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A Technique for Specral Characterization

of Some Regilar Graphs
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Abstract

Ulustrating by Odd graphs, a technique for testing distance-regularity among con-
nected reguldr graphs in terms of their spectra is introduced. Following their known
parametric <:ha.ra(:terizations, it eventually leads to spectral characterizations of some
generalized Odd graphs among connected regular graphs.
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1 Introduction

Let I' = (V(D), L£(I')) be a connected regular graph with an adjacency matrix 4. Since the
rows and columns of 4 correspond to an arbitrar labelling of V(D), it is clear that we shall
he interested primarily in those properties of 4 which are invariant under permutations of
rows and columns of 4. Foremost among such properties are the spectral properties of 4.
If the distinct eigenvalues of 4 are O >8> s, with multiplicities my, M M, - -

Ms-1 respectively, we shall write

Spec(T) = (63,67 6772 ... gma-t)

s—1
and call it the spectrum of the graph I.

Some properties of graphs can be told easily from their spectra; for example: the
number of distinct eigenvalues is at least one larger than its diameter; k-regular if and

ouly if (Hy. 1) = (k.1); bipartite if and only if %) > 6, > ... > 51 is symmetric with
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respect to 0, refer to [3] for details. However the spectral characterizations of graphs in
general are very difficult. Indeed, spectral information usually pose strict restrictions over
the structures of graphs with high regularity, and hence a lot of spectral characterizations
of distance-regular graphs have been done under the assumption that the graphs are al-
ready distance-regular, while there are still a lot ¢ f non-distance-regular graphs cospectral
to distance-regular graphs. Therefore. characterization of distance-regularity among con-
nected regular graphs is an interesting area of irvestigation, ref to [1. p.369] for refated

backgrounds.

In addition to some already known technique such as switching. interlacing 4, p.85]
for studying spectra of graphs, we will introduce another technique for dealing with spec-
tral characterization of distance-regularity among connected regular graphs. In addition
toits characteristic polynomial and minimal poly nomial. a connected regular graph with
ai adjacency matrix A has another nouzero polynomial ¢(x), called [{offman polynomial,
n terms of eigenvalues with a minimal degree such that all entries of g(A4) are equal.
Under some additional conditions, systems of linear equations with coefficient matrices
in terms of coefficients of g(z) will be derived. and the distance-regularity of graphs un-
der consideration depend on the fact that these systems of linear equations have unique
solutions. i.e.. those corresponding coefficient matrices have nonzero determinants. This
procedure works well for bipartite distance-regula: graphs with 4 distinct eigenvalues and
for generalized Odd graphs. It seems quite reasonable to expect that this procedure might
become standard to this type of problems, and wcrk for some other classes of graphs with

high degree of regularity.

Basic definitions such as distance-regular graphs, generalized Odd graphs are given
in section 2, ref to 1. 4] for more details. The distance-regularity of those connected regular
graphs with exactly four distinct eigenvalues, in particular {3¢—3,2¢g - 3,g—3, -3}, are
studied in section 3. Following illustrations for H(3,2) and Oy, the main procedure is
presented in section 4.

2 Preliminary

If ' = (V(T'). E(T')) is a connected graph with an edjacency matrix 4 and with Spec(I') =
(NN B0, then f(z) = f;ol(x — %)™, m(z)

= H:___(} (x — ;) are called the characteristic and ths minimal polynomial of [ respectively.
It is well known that f(A4) = m(4) = (. However, in case ' is connected and k-regular,
then (fy,mg) = (k.1), and the polynomial ¢(zr) = f_;ll (z - 6;), called the Hoffman
polynomial of I'. is of another interest. The sign ficance of ¢(z) lies on the fact that it



is the unique polynomial of the smallest degree such that q(A4) = W‘Z 'g)} J where J is the
all-one matrix. Note that it is the polynomial ‘—qé%q(x) called the Hoffman polynomial
of [ in the literature.

Those graphs with high degree of regularity are interesting to us. Let
Fi(z) = {yly € V(T') and 0(z,y) =i}
where J(z,y) denotes the distance between z and y in . Let

Ti(z) N (y)l,
Iy (z) NTi(y)l,
bi(z.y) = L1 (z) N Tisy ()]

RS
—_—
8 B
N
[

for z.y € V(I') at distance 1. 0 <4 < d. In partictlar, colz,z) = ao(z,z) =0, ci(z,y) =
1 ifo(zy) = 1. bo(e.x) = k. by(z.y) =0 if 8(z,y) = d. and a;(z,y) + bi(z.y) +
cile,y) =k i O(z.y) =1i. The graph I' is called cistance-regular if ¢;(z,y), a;(z,y) and
bi(z,y) depend not on the particular vertices z, ¢ we choose, but only on the distance

i = 0(z.y) between them. In this case, the common values are denoted by ¢;, a; and b;

respectively, and {bg, by, b2, -+, bg_1;c1.co,c3, -, cy}, or
Co CL Cy -+ Cq
ap a; az --- dyg
bo b1 by - by

is called the intersection array of the distance-regular graph I. Clearly, T is bipartite if
and only if ag = a; = a4y = -~ = a4 = 0, and hence it has no odd cycles. In this paper,
we are interested in those with ap = a; = --- = 4y, = 0 and aq # 0, they are called
generalized Odd graphs [4, p.145]. Odd graphs as shown below are among them.

The following two families of distance-regula- graphs will be treated in this paper.
Let F' be a set of ¢ symbols. The Hamming graph H(n,q) is defined over F™ such thar two
vertices (T1,---.2y,), (Y. - ,yn) € F™ are adjacen: if and only if the Hamming distance
between them is exactly 1. It is known that H(n,q) is a distance-regular graph with
intersection array {n(q—1),(n—1)(g—1), (n — 2)(g—~1), -, (g—1):1,2.3,--- ,n} and its
spectrum is given by 6; = (g —1)n — qi with m; = (7 (g—=1)* for 0 < ¢ < n. In particular, if
¢ = 2. then H(n,2) is bipartite with intersection array {n,n—1,n—-2,---,1;1,2,--- ,n —
1,n} and with spectrum (n(g), (n — 2)(:711), (n — 4)(n vy —(n — 2)(1:1), —n(::))

Others are Odd graphs Oy, d > 2, defined over the (d—1)-subsets of {1,2,...,2d—1}
such that two vertices are adjacent if and only if th2ir corresponding subsets are disjoint.
The small Odd graphs are the triangle Ky (d = 2) and the Petersen graph (d = 3). In

3



general, the Odd graphs Oy are distance-regular grzphs of diameter d — 1 with intersection

array
(1) fd=2I
0 1 1 2 2 R N
0 0 0 0 0 0 0 o] {
21 A -1 2-1 A -2 2~ I+1 I+1 0
(2) ifd=2l+1
0 1 1 2 2 i {
0 0 0 0 0 0 0 +1
241 2002 2A-1 21— R 0

The eigenvalues of Oy are the integers 6; = (—1)*(d — ) with multiplicity m; = (Qd[l) -
('Zid_—ll

) respectively for 0 <i<d—1.

Some properties of graphs can be transformed into their cospectral mates through
some counting formulae. If I' is a connected graph with an adjacency matrix A and

with Spec(T') = Spec(G) = (677,67, ,87¢), where G is a graph with some interesting

) d ,
properties, then Tr(A47) = Y mi(-)f is the number of closed walks of length j in both I' and
i=0

, d _
(. For example. if I" has no cycle of length j. then Tr(AL) = 3 m;6] = 0 where Ag is an
i=0
adjacency matrix of G. It follows that Tr(47) = 0 100. and hence I has no closed walk 7
either. The following lemma, follows from the above observation inmediately, which plays

a significant role in later spectral characterization cf generalized Odd graphs.

Lemma 2.1 Let I be a connected reqular graph with an adjacency matriz A. If I is

cospectral with a generalized Odd grapl. of diameter d, then
1) A%71 =0 fori<d-2,
2) A:%@H—j =0 for z,y € V(T') at distance j <1,

3) a;(z,y) =0 for z,y € V() at distance i < d - 1.

3 Spectra of Graphs and Distance-regularity

It is well known that any distance-regular graph with diameter d has exactly d + 1 dis-
tinct eigenvalues [3, p.10], and conversely any coniected regular graph with 3 distinct

eigenvalues must be strongly regular i.e., distance-1egular with diameter 2. It would be



of interesting to see those connected regular graphs of diameter d with exactly d + | dis-
tinct eigenvalues. However, distance-regularity car. not be told simply by comparing its
diameter and number of distinct eigenvalues as shcwn in the following counter-examples.
In this section. some sufficient conditions for graphs with four distinct eigenvalues will be

considered for this purpose.

The following are two examples of connected regular graphs with diameter 4 and
with exactly d + 1 distinct eigenvalues for d = 3.4 respectively while neither of them is

distance-regular.

(1) Let I' be the Hamming graph H(3,2) with edges as labelled in figure (i), then
Spec(T) = (3'.1%, 13, =3!), and hence the spectrum of its line graph L(I'), figure
(ii). is given by Spec(L(L)) = (4},23,0%, —25). Certainly. L(T') is connected, 4-
regular of diameter 3, and with exactly 4 distinct eigenvalues. However, it is not
distance-regular by comparing the sizes of cor.mon neighborhoods for vertices {1, 8}
and of {5,6} at distance 2.

(2) The graph I given in figure (iii), see also 4, 1.263], is connected regular of diame-
ter 4, with Spec(l') = (4',2%,0°%, -2 —4!) of 5 distinct eigenvalues, cospectral with
H(4.2). Both of their adjacency matrices satisfy the equation A(A-2)(A+2)(A+
4) = 24J. Note that this graph is bipartite, ar d it has one more eigenvalue —4 than
that of L(H (3.2)).

figure (i) figure (ii)



figure (iii)

The distance-regularity of connected regular bipartite graphs with 4 distinct eigen-
values is given in the following. In terms of Hoffrian polynomial, it will be proved by
taking full advantage that bipartite graphs have no odd cycles.

Theorem 3.1 Let I’ be a connected k-requlor bipurtite graph with n vertices and with
ezactly 4 distinct eigenvalues =k, +£6 (8 > 0). Then ' is a distance-reqular graph of
diameler 3 with interseclion array ‘

—=8) k).

n

{kk— 1,k — 2B, 2k

n

Proof. Let A be an adjacency matrix of I, then its Hofman polynomial gives
AY + kA% - 624 - k67 = BEZE) 5

Since T is bipartite, there is no odd cycle in I and hence Alz,z) = A%(z,2) =

0, i.e., a;(z,y) = 0 for all 2,y € V(I') at distance 3. Suppose z,y € V(') at distance
2, then A%(z,y) = 0. Since kA%(z.y) = M, it follows that cy(z,y) = A%(z,y) =
2(%"02—)-, and ba{z,y) = k — ca(z,y) = k ~ gLn—B_l Suppose z,y € V(') at distance
3, then A%(z,y) = M On the other hand. 43(z,y) = Z:erg(z)nm(y) A%(z,2) =
MC;}(Z‘,:{/), it follows that ¢3(z,y) = k and hence I is distance-regular with intersec-

tion array as required. QED

Among such cases, the set {3g — 3, 29— 3,q—3, -3} attracts us most because it can
be realized as the set of distinct eigenvalues of the Famming graph H(3,q). Note that it

6
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is bipartite if ¢ = 2. Hoffman [9] showed that the set {3,1, -1, -3} (i.e., ¢ = 2) is only
realized by H(3,2) as its set of distinct eigenvalues among connected regular graphs of 8
vertices. This can be improved in the following cor>llary. and another approach will also

be considered in section 4.

Corollary 3.2 If [ is a connected reqular graph with distinct eigenvalues
{3.1.~1,=3}, then I’ must be isomorphic to II1(3,2).

Proof. Let k = 3 and § = 1 in the previous theoram, then |V (I')| must be a divisor of
16 and hence [V(I')] = 8 or 16. In case {V(I'){ = 8. then [' must be distance-regular
with intersection array {3,2,1;1,2,3} and hence [' is isomorphic to H(3,2). The case
WV([')] = 16 can be ruled out easily by noting that the corresponding intersection array
{2,1,1;1,2,2} is not feasible at all. QED

For those cdses ¢ > 4, similar technique can be applied to derive its diameter if the
number of vertices is large enough. It is worth mertioning here that Lasker [12] showed
that a connected regular graph I with distinct eigenvalues {&q\— 3.2¢-3.9—-3,-3}, ¢ > 8.
with ¢° vertices and with [[a(z)| = 3(g — 1) for each z & v(J)'s isomorphic to H(3,q).

Theorem 3.3 Let I' be a connected reqular graph uith 4 distinct esgenvalues 3q — 3,2q —

> 2"' nad - 2 _C - 2 3 . .
3.9—-3.-3, and with at least (69" -99-10) \/((;q 2a1)P -2 vertices, then the diameter of
I'is 3.

Proof. Let [V(I')] = n, and A4 be an adjacency mat -ix of I, then

) , 3
AJ—mq—wA2+m¢—um+2nA+mf-2m+an1=QLJ (*)
mn

in terms of its Hoffman polynomial, and hence the diameter of [ is at most 3. Moreover

(A')zz for i = 2.3 can be evaluated as follows: (A)pz = 2yeri(s) Azy = 3(¢ — 1), and

hence
(AB)II = Z A%y
yelr(z)
8¢ 3 2 2 2
= = + (3¢ — 9)AZ, — (2¢° — 18¢ + 2T)Apz — (6¢° — 27q + 27) 13

63
= L+ 3q(g-3).
n

For any z € V/(T'), since (A%J),, = 2yev(r) Aiy = (3q - 3)?,
2 : 2 :
Z Azy = E Aiv — Ay~ Z Aiy

yel2(r) yeV(r) y€ls(z)

2 6q3
6g° —12¢ + 12 - —n— > |F2(I)'
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It follows that 14|y (z)| + [T2(z)] < 1+ (3¢ —3) 4 (6¢° — 12 +12 — GT"S) < n under the
assumption. Hence the diameter of I" is 3. QED

Indeed, a necessary and sufficient condition for connected regular graphs with Spec(G) =

. . o _ k(k—1-A)2
(k' 67" . 85", 81'3) to be distance-regular was given in [8] that |T;(z)| = (/c—/\)(/\(+qz)-k—-q1+q0

for each vertex z of G, where ¢(x) = (z — 0;)(z — 6: )(z — 63) = 23 + 222 + q1z + qo, and
A= (k3 + m163 + ma63 + m363)/k(1 +my + my +m;). The condition on girth can also be
used in spectral characterization of distance-regula: graphs. For example, Brouwer and
Haemers [6] showed that a connected regular graph with the spectrum of a distance-regular

graph of diameter d and with girth at least 2d — 1 is such a graph.

4 A procedure for testing distance-regularity

Motivated from the roles played by Hoffman polynoinials in the proofs of Theorem 3.1, we
will introduce in this section a procedure for testing distance-regularity among connected
regular graphs in terms of their Hoffman polynomials. We will first treat H(3.2) directly as
a prelininary illustration. followed by an explanation why it does not work for H (n, 2),n>
4. We then treat the Odd graph Og in much more detail as another illustration. A general
procedure will then be concluded for such purpose. This procedure has been successfully
applied to those connected regular graphs which are cospectral with generalized Odd
graphs.

Let I’ be a regular connected graph with an adjacency matrix A. and with spectrum
(3" 1% =13 =3") as that of (3,2). then ¢(A4) = A3-+3A4% - A—3] = 6.J. For vertices T,y
at distance 2, substituting A*(z.y) = 0 into ¢(4) = 6J, we have the equation 343(z,y) = 6
by a straightforward calculation. and hence A%(z,y) = 2. Furthermore,

AXz,y) = Y. Az y) =clzy)
€0 (2)NT (y)

since Al(z,y) = 1 in case 9(z.y) = 1. It follows that c2 = ca(z,y) =2 and by = by(z.y) =
I whenever d(z.y) = 2. For vertices z, y at distance 3. then AMz,y) = 6 similarly.
Furthermore,
Azy) = > Azy) =1-cs(z,y)
2€0 (2N (y)

since A%(z,y) = 2 if d(z,y) = 2 as Just shown. It follows that c3 = c3(z.y) = 3 and
by = by(x.y) = 0 whenever d(x,y) = 3. Up to this point, we conclude that [ is distance-
regular with intersection array {3.2.1;1,2.3} and hence [ is isomorphic to H(3.2). This

provides an alternate approach to Corollary 3.2.



However, this procedure does not work for >ipartite graphs H(n,2) with n > 4
due to the fact that their eigenvalues are symmetr:c with respect to 0. For a connected
regular graph with an adjacency matrix A and with spectrum (4',2*.0%, -2 —4!) as that
of H(4.2), then q(A) = A* + 443 — 44% — 164 = 24.J. For vertices z,y at distance 2,
substituting A5(z,y) = A%(z,y) = 0into g(4) =24/ and A-q(A) = 24-4-J respectively,

we have the system of linear equations

4 —16 | | A%(z, 4!
2(£ vl | 2| *
1 —4 A“(z,y) 4
with determinant 0 for its coefficient matrix. No infcrmation regarding distance-regularity

of [' can be derived from it. Indeed, a counter-erample can be found in [9]. Similar

situation occurs for graphs cospectral with H(5,2).

We now move to another illustration of this technique in terms of Odd graph Og in

detail. Clearly, Oyg is 9-regular of diameter 8 and with
SpeC(Og) —_ ( 91 7119 51700 36188 14862 __27072 _43808 _6544 _816) .

Let I' be a connected regular graph with an adjacency matrix 4 and with spectrum as

given above, and let
q(z) = (z = 1)z +2)(z -~ 3)(z +4)(z - 5)(z +6)(z — 7)(z + 8).
It follows that
q(A) = A®*+4A47 —944% — 296 4" + 26094* + 571643

—~22676 A% — 25584 A + 403207
= 576J.

As mentioned before, a; = a;(z.y) = 0 if d(z.y) == i < 7. To determine ci(z,y) with
d(z,y) =1 for T, we shall compute Ai(z,y) with d(2,y) =1 in two ways by either

1) solving a system of linear equations obtained from q(A) =576J. or

2) applying the fact that

Az,y) = Yo ATz
zel (p)nli_ i (y)

+ > ATy

+ ANz y)

2e0 ()Nl w1 (y)

inductively.



In order to derive ¢y, let us start from vertices z, y at distance 2, substituting A" (z.y) =
A3(z,y) = A%(z.y) = 0 into A*- q(A) =576 -9 J for 0 < i < 5, we have the system of
linear equations

4 -296 5716 —25584 O 0 [ A%z.y) ] [9% ]
1 —94 2609 -22676 40320 0 A(z,y) 9
0 4 =296 5716 -—25584 0 Ab(z.y) - 93
0 1 ~94 2609 —-22676 40320 AS(z,y) 92
0 0 4 -296 5716  —25581 A(z,y) 91

L0 0 1 -94 2609 —22675 | | A%(z,y) | 90 |

and hence 4%(z,y) = 1 by a straightforward calculation. On the other hand,

Az(Ivy) = Z Al(z y) = 62($7y)s
2€0 ()N (y)
since A'(z,y) = 1if 8(z,y) = 1. It follows that c2 =co(z.y) =1 and by = by(z,y) = 8
whenever d(z,y) = 2.

Following the fact that ¢; = 1. we can treat similarly for vertices z, y at distance
3 to derive c3. Let z, y be two vertices at distance 3. substituting 43(x,y) = Ab(z.y) =
A*(z,y) = 0 into A* . g(A) = 576 -9 - J for 0 < ¢ < 4, we have the system of linear
equations

4 206 5716 -2558¢ 0 | [ All(z.y) ] I

1 =94 2609 —22676 40320 A%(z,y) 93

0 4 =296 5716  —25584 A'(z,y) | =576 | 92

0 ~94 2609  —22676 Ad(z,y) 9!
L0 0 4 296 5716 | | A%(z.y) | L 9° ]

and hence A%(z,y) = 2 by a straightforward calculation. On the other hand,

A3<$,y) = Z AZ(Z,Q) =1 'C3($>y)a
2€l1(z)N2(y)

since A%(z,y) =1 if d(z,y) = 2 as just shown. It follows that c3 = cs(z,y) = 1 and
by = b3(z,y) = 7 whenever d(z,y) = 3.

As a matter of fact, the above procedure can be done recursively for vertices z, y
at distance 1 up to 8 to determine ci(x.y) in terms of ¢g.¢3.---, ;1. All details will be

mchuded in the following for illustration purpose.
(1) Let x. y be two vertices at distance 4, substituting A’(z,y) = Ad(z,y) = 0 into
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A~ q(A) =576 -¢' - J for 0 < i < 3, we have the system of linear equations

4 —-296 5716 —25584 Al (z,y) 93
1 —94 2609 -22676 A8(z,y) R 92
0 4 =296 5716 Ab(z,y) 9t
0 1  —-94 2609 At(z,y) 90

and hence 4*(z,y) = 4 by a straightforward calculation. Furthermore,

A4(I)y) = Z A3(Zvy)=2'c4($!y)a
zel (z)NTa(y)

since A3(z,y) = 2 if (z,y) = 3 as shown. It follows that ¢y = c4(z,y) = 2 and
by = by(z,y) = 7 whenever d(z,y) = 4.

Let z, y be two vertices at distance 5, substituting A%(z,y) = A%(z,y) = 0 into
A'-g(A) =576 - ¢ - J for 0 <i < 2, we have the system of linear equations

4 —296 5716 A%(z,y) 92
1 -94 2609 Al(z.y) | =576 | 9!
0 4 —296 Ad(z y) 90

and hence A%(z.y) = 12 by a straightforward salculation. Furthermore,

Ay = Y Any) =4 clzy).

€T (2)NTa(y)

since A*(2,y) = 4 if d(z,y) = 4 as shown in (1). It follows that cs = c5(z,y) = 3

and bs = bs(z,y) = 6 whenever 9(z,y) = 5.

Let z, y be two vertices at distance 6, substituting Al(z,y) = 0 into 4! - g(4) =
576 - 9* - J for 0 <1 < 1, we have the system o:" linear equations

[4 —296} [ A¥(z,y) :576[3”

1 -94 AS(z,y)
and hence 4%(z,y) =12 by a straightforward calculation. Furthermore,

As(x’y) = Z As(z*y) =12 CG(x’y)v
2€l (z)NTs (y)

since A*(z,y) = 4 if d(z,y) = 5 as shown in (2). It follows that c6 = cpl{z,y) =3
and bg = bg(z,y) = 6 whenever d(z,y) = 6.

11
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(4) Let z, y be two vertices at distance 7. substituting A%(z.y) = 0 into A* - ¢(4) =

576 - ¢ - .J, we have the system of linear equat ons
[4][A7(z,y)] = £76[9°)]
and hence A7(z,y) = 144 by a straightforward calculation. Furthermore,
Alzy)= ) A%ay) =36-cr(z.y).
€l (z)NTs(y)
since A%(z,y) = 36 if 3(z,y) = 6 as shown in (3). It follows that ¢; = c7(z,y) = 4
and b7 = b7(z,y) = 5 whenever §(z,y) = 7.

(5) Let z, y be two vertices at distance 8. then A% (z,y) = 576. Furthermore,

Ay)= S Allzy) =144 c(z,y),
ZEF1(1)0F7(y) .

b

since A”(z,y) = 144 if 8(z,y) = 7 as shown in (4). It follows that cs =cg(z,y) =4

and hence ag = ag(z,y) = 5 whenever 9(z,y) == 8.

Hence T' is a distance-regular graph with the same intersection array
{9.8,8.7.7.6,6,5;1,1,2,2,3,3,4,4} as that of Oy, it follows that [ is isomorphic to Og
by its known parametric characterization [4. p.260)].

The argument works perfectly for Odd graph Oq totally depends on the fact that

the determinants of the coefficient matrix

[4 —296 5716 —25584 0 0 |
1 —94 2609 —22676 4(320 0
0 4 —296 5716 —2558¢ 0
0 1  —94 2609 —22676 40320
0 0 4 —296 5716 —25584
(0 0 1 -94 2609  —22676 |

and five of its principal minors are nonzero. To be more precise, and for later systematic

8 .
development, let ¢(z) = 5 a(8,i)z. let
1=0

[ a(8,7) a(8,5) a(8.3) a(8.1) 0
a(8,8) a(8,6) a(8,4) a(8,2) a(8,0)
Ma o — 0 a(8,7) a(8,5) a(8,3) a(81)
8.0 =
0 a(8,8) a(86) a(8,4) a(82) af8,0
0 0 a(8,7) a(8,5 a(83) afs,
.0 0 a(8,8) a(8,6) a(8,4) af8, |




and Ms; be obtained from Mjz o by deleting the las: i rows as well as the last 4 columns,
1 <1 < 5 The key to the success of the previous arguments lie on the facts that
det(Myg;) # 0 for 0 <1 < 5. The following data for Ddd graph O, were kept record here

for reference purpose:

Or2 + 11 4+ 6210 — 23529 — 123028 + 1902327 + 83538z% — 63638525
—2206770z" + 824527623 + 2026845622 — 294100480z — 39916800

My =
6 —1230 83538 -2206770 20268456  -39916800 0 o 0
1 -235 19023 636385 8245276 29400480 0 )] 0
0 6 -1230 83538 ~2206770 20268456 - 39916800 0 0
0 ! - 2135 19023 ~ 636385 8215276 ~20400430 0 0
0 0 6 - 1230 83538 ~ 2206770 20268456 - 39916800 0
0 0 L -235 19023 ~636385 8245276 ~ 29400480 0
0 0 0 6 -1230 83538 ~2206770 20268456 - 39916800
0 0 0 1 -235 19023 - 636385 8245276 — 29400480
0 0 0 0 6 -1230 83538 ~ 2206770 20268456
[ a(ll, 10) a(ll, 8) a(ll,6) a(ll,4) a(ll,2) a'1l1,0) 0 0 0 7
a(11,11)  a(11,9)  a{11,7)  a(11,5) a(ll,3) a'll,1) 0 0 0
0 a(ll,10) a(ll, 8) a(ll,6) a(ll, 4) a'll,2) a(il,9) 0 0
0 a(ll,11)  a(1l,9) a(ll,7) a(1l,5) a11,3) a(ll,1) 0 0
4 0 2(ll, 10} a(ll, 8) a(ll,6) a 11,4) a(ll,2) a(lL,0) 0
0 0 afll,11)  a(11,9)  a(l1L,7) a 11,5) a(11,3) a(ll,1) 0
0 0 0 a(l1,10)  a(l1,8) a 11,6) a(1l,4) a(l1,2) a(11,0)
0 0 0 a(tl, 1) a(11,9) a 11,7) a(11,5) a(l1,3) a(ll,1)
L 0 0 0 0 a(11,10) & 11,8) a(l1,6) a(ll,4) a(1i,2) J
det(M1,0) = 1027755926256566182207744000000000
det(M;,,) = 283221981441954938880000000
det(M, 2) = 7804838553845760 0000
det(Mi; 3) = —43016085504000010
det (M 4) = 213373440000
‘det(M), 5) = 31752000
det(M“’s) = 37800
det(M”,?) = —-180
det(M”!g) = 6.

Based on enormous amount of computations. we eventually realize that this tech-
nique works well for the Odd graph Oy simply becar se of its intersection numbers satisfy
the conditions ay = a; = -+ = a7 = 0 and ay # 0. ra:her than the eigenvalues themselves.
This observation also explains why it may not work for bipartite case in general because
o =@y = ay = =ag. = ag = where d is its diameter. Indeed, the procedure used
for Og has been modified successfully so that it can be applied to any connected regular

graph with the same Hoffinan polynomial as that o° a generalized Odd graph. We now
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state it formally in the following.

Theorem 4.1 A connected reqular graph with the same set of distinct eigenvalues and
with the same wmber of vertices as those of a gencralized Odd graph must be distance-

regular with the identical intersection array.

As a consequence. following a known parame-ric characterization of Oy [4, p.260],
we confirm a question asked by Cvetkovié [6. p.35] that whether Odd graphs can be

characterized by their spectra among connected regnlar graphs.

Corollary 4.2 If ' is a connected reqular graph with Spec(T) = Spec(Oy) for some d,

then [ is isomorphic to Oy.

The ideas behind the proof are summarized ir the following. Let [ be a connected
regular graph with an adjacency matrix A and with Soec(I') = Spec(G) = (k! 67, 632, 67)
where G is a generalized Odd graph with intersection wray {bo,b1,b2y - bg_1;c1, ¢, 03, -, cd}-
Since the graph in question is a generalized Odd gra>sh, it suffices to show that the (z,y)-
entry of A depends only on the distance i between :hem.

Procedures: p A
1) Let q(z) = [[io1(z—6;) = Lig @z, then qg = 1, qu—1 = ¢g, Qa2 = c4—1cq— (bocy +
-+ +bg-2¢4-1). and other coefficients ¢4_; can be expressed systematically in terms
of the intersection numbers.

2) Since Zgzomﬂjzj” =0, A%z, z) =0forz € V([) and i < d — 1. Morcover,
A* 173, y) = 0 if 9(z,y) = j, and hence a;(1,y) = 0 if ANz,y) =1 <d-1, ref to

lemma 2.1.

3) Multiplying A* on both sides of the equation gl A) = vJ, where v = l—zq—:%k)——, then
; ; + 1=1 i
Aq(A) =6y -v-Jfori<d-1.

4) Combining 1) and 2), translate the information in 3) into a set of systems of linear
equations in variables A*(z,y) as given below

Id-1 9d-3 9d-5 95 13 q1 0 ¢ 0 0 0 AZ=4(p 4
1 Td—2  dd-4___ "' 46 94 72 20 o 0 0 o A=80z
0 Td—1  dd-3 47 8 93 11 o 0 0 0 AZd=3(z )
0 | R T q4 92 4 0 0 0 A%d=10(p oy
0 0 0 0 0 4d-1 9d4-3  4-6 494-7 9d-9 - 43 q1 Az, p)
0 0 0 0 i 94-2 Yd-34 dd-6 dd-% 44 92 A%(z,y)
:v{ k1=3  gdmd pd=5 gd-s 1 o0 ]‘

in case d is even, and it is similar if d is odd.
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5)

that

with

Deriving relationship among some auxiliary expressions in terms of {bg, by, b, - - -,
ba—1; c1.C2,¢3, -, Cq}, SO that a series of row operations can be performed over these
coeflicient matrices in an algorithmic way to :laim their nonsingularity, and hence -
Al(z.y)'s are constants for suitable i and d(z.y), but independent of the choices of
z and y in V(T).

Up to this point. concluding the distance-re;ularity of I’ with identical intersec-
tion array {bo,by.ba. -, bg_1;c1,c2,¢3. -+, ¢q). [ is isomorphic to G if parametric

characterization of G is available.

The detailed proof is now under preparation, and will be published soon. We expect
the idea and these procedures will also be available for some other family of graphs

high degree of regnlarity if step 2 is wodified appropriately.
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