
 1

行政院國家科學委員會專題研究計劃成果報告

Web 文件之資料自動萃取引擎之分析研究
The Study of Automatic Data Extraction Engines for Web Documents

計畫類別：■ 個別型計畫 □ 整合型計畫
計畫編號：NSC90-2213-E-009-121

執行期限：民國 90 年 8 月 1 日至民國 91 年 7 月 31 日

主持人：吳毅成

計畫參與人員：蘇瑞元、洪憲忠、簡光廷、簡廉哲、蔡銘韓

執行單位：國立交通大學資訊工程系

中 華 民 國 九十一 年 十二 月 二十五 日

 2

中文摘要
本計劃將研究有關網頁文件上的資料

自動萃取問題。網頁文件的資料萃取涉及

兩個問題，一是瀏覽順序，二是資料萃取。

許多的網頁並沒有辦法直接以網址來取

得。比如許多網站如 104 人力網需要登入

才能瀏覽重要資料，有些網站如奇摩站的

超連結是經由執行某些程式才會產生。因

此在萃取網頁資料前，常常必須瀏覽至所

需的網頁後才能做資料萃取。因此網頁間

瀏覽的順序相當重要。這個計畫除了解決

網頁資料萃取的問題之外，也必須同時解

決網頁瀏覽的問題。為了讓網頁資料萃取

更有彈性且更易設計，我們設計了一個以

XML 為基礎的新的描述語言，叫做資料萃

取服務描述語言(DESDL)，用來描述資料

萃取服務中的流覽與資料萃取。在 DESDL
中，一個 script 程式包函一組服務，每一

個服務從指定的網頁上萃取資料並處理這

些資料。舉例來說，儲存這些資料到資料

庫或利用這些資料來瀏覽下一頁。DESDL
使得控制瀏覽順序與資料萃取變的更加容

易。簡單的說，DESDL 具有下列的特色。
(1) 使用 XPath 當作萃取網頁內部資料的

查詢敘述格式。
(2) 能以特定的順序瀏覽網頁。
(3) 可以填寫表單並啟動下一個服務來萃

取提交表單後的下一頁。
(4) 支援外掛程式，這裡稱為 DESDLet 來

處理萃取的資料。舉例來說，儲存到

資料庫或瀏覽下一頁。
(5) 與目前的瀏覽器的規格一致。
(6) 模擬按一下的動作並啟動下一個服務

來萃取下一頁。
在計畫中，我們實作了 DESDL 系統，

並實際將之應用在一個比價系統上以證明

其功能。

Abstract：
In this paper, we design a new

XML-based description language, named
Data Extraction Service Description
Language (DESDL), for data extraction

services. In DESDL, one script includes a
set of services each of which extracts data
from the designated (web) pages and then
processes these data, e.g., stores these data
into local databases or browse next pages.
DESDL facilitates to control the sequence of
pages for data extraction. In brief, DESDL
supports the following features:
(1) Use XPath as the format of query

expressions to extract data inside pages.
(2) Navigate pages in a sequence.
(3) Fill forms to invoke next services.
(4) Support plug-in code, named DESDLet,

to process the extracted data, e.g., store
into databases or browse next pages.

(5) Conform to the current browser.
(6) Simulate the clicking action to invoke

next services.
In this paper, we also implement the

system for DESDL and demonstrate the
system by using it to help implement a
price-comparison site.

Keyword: data extraction, navigation,
DESDL, plug-in, DESDLet

1 Introduction

With the rapid development of World Wide Web
(WWW) recently, it becomes more and more
important for users to obtain information over
Internet. In order to collect useful information over
Internet, users first search them from some portal
sites, such as Yahoo! [14][24], and then browse by
clicking through the related pages. Usually, these
users simply want to extract some significant
segments inside web pages, instead of retrieving the
whole web pages.

Furthermore, users may want to process the
browsed web pages (in HTML or XML
[7][10][18][19][20]) automatically, such as extracting
some products’ names and prices into database for
later use. Thus, it becomes quite important to support
some data extraction tools to help users to automate
the process. This is especially important for the
following applications. Some price comparison web
sites [5] need to automate the process of data
extraction by storing product information into
database. Some companies need to automate the
process of data extraction to retrieve business news

 3

regularly.

In order to automate the process of data extraction,
many researchers proposed data extraction languages,
as in [2][3][4][8][9][11][15][16][17][22][23]. These
languages are classified into the following two
classes: query-based languages and service-based
languages.

In the query-based languages, users write query
expressions to extract data among a set of pages. In
general, these languages follow the
select-from-where (SFW) structure, as SQL. Most of

data extraction languages are query-based, such as
XML-QL [4], XQL [15], XQuery [17][21], W3QL
[8][9], and WebOQL [2][3] etc. Due to the SFW
structure, the page processing sequence is
non-deterministic in many query-based languages.
For example, when extracting the product prices in
page A and the product information in page B, we
only need to specify how to match the product
information with the same product name in both
pages A and B inside the “where” clause. Apparently,
we do not have to indicate which page to retrieve
first.

 includes several services each of which extracts
data from one designated web page and then processes
the

In the service-based languages, such as WIDL [11]
(Web Interface Definition Language), one script
extracted data, e.g., stores these data into local
databases or makes use of these data to browse next
pages. In the service-based languages, since one page
needs one service to process, it is inherently required
to specify the sequence of pages.

Now, consider the issue of the page sequence. In the
languages without specifying the page sequence, we
will leave it to the system to choose the best sequence
to do. Thus, this may reduce users’ efforts of
specifying the sequence and may make query
expressions simpler or clearer. However, this may also
make the extraction system harder to implement,
because it has to decide which page to retrieve first. In
addition, we also observe that it is often important and
necessary to specify the sequence of extracting pages
for the following problems:

• The cookie problem.

Many web sites require that users login with
accounts and passwords before allowing users
to browse more pages. Usually, the web servers
set cookies in the first homepage, so that the
servers can recognize the users in next pages.
Thus, specifying the page sequence is
necessary.

• The problem of security mechanisms.

Similarly, many web sites encrypt next browsed
pages (e.g., using the SSL protocol [6][13])
after users login with accounts and passwords.
Thus, specifying the page sequence is also
necessary.

• The problem of filling forms and choosing the
“GET” or “POST” action.

In many web pages, users need to fill up the

form and then use “GET” or “POST” action to
access next pages. Again, this demonstrates the
necessity of the page sequence.

• The problem of the referral header options.

Although many web servers do not make use of
this feature, specifying the page sequence is
necessary in this case.

In fact, some query-based languages, such as
W3QL [8][9], and WebOQL [2][3], also provide users
with some features to specify the sequence of pages.
However, due to the SFW structures, these languages
still have some drawbacks. For example, before
extracting data, the system (W3QS) for W3QL needs
to collect all navigated pages, many of which may be
wasteful. In WebOQL, we cannot fill forms to retrieve
next pages. Besides, in an extreme case that we want
to extract all the entries in a web site, say Yahoo! [24],
we have to create a huge tree in WebOQL. The tree
may be so large as to slow down or complicate the
processing.

In order to facilitate the better control of the
sequence of extracting pages, this paper proposes a
new service-based and XML-based language, named a
Data Extraction Service Description Language
(DESDL). In brief, DESDL supports the following
features.

(1) Use XPath [22] as the format of query
expressions to extract data or locate elements
inside pages.

In the DESDL language, for each service, we use
XPath as the format of query expressions to
extract data or locate elements inside the
corresponding page. This is because XPath is
already a standard of W3C Consortium for
extracting data inside pages. The XQuery
language is also based on XPath. The WIDL and
XML-QL languages use DOM-like expressions.
The W3QL language uses regular expressions (in
PERL code) to extract data. The WebOQL

 4

language uses its own expressions to match the
data.

(2) Navigate pages in a sequence.

In the DESDL language, we can navigate pages in
a sequence. (Note that the sequence is depth-first,
normally.) For example, in DESDL, we can
traverse the whole Yahoo! category tree [24] for
data extraction. In both XML-QL and XQuery
languages, the page sequence is not specified. The
WIDL language only allows a service to invoke a
single next page recursively. Both W3QL and
WebOQL languages also supports navigation in
some sequences.

(3) Fill forms to invoke next services.

In the DESDL, W3QL, and WIDL languages, we
can specify how to fill forms to invoke next
services. Others cannot.

(4) Support plug-in code, named DESDLet, to
process the extracted data, e.g., store into
databases or browse next pages.

In the DESDL languages, users can write
DESDLets to help process the extracted data and
integrate with other programs. For example, save
into database, remove duplicated pages or
unnecessary pages, notify users, issue warning
messages, etc. In the WIDL language, the role is
changed. Other programs can invoke the services
(in WIDL) to extract data for the use of these
programs. So, in WIDL, page traversal is not so
important. In the W3QL, users can use Perl code

to help match data. None of other languages
supports similar interfaces to other programs.

(5) Conform to the current browsers.

When implementing the data extraction system, it
is very important to conform to the current
browsers and leverage the current browser objects,
such as the Webbrowser control in Microsoft
Windows [12]. The reasons are as follows. Since
HTML documents are not well formed as XML
documents are, the parsing trees may often be
ambiguous. Therefore, if our system implements
our own parsers, it is most likely that the parsing
trees are different from those in browsers. Thus,
the users may have difficulty to locate elements
due to different parsing tree, and it is hard for our
system to support visualization tools in the future.
Another reason is described in the following item.
None of the other languages supports this feature.

(6) Simulate the clicking action to invoke next
services.

In the DESDL language, we can first locate the
elements using XPath expressions and then
invoke next services by simulating the action of
clicking on these elements. The major advantage
of this feature is that many web pages invoke next
pages via Javascript function calls. Since we
leverage the current browsers (as described in the
previous item (5)), we can easily do this.
Otherwise, there is almost no general way to
invoke next services in such cases. None of the
other languages supports this feature.

XML-QL XQuery W3QL WebOQL WIDL DESDL

Targeted
documents

XML XML HTML + XML HTML + XML HTML + XML HTML + XML

Locating
elements

DOM-like XPath PERL code Its own
expressions

DOM-like XPath

Navigation Not
sequenced

Not
sequenced

Depth-first Depth-first and
Breadth-first

Linear Depth-first

Filling Form No No Yes No Yes Yes

Integrating
programs

None None PERL code None IDL for other
programs

Plug-ins

Conforming to
browsers

No No No No No Yes

Simulating
clicking

No No No No No Yes

 5

From above, we summarize the comparisons among
these languages in Table 1.

In this paper, we also implement the system for
DESDL and demonstrate it by using it to implement a
price-comparison site where we extract product
information from tens of electronic-commerce sites in
Taiwan. From our empirical experiences, one
programmer only needs about one working day to
write a DESDL script to extract product information
from one electronic-commerce (or e-commerce) web
site. This greatly reduces the overhead of maintaining
such a web site.

In this paper, Section 2 describes the specification
of our DESDL language. Section 3 illustrates our
DESDL system by a real application for the price
comparison. Section 4 makes concluding remarks.

2 DESDL

In this Section, we will describe the DESDL
language. A DESDL script is enclosed by the element
<DESDL>. This element contains two types of
elements: The element <INIT> designates the URL of
the initial web page (in the attribute URL) and the
initial service (in the attribute SERVICE) associated
with the page. The element <SERVICE> is used to
specify how to extract data from the associated pages
and process these data.

. . .

 <td>

 DESDL: A Data Extraction Service

 Description Language

 I-Chen Wu, Jui-Yuan Su, . . .

 <i>Proceedings of . . .</i>

 </td>

 <td>

 WebOQL: Restructuring Documents,

 Databases, and the Web

 Gustavo Arocena and Alberto Mendelzon.

 . . .

 </td>

. . .

Figure 1: A sample HTML file.

<DESDL>

 <INIT SERVICE="GetPaperAttr" URL="..."/>

 <SERVICE NAME="GetPaperAttr"/>

 <VAR NAME="Title" PATH="//b[0]//text()"/>

 <VAR NAME="Author" PATH="//b[1]/text()"/>

 </SERVICE>

</DESDL>

Figure 2: A DESDL script to extract data from the

HTML file in Figure 1.

For example, Figure 2 shows a DESDL script to
extract data from a sample HTML document in Figure
1. The DESDL system initially loads a web page at the
URL specified in the element <INIT>, and then uses
the service GetPaperAttr (specified in the element
<INIT> too) to process the page. In the service
GetPaperAttr, the elements <VAR> define the
names and values of the variables.

Query Expressions

In the DESDL language, for each service, we use
XPath as the format of query expressions to extract
data or locate elements inside the associated page. The
attribute PATH inside the element <VAR> contains an
XPath expression that locates the data with the
variable value. For example, in the script in Figure 2,
the XPath expression of the variable Title,
//b[0]//text(), means to locate the first element
with tag b and then extract the text inside the element.
By extracting data from the document in Figure 1, we
obtain the contents of the variables, Title and
Author, as “DESDL: A Data Extraction Service
Description Language” and “I-Chen Wu, Jui-Yuan
Su, . . .”, respectively.

Navigation

In DESDL, when extracting data from a page in a
service, we can also invoke next services by using the
element <INVOKE>, which includes two important
attributes: SERVICE, the name of next service, and
URL, the URL of the next page to request.

Furthermore, in DESDL, we can invoke multiple
services from one service. For example, after
extracting a set of URLs from the associated page, we
can continue to access multiple pages at these URLs.
In order to access multiple pages, the element
<SERVICE> may contain the element <FOREACH>. In
the element <FOREACH>, the attribute FROM indicates
an array variable evaluated from an XPath expression
earlier. In the DESDL system, each array element is
processed by the script inside <FOREACH> once, as
follows.

 6

Figure 3: An example of using multi-way navigation.

For example, in Figure 3, the variable SearchBase
contains an array of all rows (each of which
corresponding to a paper in Figure 1) in tables, and,
therefore, the DESDL system will process all elements
inside <FOREACH> for each row. Then, for each table
row (or product), extract the title, the link (to the page
with product information) and the authors into the
variables Title, Link, and Author, respectively; and
invoke a new service GetAbstract with the page at
the URL $Link, which means the value of the
variable Link. For a portal site with a tree of category,
we can easily use this way to navigate the whole
category tree. We will describe an example of
navigation through the whole category tree in Section
3. Our navigation is in the depth-first ordering.

Filling Forms and Clicking

In the DESDL language, we can specify how to fill
forms or click to invoke next services.

. . .

<Script language=Javascript>

 function Directto(){. . .

 window.open(“http://www.csie.nctu ...”)

 . . . }

</Script>

<FORM NAME="Form1" ACTION="results.cfm?...

 METHOD=POST onSubmit="Directto()">

 Search DL

 <INPUT TYPE="Text" NAME="query" VALUE="">

 <INPUT TYPE="Submit" NAME=”Go”>

</FORM>

. . .

Figure 4: A sample HTML file with forms.

Consider a sample HTML file with forms in Figure
4. In both WIDL and W3QL languages, we can fill
forms to invoke next services. However, none of other

languages can process the clicking action that makes a
Javascript function call as shown in Figure 4. In
DESDL, we can fill forms while simulating the
clicking action as shown in Figure 5.

<DESDL>

 <INIT URL="http://www.csie.nctu.edu.tw/..."

 SERVICE="ExtractPaperInfo"/>

 <SERVICE NAME="ExtractPaperInfo">

 <VAR NAME="FormBase" PATH="...//FORM"/>

 <FOREACH FROM="$FormBase">

 <FORMPARAM NAME="query" VALUE="Web

 Query" PATH="INPUT[0]"/>

 <INVOKE SERVICE="GetPaperAttr"

 PATH="INPUT[1]" />

 </FOREACH>

 </SERVICE>

 . . .

</DESDL>

Figure 5: A DESDL script to fill up form in Figure 4.

In Figure 5, we fill up the form parameters by using
<FORMPARAM>. In this form parameter element,
named query, we fill the value “Web Query” into the
text field at the XPath INPUT[0] based on each array
data of FROM. Then, we invoke the next service
GetPaperAttr with the page returned by clicking the
partial XPath INPUT[1], that is the INPUT with name
GO.

DESDLets

In our research, we find that many users may want
to modify or slightly modify the behavior of the
invoke operations. For example, save into database,
remove duplicated pages or unnecessary pages, notify
users, issue warning messages, etc. Therefore, we
support a mechanism, named DESDLets, that allows
users to change the behavior at <INVOKE>. In DESDL,
the element <INVOKE> contains an optional attribute
DESDLET, that specifies the DESDLet routine to
process the invocation.

For example, we add one line (bolded) into the
script in Figure 3, as shown in Figure 6. In this line,
the attribute DESDLET indicates the program
RemoveRepeated.dll as the invocation routine,
which removes the access to duplicated pages.

The DESDL system passes three parameters into
DESDLet: the set of variables that have been specified
(e.g., Title and Link in Figure 6), the service name
(e.g., GetAbstract), and the URL or path to be
invoked (e.g., the content of URL). Then, DESDLets
process these data. For example, DESDLets can store
the extracted values into databases, or check to avoid
duplication in navigation if the URL has been invoked
earlier. Finally, DESDLets can decide whether to
invoke the service specified in the <INVOKE> element

<DESDL>
 <INIT SERVICE="GetPaperAttr" URL="..."/>
 <SERVICE NAME="GetPaperAttr">
 <VAR NAME="SearchBase"
 PATH="//table/tr/td"/>
 <FOREACH FROM="$SearchBase">
 <VAR NAME="Title" PATH="b[0]//text()"/>
 <VAR NAME="Link" PATH="b[0]/a/@href"/>
 <VAR NAME="Author" PATH="b[1]/text()"/>
 . . .
 <INVOKE SERVICE="GetAbstract"
 URL="$Link"/>
 </FOREACH>
 </SERVICE>
 <SERVICE NAME="GetAbstract">
 ...
</DESDL>

 7

to load next page and call the next service.

Figure 6: An example of using DESDLet.

Currently, there are some DESDLets implemented
in the system. The first is to check duplicated URLs.
The hash table is implemented in the DESDLets to
store the URL that the system has been navigated.
DESDLets check the URLs in the hash table to ensure
that the same pages will not be accessed more than
once. If the URLs are not accessed before, DESDLets
insert the URLs into the hash table. The second is to
store data into database. The data are processed and
then save into database. The third is to log records.
Specific records are logged for analysis and tracking.

In the next section, we illustrate our DESDL system
by a real application for price comparison.

3 Application: Price Comparison

Based on DESDL, we implemented a price
comparison system that extracts price information of
products from some e-commerce web sites. The
categories of e-commerce web sites include those for
selling communication materials, computer hardware
and software products, book stores, movies, music
disks, daily necessities, etc. In this system, one script
of DESDL is written for extracting data in each site.
The DESDL system parses the script, traverses related
pages, extracts related information (such as prices) of
products from these web sites, and saves them into
database.

Figure 7: The page hierarchy of an e-commerce web

site.

In the rest of this Section, we will use the bidding
web site [5], www.ubid.com.tw (abbr. UBID below),
as an example to explain how the DESDL scripts are
used to extract data. Figure 7 shows the page
hierarchy of this web site.

The web page model of UBID is described as
follows. The homepage of UBID contains links to
several main categories. Each main category contains
links to several subcategories. Each subcategory links
to product list page. If there are a lot of products in
one subcategory, the product list page will contain a
link to next page of product list. The formats of
product list page and “next page” of product list page
are the same.

<DESDL NAME="UBID">

 <INIT SERVICE="MainCategory" ... />

 <SERVICE NAME="MainCategory">

 <FOREACH ...>

 ...

 <INVOKE SERVICE="SubCategory" ... />

 </FOREACH>

 </SERVICE>

 <SERVICE NAME="SubCategory">

 <FOREACH ...>

 ...

 <INVOKE SERVICE="ProductList" ... />

</FOREACH>

 </SERVICE>

 <SERVICE NAME="ProductList">

 ...

 </SERVICE>

</DESDL>

Figure 8: A DESDL script for the web site UBID.

There are three services defined in this example,

<DESDL>

 <INIT SERVICE="GetPaperAttr" URL="..."/>

 <SERVICE NAME="GetPaperAttr">

 <VAR NAME="SearchBase"

 PATH="//table/tr/td"/>

 <FOREACH FROM="$Searchbase">

 <VAR NAME="Title" PATH="b[0]//text()"/>

 <VAR NAME="Link" PATH="b[0]/a/@href"/>

 . . .

 <INVOKE SERVICE="GetAbstract”

 DESDLET="RemoveRepeated.dll"

 URL="$Link"/>

 </FOREACH>

 </SERVICE>

 . . .

</DESDL>

 8

MainCategory, SubCategory and ProductList,
as shown in Figure 8. The MainCategory service
loads the initial main category page at the URL of the
<INIT> element, extracts the URLs of the
subcategory pages, and then invokes the next pages
via these URLs with the SubCategory service. Then,
the SubCategory services load the subcategory pages,
extract the URLs of the product list pages, and then
invokes the next pages via these URLs with the
ProductList service.

<SERVICE NAME=”MainCategory”>

 <VAR NAME=HyperLink PATH=”...../a”/>

 <FOREACH FROM=$HyperLink>

 <INVOKE SERVICE=”SubCategory”

 PATH=”@href”/>

 </FOREACH>

</SERVICE>

Figure 9: The MainCategory service.

The MainCategory service is shown in greater
detail in Figure 9. First, it extracts all hyperlinks to the
subcategory into the variable HyperLink, and then
uses FOREACH to access each subcategory page.

<SERVICE NAME=”SubCategory”>

 <VAR NAME=HyperLink PATH=”...../a”/>

 <FOREACH FROM=$HyperLink>

 <INVOKE SERVICE=”ProductList”

 PATH=”@href”/>

 </FOREACH>

</SERVICE>

Figure 10: The SubCategory service.

Next, similarly, the SubCategory service, as
shown in Figure 10, loads the pages that are invoked
by MainCategory service, extracts the URLs of the
product list pages, and then invokes the next pages via
these URLs with the ProductList service.

<SERVICE NAME=”ProductList”/>

 <VAR NAME=”Products” PATH=”.....”/>

 <FOREACH FROM=$Products>

 <VAR NAME=”Title” PATH=”td[0]/text()”/>

 <VAR NAME=”Info” PATH=”td[1]/text()”/>

 <VAR NAME=”Price” PATH=”td[2]/text()”/>

 <INVOKE DESDLET=”save2db.dll”/>

 <!--Save into DB>

 </FOREACH>

 <VAR NAME=”HyperLink” PATH=”//a[‘next’]”/>

 <FOREACH FROM=$HyperLink>

 <INVOKE SERVICE=”ProductList”

 PATH=”@href”/>

 </FOREACH>

</SERVICE>

Figure 11: The ProductList service.

Finally, the ProductList service, as shown in
Figure 11, loads the pages, extracts the URL of the
next product list page, and then may invoke the pages
via these URLs with the ProductList service, if the
next page exists. More importantly, the ProductList
service also extracts the data of each product in the
page and saves into the database.

4 Discussions and Conclusion

In this paper, we design an XML-based description
language, named DESDL, for data extraction services.
In DESDL, the users can describe a set of services
each of which extracts data from the designated web
pages and then saves these data into local databases or
navigates pages. The features of DESDL are
summarized as follows.

(1) Use XPath as the format of query expressions to
extract data or locate elements inside pages.

(2) Navigate pages in a sequence.

(3) Fill forms to invoke next services.

(4) Support plug-in code, named DESDLet, to
process the extracted data, e.g., store into
databases or browse next pages.

(5) Conform to the current browsers.

(6) Simulate the clicking action to invoke next
services.

We have already implemented the system for
DESDL and demonstrated it by implementing a
price-comparison site where we extract product
information from tens of e-commerce sites in Taiwan.
From our experiences, one programmer only needs
one working day to write a DESDL script to extract
product information from one E-commerce web site.
This greatly reduces the overhead of maintaining such
a web site. We deeply believe the DESDL system can
be used in many practical Internet applications in the
future.

Acknowledgement

The authors would like to thank the National Science
Council of the Republic of China for the support
under grant NSC 90-2213-E-009-121.

計劃成果自評

本計劃對網頁資料的自動萃取所需的

瀏覽與資料萃取問題，提出一套較有彈性

 9

的解決方法，利用一個以 XML 為基礎的資

料萃取服務描述語言來描述瀏覽過程與萃

取的資料位置。DESDL 使得控制瀏覽順序

與資料萃取變的更加容易。DESDL 具有下

列的特色。
(1) 使用 XPath 當作萃取網頁內部資料的

查詢敘述格式。
(2) 能以特定的順序瀏覽網頁。
(3) 可以填寫表單並啟動下一個服務來萃

取提交表單後的下一頁。
(4) 支援外掛程式，這裡稱為 DESDLet 來

處理萃取的資料。舉例來說，儲存到資

料庫或瀏覽下一頁。
(5) 與目前的瀏覽器的規格一致。
(6) 模擬按一下的動作並啟動下一個服務

來萃取下一頁。
此外，我們實作了 DESDL 系統，並實

際將之應用在一個比價系統上以證明其功

能。
本計畫成果已發表於 ICS 2002。

References:
[1] Association for Computing Machinery. “ACM

Portal to Computing Literature”, ACM, New
York, 2002.
http://portal.acm.org/portal.cfm.

[2] Gustavo Arocena and Alberto Mendelzon.
“WebOQL: Restructuring Documents, Databases,
and the Web”, In Proceedings of ICDE, 1998,
Orlando, Florida.

[3] G. Arocena. “WebOQL: Exploiting Document
Structure in Web Queries”, Master's Thesis,
University of Toronto, 1997.

[4] Alin Deutsch, Mary Fernandez, Daniela Florescu,
Alon Levy, and Dan Suciu. “XML-QL: A Query
Language for XML”, In Proceedings 8th
International World Wide Web Conference
(WWW8), 1999. Computer Networks 31(1116) :
1155-1169.

[5] Ebay Inc., "ebay: The World’s Online
Marketplace", 2002.
http://www.ubid.com.tw.

[6] Alan Freier, Philip Karlton, Paul Kocher. “The
SSL Protocol Version 3.0”, Internet Draft, Mar.
1996.
http://wp.netscape.com/eng/ssl3/ssl-toc.html

[7] Steve Holzner. “XML Complete”, McGraw-Hill,

1998.
[8] D. Konopnicki, O. Shmueli. “W3QL: A Query

System for the World Wide Web”, in Proceedings
of the 21th International Conference on Very
Large Databases, Zurich, 1995.

[9] David Konopnicki , Oded Shmueli. “Information
gathering in the World-Wide Web: the W3QL
query language and the W3QS system”, ACM
Transactions on Database Systems (TODS),
Volume 23 Issue 4, Dec. 1998.

[10] Sean Mcgrath. “XML by example: building
E-commerce applications”, Prentice Hall PTR,
1998.

[11] Phillip Merrick, Charles Allen. “Web Interface
Definition Language”, W3C NOTE, Sep. 1997.
http://www.w3.org/TR/NOTE-widl.

[12] Microsoft Corporation. “WebBrowser Control”,
Programming and Reusing the Browser, MSDN
Library, 2002.
http://msdn.microsoft.com/library/default.asp?url=/wo
rkshop/browser/webbrowser/browser_control_node_en
try.asp.

[13] Netscape Communications Corporation. “Secure
Sockets Layer”, 2000.
http://wp.netscape.com/security/techbriefs/ssl.html.

[14] Openfind Information Technology, Inc.
"Openfind Enterprise Portal Technology
Provider", 2002.
http://www.openfind.com.tw.

[15] Jonathan Robie, Joe Lapp, David Schach.
“XQL：XML Query Language”, Workshop on
XML Query Languages, Dec. 1998.
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[16] W3C Consortium, “XML Query”, Apr. 2000.
http://www.w3c.org/XML/Query.

[17] W3C Consortium. “XQuery 1.0: An XML Query
Language”, W3C Working Draft, 16 Aug. 2002.
http://www.w3.org/TR/xquery/.

[18] W3C Consortium. “Extensible Markup Language
(XML) 1.0 (Second Edition)”, W3C
Recommendation, Oct. 2000.
http://www.w3.org/TR/2000/REC-xml-20001006.

[19] W3C Consortium. “Hyper Text Markup
Language”, Jan. 1998.
http://www.w3c.org/Markup/.

[20] W3C Consortium, “HTML 4.01 Specification”
W3C Recommendation, Dec. 1999.
http://www.w3.org/TR/html4/.

[21] W3C Consortium. “XQuery 1.0 and XPath 2.0
Data Model”, W3C Working Draft, Aug. 2002.
http://www.w3.org/TR/query-datamodel/.

[22] W3C Consortium. “XML Path Language (XPath)
2.0”, W3C Working Draft, Aug. 2002.
http://www.w3.org/TR/xpath20/.

[23] W3C Consortium. "XML Pointer Language
(XPointer) Version 1.0", W3C Working Draft,
Aug. 2002.
http://www.w3.org/TR/xptr/.

 10

[24] Yahoo! Inc, "Yahoo Search Engine", 2002.
http://www.yahoo.com.

