20880 BRR SREELATHA JAYASHREE

C-M. Lai, H-F Meng [ Physica B 000 (1959) 000-000 11

polymers. The conductivity can be as high as
4 x 10* s/cm without doping, which is at least one-
order of magnitude larger than the typical conduct-
ing polymers like polyacetylene. Of course our cal-
culations apply to the intrachain transport only.
The actual value of the conductivity is limited by
the interchain hopping and depend on the level of
disorder, which we do not consider in this work. In
addition, a small gap may develop purely due to the
Coulomb interaction. Our prediction of a high con-
ductivity should still hold qualitatively even in such
case.
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