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Abstract

An essential modification to the kernel in the numerical calculation of hydrogenic momentum wave functions, is presented in this paper. Using
only 256 grid points, the calculated eigenvalues, eigenfunctions and the oscillator strengths are shown to be in excellent agreement with the exact
analytic results. The reliable pseudocomplete set of momentum space eigenfunctions is then applied to the time-dependent calculation of intense
laser pulse on the hydrogen atom. With the advantage of having no boundary reflection during the time evolution, like that inherent in the coordinate
space method, the photoelectron spectra of above-threshold-ionization (ATI) are elucidated for four cases. Some of which are not feasible or very
difficult to solve with the coordinate space method. Generalization of the method to single-active electron systems is straightforward. Due to the
good accuracy with a reasonably small-sized basis set, applications to the currently interested intense case of laser pulse on atom or molecule are
expected.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

An atomic electron under intense laser fields may absorb
many photons and photoionize. The above-threshold-ionization
(ATI), first observed in 1979, is a phenomenon in which elec-
tron absorbs excess photons than is necessary to ionize [1].
Since then, the ATI has attracted much attention and inter-
est [2,3]. Theoretically, the electron spectra can be calculated
by solving the time-dependent Schrödinger equation, but this
method is often limited by reflection from the boundary when
the equation is solved in coordinate space. The trouble is less
severe for shorter pulse where a large spatial region can be cho-
sen such that the electron is still within the boundary when
the laser pulse ends [4]. For stronger fields, the boundary re-
flection is still a problem even for few-cycle pulses. From the
complementary principle of quantum mechanics, a wave func-
tion distributed in a large coordinate space corresponds to a
wave function localized in momentum space. Using the mo-
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mentum wave functions as a basis set to study atoms/molecules
in laser fields, one would be able to avoid the trouble of bound-
ary reflection. We have previously shown that the low-order ATI
phenomenon is described rather well by the momentum space
method [5].

In this paper, we find a more efficient and accurate momen-
tum space method than our previous work. Although the for-
mulation of Schrödinger equation in momentum space is well
known [6], the number of analytic eigenfunctions is infinite and
cannot be used directly in the simulation of time-dependent
problems. There were efforts in developing the momentum
space solution: Lande invented a regularization method for
the Coulomb kernel singularity [7], Ivanov and Mitroy [8] de-
signed the iteration codes for the expansion of the kernel, Nor-
bury et al. [9] applied the specific basis function forms to the
bound states, and Tang et al. [10] used the Bystrom method
for the Coulomb kernel related integration and solved some
of the bound states. For numerical calculations within a finite
range, we find that the earlier formalism must be modified.
Our key correction to the Coulomb kernel in practical compu-
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tations makes the calculated energy levels and wave functions
much more accurate. Another key improvement is the use of
pseudospectral collocation points and a nonlinear mapping into
momentum grids [11]. This mapping enables us to adjust the
grids nonuniformly and optimize the favored region.

The goal of this paper is to present an efficient and accu-
rate enough method of momentum space eigenstates calcula-
tion, and then use it as the basis set in the study of a hy-
drogen atom under intense laser fields. The computation of
this time-dependent Schrödinger equation (TDSE) for pulse
duration of hundreds optical cycles was thought impossible
before [12], but with our method, it can be calculated eas-
ily with a modest desktop PC. This method can also be gen-
eralized straightforwardly to quantum systems modeled by a
single-active-electron system under intense laser pulse. To il-
lustrate the new development, we computed and compared the
bound state levels and several radial momentum wave func-
tions with the known analytical results. We tabulated the os-
cillator strengths for states 1s, 2s, 3s, 4s, 2p and 4f and
compared them with the exact results listed in Bethe and
Salpeter’s [13]. The summation over discrete states and con-
tinuous states are also performed to check the Thomas–Kuhn–
Reiche rule. In the calculation, only 256 grid points are used,
the diagonalization for each angular momentum takes just a
few minutes of CPU time on a desktop PC. This economic
computing requirement would make it much easier to extend
to more complicated problems. We then use the stagger leap-
frog algorithm for the time-evolution [14]. This algorithm is
explicit and accurate to second-order in time step, hence, the
propagation is faster and more efficient than other sophisti-
cated methods such as Runge–Kutta or Crank–Nicholson algo-
rithms.

The rest of the paper is organized as follows: In Section 2,
we derive the formulation of the momentum space equation for
wave functions. Also, the correction of finite coordinate range
on Coulomb kernel and the stagger leap-frog scheme for time
propagation are described. In Section 3, we present the calcu-
lated energy levels, wave functions, oscillator strengths, and
ATI spectra for several cases. Discussion and conclusions are
given in Section 4

2. Formulation

Consider the Schrödinger equation for a spherical symmetric
potential V (r) in the coordinate representation:

(1)−1

2
∇2Ψ (�r) + V (r)Ψ (�r) = EΨ (�r).

By making the Fourier transformation,

Φ( �p) = 1/(2π)3/2
∫

Ψ (�r)e−i �p·�r d3r,

(2)W( �p) = 1/(8π3)

∫
V (�r)e−i �p·�r d3r,

if the space range is infinite, Eq. (1) can be transformed into the
momentum representation:
(3)

[
p2

2
− E

]
Φ( �p) +

∫
W( �p − �q)Φ(�q)d3q = 0.

The above eigenvalue equation in momentum space is well
known in quantum mechanics [15,16]. Specifically for the
Coulomb potential V (�r) = −Z/r , we can express the eigen-
states as

(4)Φ( �p) = Fnl(p)Ylm(Ωp),

the radial equation of the momentum wave function then be-
comes

(5)

[
p2

2
− E

]
Fnl(p) +

∫
q2Kl(p,q)Fnl(q)dq = 0.

The kernel Kl in the above equation can be expressed in terms
of Legendre functions of the second kind Ql :

(6)Kl(p,q) = − Z

πpq
Ql

(
p2 + q2

2pq

)
,

and

(7)Ql(z) = 1

2

1∫
−1

1

z − x
Pl(x)dx,

where Pl is the Legendre function of the first kind. The analytic
solution for bound states was given by Fock [6]. Direct numer-
ical solution for the equation is not straightforward due to the

singularity in Ql(z) when z = p2+q2

2pq
= 1, or equivalently, when

p = q . Lande proposed a clever regularization method to ma-
nipulate the kernel term as follows [7]:∫

q2Kl(p,q)Fnl(q)dq

=
∫

Kl(p,q)
[
q2Fnl(q) − p2Fnl(p)/Pl(z)

]
dq

(8)+ p2Fnl(p)

∫
Kl(p,q)

Pl(z)
dq.

The first term on the right-hand side is now vanishing at z = 1
(that is, p = q), and the last term is finite and can be calculated
iteratively from l = 0 [7,8]. With such technique, a basis ex-
pansion method with thousands of terms was successfully used
to solve for the bound states in momentum space [9]. It was
shown that by using the Gauss–Legendre grids and transform
the integral equation into matrix equation, the singularity can
be avoided. A grid of thousands points were used to find some
bound energy levels of hydrogenic systems accurately [10]. For
more general purposes, such as the problem of intense lasers
on atoms, such basis functions would be inefficient, especially
when continuous states are also needed. We will show how to
use far less grid points to construct a good representation for the
hydrogenic wave functions, not just for bound states but also for
continuum states in the momentum space.

In real calculations, we deal only with finite volume instead
of the infinite range in the analytical formulation. The validity
of the momentum space Schrödinger equation (3) is subject to
a certain condition, namely,



T.F. Jiang / Computer Physics Communications 178 (2008) 571–577 573
1/(8π3)

Lx∫
−Lx

dx

Ly∫
−Ly

dy

Lz∫
−Lz

dz ei �p·�r

= sin(pxLx)

πpx

sin(pyLy)

πpy

sin(pzLz)

πpz

(9)∼= δ(px)δ(py)δ(pz).

We know that the condition holds only if the box size
LxLyLz is large enough. This point is important as it will mod-
ify W( �p) in Eq. (2) for finite box. Considering the hydrogenic
potential in spherical coordinates with the maximum radius R

in the numerical calculation, the appropriate momentum space
form of the Coulomb kernel will then be:

(10)W( �p) =
{ cos(pR)−1

2π2p2 if p �= 0,

−R2

4π2 otherwise,

where p is the magnitude of �p. In contrast, the form of the
kernel with an infinite box size is given as

(11)W( �p) = −1

2π2p2
.

Expanding the modified kernel in Legendre function:

(12)W( �p − �q) =
∑
l=0

al(p, q)Pl(cosγ ),

where γ is the angle between �p and �q , we have

(13)al(p, q) = 2l + 1

2

1∫
−1

W( �p − �q)Pl(x)dx.

The above integration can be carried out efficiently by using
the Gaussian quadrature [17] with a controlled accuracy. Note
that, the singularity in W( �p− �q) will now happen only at p = q

and γ = 0, instead of at p = q in Ql . Thus, the singularity is
less severe and easier to handle. Actually, it does not cause any
trouble by using the Gaussian quadrature.

Expanding Pl(cosγ ) in spherical harmonics and integrating
out the angular part of Φ( �p), we obtain the radial equation:

(14)

[
p2

2
− E

]
Fnl(p) + 4π

2l + 1

pmax∫
0

al(p, q)Fnl(q)q2 dq = 0.

By choosing appropriate grids of p, the above equation be-
comes a matrix eigenvalue problem. Also, since p2/2 corre-
sponds to the kinetic energy of electron, a finite value is suf-
ficient. Hence, the grids p will be finite-ranged naturally. We
may choose its maximum value pmax according to the range of
the electron kinetic energy we need. For the radial coordinate
p, we further map the range x ∈ [−1,1] into [0,pmax] by using

(15)p = p(x) = L
1 + x

1 − x + α
,

where α = 2L/pmax and L is the mapping parameter. The col-
location points {xk} and the corresponding weights {wk} are
determined through the Gauss–Legendre–Lobatto quadrature.
The method is especially useful for Coulomb problems [11].
We can switch to denser grids in region of smaller momentum
by choosing smaller L or vice versa. This will be an advan-
tage for bound states (more extended in p) or continuous states
(photoelectron spectra). With this choice of momentum grids,
the discrete eigenvalue equation becomes:[
p2

i

2
− E

]
Fnl(pi)

+ 4π

2l + 1

N∑
j=1

wjal(pi, qj )q
2
j Fnl(qj )q

′(xj ) = 0,

(16)i = 1,2,3, . . . ,N;
where qj , q ′(xj ) denote p(xj ) and dp(xj )/dx derived from
Eq. (15), respectively.

The properties of the numerical eigenset will be presented in
the next section. We consider now the time-dependent problem
formulation. The Schrödinger equation of the hydrogen atom in
a laser pulse under the dipole approximation can be written as

(17)ih̄
∂Ψ

∂t
= [

H0 + �A(t) · �p]
Ψ ( �p, t),

where the electric field �E(t) = −∂ �A(t)/∂t . For a linearly po-
larized field, the magnetic quantum number m is unchanged
during the laser pulse and hence is omitted in the formulation
below for convenience. We expand Ψ in terms of the obtained
pseudocomplete set:

(18)Ψ ( �p, t) =
∑
n,l

Cn,l(t)Fnl(p)Ylm(p̂),

where n, l are the principal and orbital quantum numbers, re-
spectively. Integrating out the angular parts, we obtain the fol-
lowings:

i
dCnl(t)

dt
= Enl · Cnl(t) + A(t)

∑
n′

{
bl · Cn′,l−1(t)

×
∫

Fnl(p)p3Fn′,l−1(p)dp

(19)

+ bl+1 · Cn′,l+1(t)

∫
Fnl(p)p3Fn′,l+1(p)dp

}
,

where

(20)bl ≡ blm =
√

(l − m)(l + m)

(2l − 1)(2l + 1)
, for l = 0

and b0 ≡ 0.
We decompose Cnl(t) into real and imaginary parts. The

propagation is then carried out by the stagger leap-frog algo-
rithm with prepared initially state [14].

3. Results

We use pmax = 20 a.u. and the mapping parameter L = 2.
The value of p2

max/2 corresponds to the largest kinetic energy.
This value of pmax is quite large for the kinetic energy, never-
theless, it is necessary for a correct ground state. The ground
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Table 1
The magnitudes of errors of the calculated eigenvalues for states (nl) with respect to the exact energy levels −1/2n2

n E[ns]-exact E[np]-exact E[nd]-exact E[nf ]-exact

128 256 512 128 256 512 128 256 512 128 256 512

1 8.8[−3] 5.7[−4] 1.6[−4] – – – – – – – – –
2 2.1[−3] 1.0[−4] 2.2[−5] 8.2[−4] 8.2[−6] 6.6[−8] – – – – – –
3 7.2[−4] 3.2[−5] 5.9[−6] 3.7[−4] 3.1[−6] 2.4[−8] 4.2[−5] 5.8[−8] 1.3[−10] – – –
4 3.2[−4] 1.4[−5] 2.5[−6] 1.8[−4] 1.4[−6] 1.1[−8] 2.8[−5] 3.6[−8] 7.8[−11] 1.2[−6] 3.0[−10] 2.2[−13]
5 1.7[−4] 7.3[−6] 1.3[−6] 9.9[−5] 7.5[−7] 5.6[−9] 1.8[−5] 2.1[−8] 4.6[−11] 1.1[−6] 2.6[−10] 1.8[−13]
6 9.7[−5] 4.2[−6] 7.4[−7] 5.9[−5] 4.4[−7] 3.3[−9] 1.1[−5] 1.3[−8] 4.2[−12] 8.0[−7] 1.8[−10] 1.5[−11]
7 6.2[−5] 2.4[−6] 6.6[−7] 3.9[−5] 1.3[−7] 1.6[−7] 7.3[−6] 1.0[−7] 1.2[−7] 4.7[−7] 6.5[−8] 6.5[−8]

The numbers 128, 256 and 512 indicate the number of grid points used in the calculation. 8.8[−3] ≡ 8.8 × 10−3.
state is worst case while other states are far more accurately
obtained. This is because the ground state is equal to

(21)F1s = 25/2

√
π

1

(p2 + 1)2
,

which is the most diffusive state in momentum space wave
functions and needs a larger pmax to attain higher accuracy. We
show later in Table 4 that much larger value of pmax is required
for the same accuracy by Lande’s regularization method. The
continuous state wave functions are quite localized and hence
need denser grids in smaller values of p. For the accurate con-
tinuous states, the value of L should not be large. We found that
the results are not sensitive to the choices of L and pmax. We
use R = 150.0 a.u. which satisfies the limiting Dirac δ-function
in Eq. (9) very well. The results are also insensitive to the value
of R. We do not intend to carry out high precision calculations
in this paper. Instead, we propose to develop a tractable and
efficient momentum space method, but still reliable enough to
simulate quantum dynamics of intense lasers on atoms or mole-
cules while the coordinate space method does not work well.

In the following, we use only 256 grid points for the p-
coordinate and calculate the discretized eigenvalue equations.
We learn by comparing the results with L = 1 and L = 2
and found no noticeable difference in eigenstates and time-
dependent cases. First, we present in Table 1 the results of some
low-lying bound states. The accuracy is quite good. The ground
state is accurate up to the fourth decimal place and is the worst
case, and the accuracy is up to the 8th significant digit for the
7f -state. For comparison, we also listed in Table 1 the results
with 128 and 512 grid points. All show excellent accuracy for
those bound levels. In fact, for the study of quantum dynamics,
the use of 128 grid points will be satisfactory if computing time
is concerned.

Since we discretized the system, the set of eigenstates is
pseudocomplete with a finite number of eigenstates. This makes
numerical calculations useful, for though analytic solutions are
known, there are an infinite number of states. There are only
few bound states obtained for each nl-series numerically. If
bound state resonances are important, optimizing the grids and
the parameters will provide more bound states with increasing
accuracy.

We compared the radial wave functions of 1s, 3s, 2p and
3d with analytic forms listed in Ref. [16]. The accuracy at any
grid point is at least 3 significant digits. Based on quantum
mechanics, the extent of a momentum wave function is local-
ized in a small range while the corresponding coordinate space
wave function extends far away out for higher states. This is an
advantage of the momentum space approach, for the highly ex-
cited states and continuous states are localized in momentum
space.

The next question is how good the generated wave func-
tions are. To address this question, we calculated the oscillator
strengths of several states and compared them with the ex-
act results tabulated in Bethe and Salpeter [13]. The oscillator
strength for the transition from state (nl) to state (n′l′) is given
as

fnl→n′,l+1

(22)= 2(l + 1)

3(2l + 1)

1

En′ − En

∣∣∣∣
∫

p3Fnl(p)Fn′,l+1(p)

∣∣∣∣
2

,

fnl→n′,l−1

(23)= 2l

3(2l + 1)

1

En′ − En

∣∣∣∣
∫

p3Fnl(p)Fn′,l−1(p)

∣∣∣∣
2

.

We also tested the well-known Thomas–Reiche–Kuhn sum
rule using the generated eigenstates. In Table 2, the oscillator
strengths from states 1s, 2s, 3s, 4s to states np are listed to-
gether with the discrepancies from Bethe and Salpeter’s [13].
The summations over simulated finite number of bound states
and continuous states agree very well with the exact results.
Individual oscillator strength also agrees well. We also per-
form the calculations of the oscillator strengths from 2p and
4f states. The results are listed in Tables 3 and 4. With only
256 momentum grid points, we can say that the Hilbert space
of the real hydrogen atom has been satisfactorily represented
numerically. Higher precision can easily be reached with more
grid points and larger value of pmax and R.

For the simulation of intense laser pulses on a hydrogen
atom, we assume the electric field pulse is

(24)�E(t) = ẑEm sinωt sin2 πt

T
,

where ω is the laser frequency and T is the pulse duration.
T is equal to 2.75 times of the full width at half maximum
(FWHM), and the system is initial prepared in the hydrogenic
ground state.

In Table 5, we list the four calculated cases of the ATI spec-
tra. Cases I and II were compared to the recent paper of Ref. [4].
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Table 2
The oscillator strengths for the transition from ns-state to n′p-state

Final Error(1s) B-S Error(2s) B-S Error(3s) B-S Error(4s) B-S

2p −5.92[−4] 0.4162 – – −7.31[−5] −4.1[−2] −1.92[−4] −0.009
3p −2.16[−5] 7.91[−2] −1.46[−3] 0.4349 – – −4.79[−4] −0.097
4p 2.01[−6] 2.90[−2] −1.82[−4] 0.1028 −1.39[−5] 0.484 – –
5p 3.03[−6] 1.39[−2] −5.17[−5] 4.19[−2] −2.95[−4] 0.121 3.50[−3] 0.545
6p 2.30[−6] 7.80[−3] −2.12[−5] 2.16[−2] 7.10[−4] 5.2[−2] −3.13 − 4] 0.138
7p 3.38[−6] 4.81[−3] −6.18[−6] 1.27[−2] 3.30[−4] 2.7[−2] −4.82[−4] 6.0[−2]
Discrete sum 3.86[−4] 0.5650 5.60[−4] 0.6489 3.71[−3] 0.707 −1.39[−4] 0.752
Continuous sum 1.14[−3] 0.4350 −1.34[−3] 0.3511 −5.99[−3] 0.293 −3.95[−3] 0.248

Total 1.53[−3] 1.000 −7.83[−4] 1.000 −2.56[−3] 1.000 −4.09[−3] 1.000

Error(ns) is the error between the calculated and the corresponding exact results. B-S denotes the results in Ref. [13]. −5.92[−4] ≡ −5.92 × 10−4.
Table 3
The oscillator strength for the transition from the 2p-state to ns- and nd-states

Final n Error(ns) B-S Error(nd) B-S

n = 1 1.97[−4] −0.139 – –
2 – – – –
3 1.01[−4] 1.36[−2] −9.16[−5] 0.696
4 1.90[−5] 3.04[−3] 5.28[−6] 0.122
5 7.10[−6] 1.21[−3] 4.75[−6] 4.44[−2]
6 3.50[−6] 6.18[−4] 3.00[−6] 2.16[−2]
7 2.15[−6] 3.61[−4] 5.11[−6] 1.23[−2]
Discrete sum 4.80[−4] −0.119 1.66[−3] 0.928
Continuous sum −2.15[−4] 0.008 −1.51[−3] 0.183

Total 2.65[−4] −0.111 1.50[−4] 1.111

Error(nl) is the error between the calculated and the corresponding exact re-
sults. B-S denotes the results in Ref. [13]. 1.97[−4] ≡ 1.97 × 10−4.

Table 4
The oscillator strength for the transition from 4f -state to nd- and ng-state

Final n Error(nd) B-S Error(ng) B-S

n = 3 2.03[−4] −0.727 – –
4 – – – –
5 −1.28[−4] 0.009 8.00[−4] 1.345
6 −1.70[−5] 1.6[−3] −6.46[−5] 0.183
7 6.46[−5] 0.0005 3.83[−4] 0.058

Discrete sum 9.40[−5] −0.715 6.64[−3] 1.658
Continuous sum −3.77[−4] 0.001 −6.35[−3] 0.056

Total −2.83[−4] −0.714 2.90[−4] 1.714

Error(nl) is the error between the calculated and the exact results. B-S denotes
the results in Ref. [13]. 2.03[−4] ≡ 2.03 × 10−4.

In these two cases, the laser intensity is not very high so that the
ionization probability is small. The pulse duration is set to 20
optical cycles and FWHM is about 10 fs. We perform simu-
lation in case III with a stronger field that the atom is almost
totally ionized. The corresponding calculation in coordinate
space will be quite hard. Case IV simulates an experimental
data [18]. The pulse duration is in sub-picosecond range. The
computation was regarded not feasible before [12]. In Fig. 1,
we present the ATI spectrum for the case of peak intensity
1014 watt/cm2 with T equal to 20 optical cycles (26.64 fs). At
the end of pulse, the probability of excitation into angular mo-
mentum states l = 8 is 1.89 × 10−7, and to states of l = 11 is
1.5 × 10−11. Thus, l = 0,1, . . . ,11 that we used in the expan-
Table 5
The four ATI spectra cases

Case λ (nm) Ipeak (w/cm2) T (fs) lmax Pl max Pionized

I 400 1014 26.6 11 1.5×10−11 2.15%
II 400 2 × 1014 26.6 14 3.7×10−11 7.23%
III 400 1015 26.6 39 2.5×10−10 91.97%
IV 608 1014 405 29 4.6×10−10 2.63%

λ is the laser wavelength. Ipeak is the peak intensity of the laser field. T is
the pulse duration in femtoseconds. The angular momenta used in each case
are l = 0,1, . . . , lmax. Pl max is the probability of the final state in angular
momentum stats of l = lmax. Pionized is the ionization probability.

Fig. 1. ATI spectrum for case I. The red vertical line depicts the threshold en-
ergy. The first three dominant ATI peaks are to be compared with Ref. [4]. More
peaks are shown in logarithmic scale. (For colours see the web version of this
article.)

sion are more than enough and guarantee the convergence of
calculations. The total number of eigenstates in the basis state
is 3072 while 73 of them are bound states. The ionization prob-
ability is 2.15% only. We plot in both linear and log scales for
the probability density P(E) with respect to photoelectron en-
ergy in eV. P(E) is defined through

(25)
∫

P(E)dE = 1.

Also we define the threshold energy as
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Fig. 2. ATI spectrum for case II. The results are to be compared with Ref. [4].

(26)Eth = Nminh̄ω − |E1s | − Up,

where E1s is the energy of the ground state, Up = E2
m/4ω2,

the ponderomotive energy. Nmin is the minimum number of
photons absorbed by the atom such that the threshold energy
becomes positive. There is no ATI peak for a negative threshold
energy [5]. Fig. 2 depicts the results with 2 × 1014 watt/cm2

peak laser intensity. The logarithmic plot shows more minor
peaks that are invisible in linear scale. Note that the substruc-
tures in main ATI peaks are due to the Freeman resonances in
the short pulse case [19].

In Fig. 3 we show the strong field result that is hard to cal-
culate in coordinate space. The ponderomotive energy is now
74.45 eV and needs at least 29 photons to make the threshold
energy positive. The first ATI peak is suppressed and more ATI
peaks show up. These are the typical effects of peak suppression
and peak switching in strong field physics [3]. Since the pulse
duration is short, the resonance structures also appeared. Fi-
nally in Fig. 4 we show the ATI spectrum of the hydrogen atom
under a pulse of 200 optical cycles (405 fs) to compare with
the experimental results [18]. Since the experimental parame-
ters usually cannot be unlimited precise, the direct comparison
between experimental and theoretical results are not straight-
forward. We use the estimated intensity and pulse duration. The
pulse duration is quite long and the calculation is able to show
the dominant features of the experimental ATI spectrum.
Fig. 3. ATI spectrum for case III. The laser intensity is Peta watt/cm2, which is
quite strong. Peak suppression and switching characteristics appear. Since the
pulse duration is short, Freeman resonances are associated with the main ATI
peaks.

Fig. 4. Simulations to compare with experiment Ref. [18]. Main characteristics
of experimental results are obtained.

4. Discussion and conclusions

We have developed an efficient and accurate method of the
calculation for wave functions of hydrogen atom in momen-
tum space. To our knowledge, there are several other studies
on this problem without correcting the potential kernel due to
the finite coordinate size [5,7,9,10]. This modification of the
Coulomb kernel is essential. In Table 6 we tabulated the en-
ergy levels of ns-states, with (labeled as R = 150) or without
(labeled as without R) the correction of R to the potential
kernel, or using the Lande subtraction with the same num-
ber of grid points and optimized parameters. We can see the
drastic improvement to the energy levels when the kernel is
corrected. And also, with the same grids and pmax, the Lan-
de’s subtraction method does not give good results; only with
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Table 6
Comparison of the calculated energy levels of the ns-state by several methods

State R = 150 without R Lande I Lande II

1s 0.5006 0.5896 0.5338 0.5013
2s 0.1255 0.1726 0.1335 0.1253
3s 5.559[−2] 9.250[−2] 5.934[−2] 5.570[−2]
4s 3.126[−2] 6.311[−2] 3.339[−2] 3.133[−2]
5s 2.001[−2] 4.883[−2] 2.138[−2] 2.006[−2]
6s 1.389[−2] 4.065[−2] 1.485[−2] 1.393[−2]
R = 150 a.u. are results with grids described in Table 1, results from the
traditional potential kernel with the same grids are denoted as “without R”.
The results with Lande subtraction at the same grids, that is, 256 grid points
and pmax = 20 a.u., are denoted as Lande I. Lande II are results with Lande
method at pmax = 500 a.u. and 512 grid points. 5.559[−2] ≡ 5.559 × 10−2.
The negative sign to every energy level is omitted. The exact eigenvalues are
−En = 0.5/n2.

512 grid points and pmax = 500 a.u. can we generate moder-
ately accurate eigenvalues. It takes thousands of grid points to
generate accurate low-lying bound states with Lande’s regu-
larization. This agrees with Refs. [9,10]. However, such large
value of pmax is not meaningful for too large in kinetic energy
and the necessity of a large number of grid points is another
disadvantage for future applications to intense field problems.
Thus, the finite-R correction to the potential kernel is critical
to the momentum space formulation. The use of the Gauss–
Legendre quadrature enables us to bypass the Lande subtraction
and greatly simplifies the calculation. With a moderate number
of grid points, the Hilbert space of the hydrogen hamiltonian is
well represented.

With the economic-sized basis set of momentum space wave
functions and the efficient stagger leap-frog time evolution al-
gorithm, we are able to calculate the ATI photoelectron spectra.
We elucidate the capability of this method with the atom either
under a very high intensity or a very long duration laser pulse to
show the nice features. There is no loss of the continuous part
of the wave functions, unlike filtering function employed in co-
ordinate space method to prevent boundary reflection. Further
applications of the method to intense laser pulses on atoms and
molecules will be presented in the future.
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