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Abstract

The arrangement graph A, is a generalization of the star graph. It is more flexible in its size than the star graph. There
are some results concerning hamiltonicity and pancyclicity of the arrangement graphs. In this paper, we propose a new
concept called panpositionable hamiltonicity. A hamiltonian graph G is panpositionable if for any two different vertices
x and y of G and for any integer / satistying d(x,y) < I < |V(G)| — d(x,y), there exists a hamiltonian cycle C of G such
that the relative distance between x and y on Cis /. A graph G is panconnected if there exists a path of length / joining
any two different vertices x and y with d(x,y) </ < |V(G)| — 1. We show that 4, is panpositionable hamiltonian and
panconnected if k > 1l and n — k > 2.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Network topology is a crucial factor for an interconnection network since it determines the performance of
the network and the distributed systems. Many interconnection network topologies have been proposed in lit-
erature for the purpose of connecting a large number of processing elements and the design of a parallel com-
puting systems [1-6]. The hypercube [5] and the star graph [1,7] are two examples. The hypercube possesses
many good properties and is implemented as many multiprocessor systems [8]. Akers et al. [1] proposed
the star graph, which has smaller degree, diameter, and average distance than the hypercube while reserving
symmetry properties and desirable fault-tolerant characteristics. As a result, the star graph has been recog-
nized as an alternative to the hypercube. However, the hypercube and the star are less flexible in adjusting
their sizes.

The arrangement graph [2] was proposed by Day and Tripathi as a generalization of the star graph.
It is more flexible in its size than the star graph. Given two positive integers n and k& with n >k, the
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(n, k)-arrangement graph A, is the graph (V, E), where V' = {p|p is an arrangement of k elements out of the
symbols: 1,2,...,n} and E = {(p,q)|p,q € V and p, ¢ differ in exactly one position}. A more precise defini-
tion and an example will be given in the following section. 4, is a regular graph of degree k(n — k) with (nf—'k),
vertices. The diameter of 4, is L3—2"j A, 1s isomorphic to the complete graph K, and A4,,,,_; is isomorphic to
the n-dimensional star graph. Moreover, 4, is vertex symmetric and edge symmetric [2]. Many related works
about the arrangement graph have appeared in the literature [2,9-13]. Day and Tripathi showed that there
exist vertex-disjoint paths between any two vertices in the arrangement graph [9]. The existence of hamiltonian
cycles and the cycles of all lengths ranging between three to the size of the graph was proved in [10]. It was
further proved that the multidimensional grids, hypercubes and spanning trees all with constant dilations
can be embedded in the arrangement graph [11]. Hsieh et al. [12] and Hsu et al. [13] studied the fault tolerant
hamiltonian property of the arrangement graph to enhance the reliability of the specific interconnection
network.

Computer network topologies are usually represented by graphs where vertices represent processors and
edges represent links between processors. In this paper, a network is represented as an undirected graph.
For the graph definitions and notation, we follow [14]. Let G = (V, E) be a graph if V is a finite set and E is
a subset of {(u,v)|(u,v) is an unordered pair of V'}. We say that V is the vertex set and E is the edge set of G.
Two vertices « and v are adjacent if (u,v) € E. A path is a sequence of vertices such that two consecutive vertices
are adjacent. A path is represented by (v, vy, 0, ...,0,). The length of a path P is the number of edges in P,
denoted by L(P). We sometimes write the path (v, vy, 02, .., 0¢) @s (vo, P1, Vs, Uity - - -, Uy P2, Uy, . .., U), Where
P, is the path (v,v1,...,v;) and P, is the path (v;,v;q,...,0). It is possible to write a path
(vo, v1, P, v1,0a,...,0p) if L(P)=0. We use ds(u,v), or simply d(u,v) if there is no ambiguity, to denote the dis-
tance between u and v in a graph G, i.e., the length of shortest path joining # and v in G. We use dA(u,v) and
D(u,v) to denote the shorter and the longer distance between u and v on a cycle C of G, respectively. It is pos-
sible that D¢ (u, v) = dc(u, v) if the lengths of the two disjoint paths joining # and v in C are equal. A cycle is a
path of at least three vertices such that the first vertex is the same as the last one. A hamiltonian path is a path
such that its vertices are distinct and span V. A graph G is hamiltonian connected if there exists a hamiltonian
path joining any two vertices of G. A hamiltonian cycle is a cycle such that its vertices are distinct except for the
first vertex and the last vertex and span V. A hamiltonian graph is a graph with a hamiltonian cycle.

For designing a good interconnection network, there are several desired properties we have to consider. The
hamiltonian property is one of the major requirements in designing an interconnection network because the
property is related to the reliability and the performance of a distributed system. A high-reliability network
can be designed by embedding a hamiltonian cycle in it. Many related works have appeared in the literature
[10,12,13,15]. Further attempts at hamiltonian problems led researches into the study of super-hamiltonian
graphs, such as pancyclic graphs and panconnected graphs. A graph G is pancyclic if it contains a cycle of
length / for each [ satisfying 3 < /< |V(G)|. The concept of pancyclic graphs is proposed by Bondy [16]. A
graph G is panconnected if there exists a path of length / joining any two different vertices x and y with
d(x,y) <1< |V(G)| — 1. The concept of panconnected graphs is proposed by Alavi and Williamson [17].
There are some studies concerning panconnectivity and pancyclicity of some interconnection network [18-20].

We propose a new concept called panpositionable hamiltonicity. A hamiltonian graph G is panpositionable if
for any two different vertices x and y of G and for any integer / satisfying d(x,y) < I < |V(G)| — d(x,y), there
exists a hamiltonian cycle C of G such that the relative distance between x and y on C is /; more precisely,
de(x,y)=11if I < L@J or De(x,y)=1if I > @ Given a hamiltonian cycle C, if dAx,y) =1[, we have
Dc(x,y) = |V(G)| — dc(x,y). Therefore, a graph is panpositionable hamiltonian if for any integer / with
d(x,y) <1< &f”, there exists a hamiltonian cycle C of G with dc(x,y) = [. One example, the alternating
group graph is proved to be panpositionable hamiltonian [21]. Similar to the importance of hamiltonicity
for the communication between processors in an interconnection network, panpositionable hamiltonicity
allows more flexible communication in a hamiltonian network. The panpositionable hamiltonian property
inherits the hamiltonian property and advances it further. The concept is interesting and useful in the study
of interconnection networks. In [21], an example was given to show that a panconnected graph is not neces-
sarily panpositionable hamiltonian. Therefore, the panpositionable hamiltonian property is a stronger prop-
erty for an interconnection network.
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In this paper, we study the panpositionable hamiltonicity of the arrangement graph 4, ;. For n — k=1,
Apnn—1 1s isomorphic to the n-dimensional star graph, which is bipartite and clearly is not panpositionable
hamiltonian. Thus, throughout this paper, we only consider the case that n — k > 2. We show that the
arrangement graph is panpositionable hamiltonian for all k > 1 and n — k > 2, and we find that it is closely
related to its panconnected and pancyclic properties. Applying our result, we can show that the arrangement
graph is panconnected and pancyclic. In the following section, we discuss some basic properties of the arrange-
ment graphs. In Section 3, we prove that 4,; and 4,,, are panpositionable hamiltonian if » — k > 2. In Sec-
tion 4, we prove that 4, x is panpositionable hamiltonian and panconnected for allk > 1 andn — k > 2. In
the final section, we present our conclusion and derive some relationship between the panpositionable ham-
iltonicity and the other useful properties for a interconnection network.

2. Some properties of the arrangement graphs

Let n and k be two positive integers with n> k. And, let (n) and (k) denote the sets {1,2,...,n} and
{1,2,...,k}, respectively. Then, the vertex set of the arrangement graph 4,4, V(4,+) = {plp = p\p, - - - p; With
p; € (n) for 1 <i< kandp; # p;ifi # j} and the edge set of 4,,x, E(A4,.x) = {(p,9)|p, ¢ € V(A,.1), p and ¢ dif-
fer in exactly one position}. Fig. 1 illustrates A4.

Let i and j be two positive integers with 1 < i, j < n. And, let V(Affk')) ={plp=p\p-..p; and p, = i}. Itis
the set of all vertices with the jth position being i. For a fixed position j, {V(A&’k'))\l < i < n} forms a partition
of V(A,,). Let AE/,? denote the subgraph of 4,,; induced by V(Aﬁ,’k')) It is easy to see that each A,S’k’) is isomor-
phic to A4,y 4—1. Thus, A4, can be recursively constructed from » copies of 4,,_; ;. Each A,S’k') represents a
subcomponent of A, , and we say that 4, is decomposed into subcomponents according to the jth position.
Let I be a subset of {1,2,...,n}. We use Af,’,f) to denote the subgraph of 4,,; induced by | V(Afl’k’)) Agz) is
called an incomplete arrangement graph if |7] <n. We observe that each Ai’ﬁ can be recursively decomposed

icl

into its smaller subcomponents. For simplicity, if there is no ambiguity, we shall concentrate on the last posi-

i

tion, and we use 4, and 4/, to denote A,Skk’) and 4%, respectively, where k is the last position, and E™ to

denote the set of edges between A’ , and 4/ ,. Let F be a faulty set which may include faulty edges, faulty ver-
tices, or both. The good edge set GE™(F) is the set of edges (u,v) € E" such that {u, v, (u,v)} N F = (). We need
some basic properties of the arrangement graph. The following proposition follows directly from the definition
of the arrangement graphs.

Proposition 1. Let n, k be two positive integers with n, k > 2, and let i and j be two distinct elements of (n).
Suppose that H is one subcomponent Ofqu,k with the (k — 1)th position being h and the kth position being j for

some h € (n) — {j}. Then |E"| = (n(:i)ll)!’ and the number of edges between Afhk and H is (n(:—i)l'), Moreover, if

(u,v) and (u',v") are distinct edges in EY, then {u,v} n{u/,v'y =0, and (u,u') GE(A;A’,C) if and only if
(v,0') € E(A:,k)

42

/\

14 34

v

43 41

Fig. 1. The arrangement graph A, ,.



Y.-H. Teng et al. | Applied Mathematics and Computation 198 (2008) 414-432 417

Let u € V(4,,) for some i € (n). We say that v is a neighbor of u if v is adjacent to u. Let I be a subset of
{1,2,...,n}, and we use N () to denote the set of all nelghbors of u which are in 4 ,. Particularly, we use
N*(u) and N'(u) as an abbreviation of N~ () and N'"}(u), respectively. We call Vertlces in N*(u) the outer
neighbors of u. It follows from the definitions, |[N(u)| = (k — 1)(n — k) and [N*(u)| = (n — k). We say that ver-
tex u is adjacent to subcomponent 4’ wi 1f u has an outer neighbor in A’ . Then, we define the adjacent subcom-
ponent AS(u) of u as{j | u is adjacent to 4/ ). We have the followmg proposition:

Proposition 2. Suppose that k > 2, n —k > 2, and i € (n). Let u and v be two distinct vertices in A’ v

(a) If d(u,v) =1, then |ASw) N AS(w)|=n—k — 1.
(b) If d(u,v) < 2, then AS(u) # AS(v).

Proof. Let u = ujuy...up, v =010y ...0;, and uy = v = i. If d(u,v) =1, we have u; # v, for some s € (k — 1),
and u, = v, for all ¢ # s. Then, AS(u) = (n) — {u1,uz, ..., us,...,u} and AS(v) = (n) — {v1,v2, ..., 0, ..., Uk}
Thus AS(u) NAS(v) = (n) — {ur,uz, ... ug,...,u, v} and |AS(u) NAS(w)|=n—(k+1)=n—k—1. Since
ug # vy, vy € AS(u) but v, & AS(v).

If d(u,v) = 2, there exists a vertex w € V(A;‘k) such that d(u,w) = d(w,v) = 1. Let w = wy, wy, ..., w;. And,
let s’ and ¢’ be two indices such that wy # uy and v, # wy. Clearly, s’ # t' or d(u,v) = 1. Hence wy is not in
{ur,uz, ..., u;} but in {v1,v2,...,0¢}. Thus wy € AS(u) but wy & AS(v). Hence, the statement follows. [

Hsu et al. studied the fault hamiltonicity and fault hamiltonian connectivity of the arrangement graphs in
[13]. Some results are listed as follows.

Theorem 1 [13]. Let n and k be two positive integers with n — k = 2. Then A, is k(n — k) — 2 fault tolerant
hamiltonian and k(n — k) — 3 fault tolerant hamiltonian connected.

The above theorem states that with up to k(n — k) — 2 faulty edges and faulty vertices 4, still has a ham-
iltonian cycle, and with up to k(n — k) — 3 faulty edges and faulty vertices 4, is still hamiltonian connected.

Lemma 1 [13]. Suppose that

. k>=3andn—k =2,

2. tis a fixed position with 1 <t <k,

3. 1C (ny with |1 = 2,

4 FC V(AU BA, ), and

5. A ) — F' is hamiltonian connected for each | € I and |F( )\ <k(n—k) -3

Then, for any x € V(A ) and y € V(A( ) ) with i # j € I, there is a hamiltonian path ofAf,t_}f) — F joining x
and y. '

The following lemma considers the hamiltonian connectivity of the incomplete arrangement graphs 4,,,.
The lemma states that for any two vertices x and y in different subcomponents of the incomplete arrangement
graphs A, ,, there exists a hamiltonian path joining them if n > 5. The result holds even when there is one
faulty vertex or one faulty edge if n = 6.

Lemma 2. Suppose that n = 5, t is a fixed position with 1 <t <2, FC V(A,,5), and I C (n) with |I| = 2

(a) Ifn = 5, then for any x € V( n2 ) andy € V(A ) with i # j € I, there is a hamiltonian path ofAn2 Jjoining
x and y.

(b) Ifn > 6 and |F| < 1, then for any x € V( ) andy € V(A ) with i # j € I, there is a hamiltonian path of
A" — F joining x and y.

Proof. Because of the symmetric property of A4,,,, without loss of generality, we may assume that 1 = 2. By

Proposition 1, |EY|= ”22)],—n—2>3 if =5 and n—2>4 if n>6 for every i,jel, and

(n
{u,v} N/, v'} = 0 if (u,v) and («',v") are distinct edges in E™. Hence the number of good edge |GE™| > 3
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if n>5, or n> 6 with |F|] < 1. We then prove this lemma by induction on |I|. Suppose that |I| =2, and
I=1i,j} for some i, j. Since |GE"”| > 3, there exists an edge (u,v) € GE" such that u # x € V(4,,) and
v#£YyE V(A’ ). By Theorem 1, for each / € 1, A, —Fis hamiltonian connected if |F| < 1. There is a hamil-
tonian path P1 ofd ,—F from xtouanda hamlltoman path P, ofA — F from v to y. Thus (x, Py, u, v, Py, )
forms a hamlltoman path of A’ — F from x to y.

Assume that the statement 1s true for all I’ with 2 < |I'| <|I]. There exists an i’ € I with i’ # i,j. Since
|GE™| = 3, we can ﬁnd an edge (u,v) € GE™ withu € V(4",) and v#y€ V(A’ ,). Then there is a
hamiltonian path P; of A {} — F from x to u and a hamiltonian path P, of A, - F from v to y. Thus
(x, P1,u,v, Py, y) forms a harnlltonldn path of An2 F from x to y. Hence the lemmd follows. O

3. Panpositionable hamiltonicity of A4, ; and A4,,,

We shall prove that the arrangement graph A, is panpositionable hamiltonian for all £ > 1 and
n—k > 2. The basic idea is to study 4,; and A4, first, and then to prove the general case by induction
on k.

Lemma 3. The arrangement graph A, is panconnected and panpositionable hamiltonian for all n = 3.
Proof. Since A, is isomorphic to the complete graph K,,, the lemma follows trivially. O
Lemma 4. The arrangement graph A, is panpositionable hamiltonian for all n > 4.

Proof. Chiang and Chen [22] showed that the 4,,,_, is isomorphic to the n-alternating group graph 4G,,, and
the panpositionable hamiltonian property of AG,, which n > 4, has been shown in [21]. Hence the result holds
for n = 4. Alternatively, we can verify this case, A4, by brute force. Suppose thdt n = 5, and s and 7 are two
distinct vertices of A, ,. Then for each I € {d(s,?),d(s,t) + 1,d(s,t) + 2,. ”2 ‘} we shall find a hamilto-
nian cycle of 4,,, such that the distance between s and ¢ on the cycle is l.

We would like to make a remark here. Throughout the paper, the proof idea of the panpositionable
hamiltonian property of the arrangement graph is essentially similar to Case 1 described below except for
some minor adjustments.

Case 1

Suppose that s and ¢ belong to the same subcomponent 4/ na- See Fig. 2. We assume that 5,7 € V(A4 ,) for
some i€ (n). Since A o Is isomorphic to the complete graph K, ;, we have d(s,t)=1. For each
lp € {1,2,3,...,n— 2}, we can construct a hamiltonian cycle HC; of An2 such that the distance between s
and ¢ on the cycle is /p. Node ¢ has two distinct neighbors on cycle HC,. Let u and v be two neighbors of 7 on
HC,. Let HC (s,LP,u,t,v,RP,s) and Py = (s,LP,u,t). Without loss of generality, let L(Po) = ly. Since
IN*(£)) =n — 2 = 3 for n = 5, we can find a subcomponent A , different from 4, ,, and a vertex ¢ € V(Aﬁfz)
such that (t t) € E" for some h,€ (n)—{i}. By Proposmon 2, d(tu)=1, hence we have
|AS(5)N AS(u))=n—3 =2 for n>=5 Tt means that we can find a subcomponent A{zl.z which
J1 € (n) — {i,h,}, such that there exist two disjoint edges (u,p;) and (z,q;) in E“'. By Proposition I,
(pl q,) € E(A{IZ) Since |[N*(v)]=n—2 >3 for n > 5, we can find a subcomponent Ahz, and a vertex
v e V(Ah ) such that (v,v') € E* for some h, € (n) — {i,h;, j,}. By Lemma 2(a), there exists a hamiltonian
path HP ofA i joining ¢ and v’. Thus (s, Py, t,#,HP,v', v, RP,s) forms a hamiltonian cycle, and for each
lp €{1,2,3,. — 2}, the distance between s and ¢ on the cycle is /.

Now we present an algorithm to expand the path Py = (s, LP, u,t) between s and ¢ to various lengths. The
idea is to expand the path by inserting the vertices of Ale,z into Py. We now describe the details.

If we want to insert p; and ¢ into Py, let Py = (s,LP,u,p,,q;,t). See Fig. 3a for an illustration. Thus we
have L(P;)=1Iy+ 2. We can expand the path P, to a longer path as follows. By Theorem 1, there is a
hamiltonian path HP; from p; to ¢; in 4),. So we can join all the vertices of A . to P, let
P} = (s,LP,u,p,,HPy,q,,t). Hence L(P})=1Ip+n—1. Since 1 </ly<n—2, we have 3 < L( 1) <n and
n < L(P}) < 2n — 3. Therefore, for each /; € {1,2,3,...,2n — 3}, we can construct a path PP, € {Py, P, P;}
from s to ¢ such that the distance between s and ¢ on the path is /.
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Fig. 3. The paths Py, P}, P», and P;.

Using the same idea, we can expand the path HP,. Let u; and ¢, be two adjacent vertices on HP;. That is,
HP, = (p|,LPi,u1,t,RP1,q,). By Propositions 1 and 2, there exist two distinct edges (u;,p,) and (#1,4>) in
E/v> for some j, € (n) — {i,h;, hy,j;} such that (p,,q,) € E(4?)). See Fig. 3b for an illustration. Let
Py = (s,LP,u,py,LPy,u1,py,q,,t1,RP1,q,t). Thus we have L(P,)=1Iy+n+1. By Theorem I, there is a
hamiltonian path HP, from p; to ¢, in 4%,. Let P; = (s,LP,u,p,,LPy,u1,p,,HP>,g,,t,RP1,q,,t). Hence we
have L(P5) = Iy +2n — 2. Since 1 < [p < n—2,wehaven+2 < L(P) <2n—land 2n—1 < L(P3) < 3n—4.
Therefore, for each /; € {1,2,3,...,3n — 4}, we can construct a path PP, € {Py, P, P}, P>,P5} from s to ¢
such that the distance between s and ¢ on the path is /, if n > 5. The maximal value of L, is 3n — 4. If n =5,
then we have 3n — 4 > M = @

We can use the algorithm repeatedly for n > 6. For each 3 < x < |5/, let u,_; and 7, be the two adjacent

vertices on HP,_;. That is, HP,_; = (p,_|, LP,_1, ty_1,t—1,RP+_1,9,_,). By Propositions 1 and 2, there exist
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two distinct edges (uy_1,px) and (fy_1,q,) in BV for some j, € (n) — {i,h, hy, ji,...,j._1} such that
(Pes4x) € E(AY,). Let Py=(s,LP,u,p\,LP\, ui,...,us_1,py, Gy te—1,-..,11,RP1,q,t). Thus we have
LP)=1lp+(x—1)(n-1) + 2. By Theorem 1, there is a hamiltonian path HP, from p, to ¢, in 4”,. Let
P: = {(s,LP,u,p;,LPy,uy,...,uy —1,p.,HP g, t_1,...,t1,RP1,q,,t). Hence we have L(P;) = lp+
(x—1)(n— l)+n—1 Since 1 lh<n—2, we have (x—1)(n—1)+3 < L(P,) < (x—1)(n—1)+n and
x—1Dm—-1)+n<LP;) <(x—1)(n—1)+2n—3. Therefore, for each I, € {1,2,3,...,(x—1)(n— 1)+
2n — 3}, we can construct a path PP, € {Py, P\, P}, ..., Py, P} from s to ¢ such that the dlstance between s and
¢t on the path is /. if n > 6. The maximal value of Leis (5] =1)(mn—=1)+2n—3, and (|5] —1)(n—1)+
2n—3 = W = @ To construct a hamiltonian cycle, we consider the following two subcases.

Subcase 1.1: Consider the case PP, € {Py, P},...,P:} for each 1 <x < [5]. See Fig. 2a for an illustration.
By Lemma 2(a), there exists a hamiltonian path HP of A )~tr-+7 oining ¢ and o' which ¢ € V(Ah‘ ) and
v e V(Aﬁfz). Thus (s, PP, ¢, ,HP,v', v, RP,s) forms a hamlltoman cycle, and for each / € {1,2,3,.. ‘V 5 ‘}
the distance between s and ¢ on the cycle is /.

Subcase 1.2: Consider the case PP, € {Pi,...,P,} for each 1 <x < [5]. See Fig. 2b for an illustration.
Assume that Hi,H, € (n) — {i, 1, ... J} and H1 NH,=0. Let h,,h e Hi and h,, h, € Hy. Let F C V(A" )
and F' = {p,,q,}. Let y, z be two d1stmct vertices in A" — F.Since [N*(y)| = [N*(2)| =n—-2 = ["1 forn =5,
there exist two distinct edges (v,)') € E/~™ and (z, z) € EV" such that y' #1¢ € V(4, AP ,)and 2 # ' € V(Aﬁz)
respectively. A’) — F is isomorphic to K,,_3, hence there is a hamiltonian path HP from ytozin AJ *, —F. By
Theorem 1 and Lemma 2(a), there exist a hamiltonian path DP1 from ¢’ to y' in A yand a hamlltoman path
DP, from v’ to z/ in AH2 Thus (s, PPy, t,t',DPy,y,y,HP,z,Z, DP5 v, v, RP, s) forms a hamiltonian cycle, and

for each / € {1,2,3,. ‘V 5 ‘} the distance between s and ¢ on the cycle is /.

Case 2

Suppose that s and 7 belong to different subcomponents of 4,,,. We assume that s € V' (4',,) and ¢ € V(Aﬁ’z)
for i # h, € (n). Each subcomponent of A4, is isomorphic to the complete graph K,,_;, and |E""| > 0, we have
d(s,t) =1, d(s,t) =2 or d(s,t) = 3. In the case of d(s,7) = 1, suppose that s = 5157 ...s,_1iand t =11ty ... t,_1hy
are adjacent, and s, = 7, for each 1 < x <k — 1. We may decompose 4,,, into subcomponents according to
the first position such that s and 7 belong to the same subcomponent. Hence the case for d(s, ) = 1 is the same
as Case 1. In the following, we discuss the other two cases.

Subcase 2.1: Suppose that d(s, t) = 2. See Fig. 4 for an illustration. Without loss of generality, let (z”, ) be an
edge in E" such that ¢ € V(4 ,) and ¢ € N*(¢). Since 4’ , is isomorphic to complete graph K, _;, we have
d(s,t')y=1. For each Iy € {1,2,3,...,n — 2}, we can construct a hamiltonian cycle HC; of 4’ , such that the

A

1,2

Fig. 4. Lemma 4, Case 2.1.
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distance between s and ¢ on the cycle is /. Let u and v be two neighbors of # on HC; and
HC; = (s,LP,u,?,v,RP,s). Let Py= (s,LP,u,?,t). Without loss of generality, we may assume that

By Proposition 2, d(#',u) = 1, so we have |AS(¢t') N AS(u)| =n — 3 > 2if n > 5. This means that we can find
an index j; € (n) — {i, 1}, such that there exist two disjoint edges (u, p;) and (7', ¢) in E"/1. By Proposition 1,
(p1,q1) € E(Aillz) Since [N*(v)]=n—2 = 3if n = 5, we can find a vertex v/ € V(Ah ) such that (v,v') € EM
for some h, € (n) — {i, h, j, }. If we want to join p; and ¢, to P, let P = (s, LP,u p17q17t,t> Then we have
L(Py)=1ly+3. By Theorem 1, there is a hamiltonian path HP; from p; to ¢; in A,’;z Let
P} = (s,LP,u,p;,HPy,q,,t,t). Hence we have L(P]) = lp +n. Since 1 < /y<n—2,wehave4 < L(P;)<n+1
and n+ 1 < L(P}) < 2n — 2. Therefore, for each /; € {2,3,4,...,2n — 2}, we can construct a path PP; €
{Py,P1,P7} from s to ¢ such that the distance between s and ¢ on the path is /;.

Recursively, for each 2 <x < 5], let u,_; and f,_; be two adjacent vertices on HP,_;. That is,
HP, | = (p,_y,LP«_1,ux_1,te—1,RP<_1,q,_;). By Propositions 1 and 2, there exist two distinct edges (u,_1,p,)
and  (t,-1,q,) in  Esc for some j, € (n) —{i,hi,hyjy,- )1} And,  (p,q,) € E(4),).  Let
P, = (s,LP,u,p;,LP\,uy, ..., Uy 1,De,qy> tx1,---,t1,RP1,qy,t1,t). Thus we have L(P,) = lp + (x — 1)(n — 1)+
3. By Theorem 1, there is a hamiltonian path HP, from p, to ¢, in A’* Let P} = (s,LP,u,p;,LPy, u1,... uc1,
P HPy gy, i1, ..., 11,RP1, ¢y, 1, t). Hence we have L(P}) = Iy + (x —1)(n—1)+n. Since 1 <ly<n—2, we
have (x— 1)(n— D4+4<LP)<x—1)n—-1)4n+1 and x—-1Dn—-1)+n+1<LP)<(x—1)
(n—1) 4 2n — 2. Therefore, for each [, € {2,3,4,...,(x—1)(n—1)+2n —2}, we can construct a path
PP, € {Py,P1,P;},..., Py, P} from s to ¢ such that the dlstance between s and ¢ on the path is [, if n > 5. The
maximal value of I is (|5] —1)(n —1) +2n—2,and (|5 —1)(n - 1) +2n -2 > w = % To construct
a hamiltonian cycle, we consider the following two subcases:

Subcase 2.1.1: Consider the case PP, € {Py,P],...,P;} for each 1 <x < [5]. See F1g 4a for an illustration.
By Lemma 2(a), there exists a hamiltonian path HP of A )] J01n1ng t and v'. Thus (s, PP,,t,t,HP,

v',v,RP, s) forms a hamiltonian cycle, and for each / € {2, 3 4 u} the distance between s and ¢ on the
cycle is /.
Subcase 2.1.2: Consider the case PP, € {Py,...,P,} for each 1 <x < [4]. See Fig. 4b for an illustration.

Assume that Hy,H, C (n) — {i,j,,...,Jj.} and H1 ﬁHz 0. Let ht,h eHl and h,,h, € Hy. Let F C V(A’* )
and F= {p,,q.}. Let y and z be two distinct vertices in A’* — F. Since |N*( ) =IN*(z )| =n—-22= 4] for
n > 5, there exist two distinct edges (v,)) € E/o and (z,Z) € E*" such that y #¢t¢ V(Ah ) and
Z#V € V(Aﬁ 2) respectively. Since A" —Fis 1som0rph1c to K,_3, there is a hamiltonian path HP from y
to z in Aj‘ — F. By Theorem 1 and Lemma 2(a) there exist a hamiltonian path DP1 from 7 to y’ in 4 é and a
hamlltoman path DP, from v’ to z' in A’ Thus (s, PPy,t,t,DP1,y ,y,HP,z,Z/, DP,,v', v, RP, s) forms a
hamiltonian cycle, and for each / € {2,3,4,. | ( I} the distance between s and ¢ on the cycle is /.

Subcase 2.2: Suppose that d(s,7) =3 and n > 6. See Fig. 5 for an illustration. We shall discuss the subcase
d(s,t) =3 and n =5 later in Subcase 2.3. Let (¢, #’) be an edge in E* such that 7 € V(Ajlz) " e V(AZ’z)
" € N(¢), and t” € N*(¢). Since A n2 1s isomorphic to complete graph K, ;, we have d(s, 'y =1. For each
lp € {1,2,3,. — 2}, we can construct a hamiltonian cycle HC; of 4’ n2 such that the distance between s and
t' on the cycle is lo Suppose that u and v are two distinct vertices in V/ (A ,), and u and v are two neighbors of ¢’
on HC,. Let HC; = (s, LP,u, v, RP,s). Let Py = (s, LP,u,t ", 1). Hence, without loss of generality, we have

By Proposition 2, d(t',u) = 1, so we have |4S(¢') N AS(u)] =n — 3 = 2 if n > 6. It means that we can find
an index jj € (n) — {i,h,}, such that there exist two disjoint edges (u, p;) and (¢, ¢;) in E*/1. By Proposition 1,
(p1,q1) € E(4),). Since |N*(v)] =n—2 > 3 if n > 5, we can find a vertex v € V(Ah ) such that (v,0') € EM
for some &, € (n) — {i, h, j, }. If we want to join p; and ¢, to Py, let Py = (s,LP,u,p,,q,,¢,t",t). Thus we have
L(P)=1Iy+ 4. By Theorem 1, there is a hamiltonian path HP; from p; to ¢; in A’1 Let P} = (s,LP,
u,p;, HPy,q,,¢,¢",t). Hence we have L(P}) = lo+n+ 1. Since 1 < /y <n — 2, we have 5 < L(Pl) <n+2and
n+2 < L(P}) <2n—1. Therefore, for each [; € {3,4,5,...,2n— 1}, we can construct a path PP; €
{Py, P1,P7} from s to ¢ such that the distance between s and t on the path is /;.

Similarly, for each 2 <x < 5], let u,_; and 7,_; be the two adjacent vertices on HP, ;. That is,
HP, = (p,_|,LPs_1,uy_1,t—1,RPy_1,q,_,). By Propositions 1 and 2, there exist two distinct edges (u,_1,p,)
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Fig. 5. Lemma 4, Case 2.2.

and (t,_, q,) in E1/x for some j,. € (n) — {i,h, hy, jys---,je1}- And, (p,,q,) € E(AJ‘ ). Let P, = (s,LP, u,
P, LPuy, .U 1,pc, Gy bty 11, RPy gy, E 87 t). Thus we have L(Py) =1ly+ (xf )(n—1)+4. By
Lemma 1, there is a hamiltonian path HP, from p, to ¢, in 4%,. Let P} = (s,LP,u,p,,LPi,u1,... ,ux_1,p;,
HP,,q,,t:—1,...,t1,RP1,q,,¢,¢",¢). Hence we have L(P:) =1y + (x—1)(n—1)+n+ 1. Since 1 <lp<n—2,
we have (x—1)(n—1)+5<LP)<(x—1)n—1)+n+2 and x—1)n—-1)+n+2<LP) < (x—1)
(n—1) 4 2n — 1. Therefore, for each I, € {3,4,5,...,(x—1)(n—1)+2n— 1}, we can construct a path
PP, € {Py,Py,P},..., P, P} from s to ¢ such that the dlstance between s and ¢ on the path is l if n = 5. The
maximal value of /. is (|4] —1)(n—1)+2n—1,and (4] - 1)(n—1)+2n—1 > WZ”)‘ =1l 5 . To construct
a hamiltonian cycle, we consider the following two subcases:

Subcase 2.2.1: Consider the case PP, € {Po, P7,...,P;} for each 1 < x < [5]. See Fig. 5a for an illustration.
Let F, C V(4™,) and F,= {¢'}. By Lemma 2(b) there exists a hamlltonlan path HP of A<">7{”1 W,
joining ¢ and v Thus (s, PP,,¢,¢",t, HP,v/,v,RP,s) forms a hamiltonian cycle, and for each

1€{3,4,5,. |} the distance between s and t on the cycle is /.
-3 o
51 21
! 31
oA i
45 15 52 12
35 25 42 32
= Y o
54 14 583 13
34 24 43 23

Fig. 6. The arrangement graph 4.
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Subcase 2.2.2: Consider the case PP, € {P1,...,P,} for each 1 <x < [5]. See Fig. 5b for an illustration.
Assume that Hy,H> € (n) — {i,j;,...,j,} and H; ﬂHzf(Z) Let &, hy, € Hy and hy, h. € H,. LetF C v (4h,)
and F;= {p., q,}. Let y and z be two distinct vertices in A’* — F;. Since |[N*(y)| = |N*( )| =n—2 > [4] for
n>= 5 there exist two distinct edges (y,)) € /v and (z z) € F/+" such that y #1,¢" € V(Aﬁ ,) and

Z £V € V(Az 2) respectively. AJ ‘, — F; is isomorphic to K,,_3, hence there is a hamiltonian path HP from yto
zin A’X — F;. By Theorem 1 and Lemma 2(b) there exist a hamiltonian path DP; from ¢ to y in A — F,and
a hamlltoman path DP, from v’ to z’ in A 3. Thus <s PPt t" t,DP\,y,y,HP,z,2' ,DP>,V, v, RP. s) forms a
hamiltonian cycle, and for each / € {3,4, 5 Tl} the distance between s and ¢ on the cycle is /.

Subcase 2.3: Suppose that d(s,?) =3 dnd n=>5. Let s and ¢ be two distinct vertices of 45, in Fig. 6. By the
vertex and edge symmetric properties, we may assume that s = 12 and ¢ = 21 for d(s, t) = 3. The corresponding
hamiltonian cycle HC in A5, are listed below.

duc(s, 1) The cycle HC

(21,23,13,12, 15,25,35,45,43, 53, 54, 14,24, 34,32, 42,52, 51,41, 31,21)
(21,31,32,42,12,52,53,13,23,43,41,51, 54, 14,24, 34, 35,45, 15,25, 21)
(21,31,32,42,52,12,13,53,23,43,41,51, 54, 14,24, 34, 35,45, 15,25, 21)
(21,31,41,42,32,52,12,13,23,43, 53,51, 54, 14,24, 34, 35,45, 15,25, 21)
( )
( )
( )
{ )

21,31,41,51,52,42,32,12,13,23,43,53, 54, 14, 24, 34, 35, 45, 15, 25, 21
21,31,41,51,53,52,42,32,12, 13,43, 23, 24, 14, 54,34, 35,45, 15,25, 21
21,31,41,51,53,43,42,32, 52,12, 13,23, 24, 14, 54,34, 35,45, 15,25, 21
21,31,41,51,53,13,43,42,32,52, 12, 15,45, 35, 34, 54, 14, 24,23, 25, 21

— O 00 3N L W

Hence the lemma follows. [

4. Panpositionable hamiltonicity and panconnectivity of A, x

In this section, we show that the arrangement graph 4,, ;. is panpositionable hamiltonian for n — k > 2 and
k = 3. We need some known results on A4, ;. It is known that the 4,,,, , is isomorphic to the n-alternating
group graph AG, [22], and 4G, is known to be panpositionable hamiltonian for all # > 3 in [21]. Therefore,
we have the following result.

Lemma 5. A, is panpositionable hamiltonian if k = 1 and n — k = 2.

Day and Tripathi [2] presented a shortest path routing algorithm for the arrangement graph, and gave some
characterizations of the minimum length path between two arbitrary vertices in 4, ;. We can derive the fol-
lowing lemma directly from their routing algorithm.

Lemma 6. Let u = uj,uy, ..., ur and v =v1,02,...,0; be two vertices in A, . There exists a way of decomposing
Ay into subcomponents such that one of the following three cases holds.

(a) If u, = v, = i for some position x € (k) and i € (n), we decompose A, . into vubcomponentv according to the
xth position. Then u and v belong to the same subcomponent and u,v € V(A ) Moreover, a shortest path
from u to v in A,y is completely contained in AM

®) If u, #v. for every xe€ (k) and {uy,uy,...,u} #{v1,00,...,0:}, there exists a position
uy, & {v1,02,...,0:} for some y € (k), say the yth posmon We decompose A,k lnlo subcomponents accord—
ing to the yth posmon then u and v belong to different subcomponents, say u € V(An k>) andv € V( i ) for
some i ;é ] E (n). Moreover, a minimum length path connecttng u and v has the form (u, P,u',v), in which
TS V(A ", and P is a path completely contained in A",

(¢) If u, # v, for every x € (k) and {u,us,...,u} = {vy, Uz, ..., U}, decomposing A, into subcomponents
accordzng to any position, say yth position, y € (k), then u and v belong to different subcomponents, say
uev(d,))) and v € V( L ) for some i # j€ (n ) Moreover a minimum length path connecting u and v
has theform (u, P,u',v' v) in whichur € V(Ask' ),V € V(A ", and P is a path completely contained znAnA .
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Example. Suppose that u and v are two vertices in A;s. If u = 12345 and v = 13452, then u,v € V(Agf;l)). A
minimum length path connecting u and v is (12345, 12645, 13645,13642,13652, 13452) which is completely

contained in A75 , and case (a) holds. If u= 12345 and v =26453, then u € V(A( )and v € V(A( >). A
minimum length path connecting « and v is (12345 12346, 12356, 12456 12453, 16453 ,26453), and case (b)
holds. If u = 12345 and v = 23451, then u € V(Ag )and v € V(A( ). A minimum length path connecting u
and v is (12345,12346,12356, 12456, 13456,23456,23451), and case (c) holds.

We need the following lemma later in our main theorem. One may skip the proof temporarily, and come
back to it later.

Lemma 7. Suppose that

1.k=23,n—k=>=2,

2. 1C (n) with |I| =2,

3. F CV(4,) with |[F| <1, and

4. x, € V(A),) —F and x, € V(42,) — F with iy # i, € L

Then, for any pair of distinct vertices {y;,y,} in V(A,Ilﬁk) — F, there exist two disjoint paths, one joining x| and
yifor some i € {1,2}, and the other joining x, and y; with i # j, such that these two paths span all the vertices in
A, —F.

Proof. Let i, i, ..., i, be |I] distinct indices of (n). We prove this lemma by finding two disjoint paths P; and
P> in Ank F such that P, joins x; and y;, and P, joins x, and y; with i # j. Moreover, P, and P, span all the
vertices in A’ — F. According to the location of y; and y,, we have the following cases:

Case 1

Suppose that y; and y, are located in different subcomponents.

Subcase 1.1: Suppose that x;, x,, y; and y; are located in four different subcomponents. y; € V(Ajj ) and
Y, € V(A;“ ) with |I] > 4. See Fig. 7a for an illustration. By Lemma 1, we can find a hamlltoman path P, from
X1 to y;in A4} ”’13} — F. Similarly, we can find a hamiltonian path P, from x; to y; in A {” 5} _ F Therefore, P,
and P, are two disjoint paths spanning all the vertices in An w—F.

Subcase 1.2: Suppose that one of y;, y, and one of x|, x, are located in the same subcomponent. Without
loss of generality, we may assume that x; and y; are located in the same subcomponent, and x, and y; are
located in different subcomponents. y; € V(A;‘k) and y; € V(A;3 ) with |7] > 3. See Fig. 7b for an illustration.
By Theorem 1, since 4,), — F is hamiltonian connected, we can find a hamlltonlan path P from x; to y; in
A;lk — F. By Lemmd 1, we can find a hamiltonian path P, from x; to y;in A { b F. Therefore, P, and P, are
two disjoint paths spanning all the vertices in 4, — F.

Subcase 1.3: Suppose that x; and y; are located in the same subcomponent for some i € {1,2}, and x, and y;
are located in the same subcomponent with i # j. y; € V(A;lk) and y; € V(A;’k) with |I] = 2. See Fig. 7c for an
illustration.Without loss of generality, we may assume that i = 1 and j = 2. By Theorem 1, since A" —Fis
hamiltonian connected, we can find a hamiltonian pdth Pl from y1 to xp in A" —F. If |I| > 3 since
|N*(y2)| > 2, we can find an edge (1,,),) € £V such that y% ) forsomejel— {11,12} By Lemma 1, we
can find a hamiltonian path P, from )} to x in Ank {yz} UF Let Py = (y5,05, Py, x2). If |I] =2, by
Theorem 1, there is a hamlltoman path P, from y, to b, in An y — F.Let Py = (v, Py, x2). Therefore, Py and P,
are two disjoint paths spanning all the vertices in AI —F.

Case 2

Suppose that y; and y; are located in the same subcomponent.

Subcase 2.1: Suppose that y,,y, € V(4),,) or y;,y, € V(4,,) with [I] >2. See Fig. 7d for an
illustration.Without loss of generality, we consider the former case and assume that i=1 and j=2. By
Theorem 1, 4", — ({»,} UF) is hamiltonian connected, hence we can find a hamiltonian path P; from y, to x,

in Af;k — {»}UF.If || = 3, since |[N*(y2)| > 2, we can find an edge (3,,)5) € E"Y such that ) € V(A{q ) for

some j € I — {i1,i}. By Lemma 1, we can find a hamiltonian path P) from y, to x; in AI O _Foar |7 =2,
there exists an edge (v,,,) € E"" such that y) € V(47 ) By Theorem 1, there is a hamﬂtoman path P from
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Fig. 7. Nlustrations for Lemma 7. Notice that |F| < | in each 4.

V5 to x5 in Aif’k — F. Let Py = (y,,)}, Py, x2). Therefore, P, and P, are two disjoint paths spanning all the
vertices in 4, — F. ‘

Subcase 2.2: Suppose that y;,y, € V(4,),). Without loss of generality, we consider the following two
subcases:
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Subcase 2.2.1: Suppose that there exists some i; € AS(yy) for i€ {1,2} with |I] > 3.Without loss of
generality, we may assume that i = 1. See Fig. 7e for an illustration. Since x; € 4S5(y;), we can find an edge
(yl,yl) € E" such that y) € V(4]!,) and x; # »|. By Theorem 1, we can find a hamiltonian path P} from y} to
X1 in Ank F. Let P, = <yl,y1,P1,x1> Let ), #y € V(Ank) By Theorem 1, since 47, — {yl}uF is
hamiltonian connected, we can find a hamiltonian path P4 from y, to y4 in Aﬁ; i — D PUF.If |1 > 4, since
IN*(3%)| > 2, we can find an edge (),,4) € E®Y such that y% ev( A{qk ) for some j € I — {i,i»,i3}. By Lemma
1, we can ﬁnd a hamiltonian path P} fromy to x, in An A RSO 1} 1] = 3, there exists an edge (Vh,)5) € EB®
such that 1 € V(42,).By Theorem 1, there is a hamiltonian path P, from y; to x, in A” —F. Let

= (1, Py, )b, yz,Pz,x2> Therefore, P; and P, are two disjoint paths spanning all the vertices in AI —F.

Subcase 2.2.2: Suppose that {i1, i} ({AS(y;) UAS(y,)} = 0 with |1] > 4. See Fig. 7(f) for an 111ustrat10n
Since |N*(y1)| > 2, we can find an edge (y;,)]) € E"Y' such that )| € V(A;‘k) for some j; € I — {i1,i2,i3}. By
Lemma 1, we can find a hamiltonian path P| from )| to x; in A{”"} F. Let Py = (y,)},P},x1). Let
y2 € V(Aj;k) and ), € N(y,). By Proposition 2, we have 4S(y,) # AS(yz) By Theorem 1, since 47, — {» } UF
is hamiltonian connected, we can find a hamiltonian path P from y2to ), in An3 . — M PUF.If |1 = 5, since
IN*(34)| > 2, we can find an edge (35,)5) € E®/> such that W € V(Aflk) for some j, € I — {i1,i»,i3,/,}. By
Lemma 1, we can find a hamiltonian path P from y% to x, in 4}, twisal _p g 1| =4, since [N*(34)| > 2, we

can find an edge (v4,)5) € E®" such that )} € V(A,f’k). Since A,; — F is hamiltonian connected, there is a
/

hamiltonian path P} from )} to x, in A — F. Let P, = (y,, P5,)5,)5, P5,x2). Therefore, P, and P, are two
disjoint paths spanning all the vertices in An_k —F.
Thus the lemma follows. [

We now prove our main result.

Theorem 2. The arrangement graph A, . is panpositionable hamiltonian if k = 1 and n — k = 2.

Proof. By Lemma 5, 4, is panpositionable hamiltonian if k > 1 and n — k = 2. Hence we consider the case
that n — k> 2 in our proof. We prove this theorem by induction on k. By Lemma 3, 4,,; is panpositionable
hamiltonian for all#n > 3. By Lemma 4, 4,, ; is panpositionable hamiltonian for all n > 4. Suppose that the result
holds for A, for some k > 3 and for all n — (k — 1) > 2. Consider A4, for n — k> 2, we observe that 4,
can be recursively constructed from n copies of 4,1 41, and each 4, 4 is panpositionable hamiltonian by
the inductive hypothesis, since (n — 1) — (k —1)>2. Let s and ¢ be two distinct vertices of A4, ;. For each
1€ {d(s,t),d(s,t) + 1,d(s,1) + 2,..., 4 > P40l ' wwe shall find a hamiltonian cycle of A, « such that the distance
between s and ¢ on the cycle is l. The basm idea of our construction is similar to that presented in Lemma 4.

Case 1

Suppose that s and ¢ belong to the same subcomponent A’ & See Fig. 8 for an illustration. We assume that
s,t € V(4,,) for some i€ (n). Since A, is isomorphic to At k-1, by the inductive hypothesis, for each
lo € {d(s,t),d(s,t) + 1,d(s,t) +2,. |V(Aln #)| —d(s,1)}, we can construct a hamiltonian cycle HC; of 4}, ,
such that the distance between s and t on the cycle is /. Let u and v be the two neighbors of # on HC;. Let
HC; = (s,LP,u,t,v,RP,s), and let Py = (s, LP, u,t). Without loss of generality, let L(Py) = /. By Proposition
2, d(t,u) =1, we have |4S(1) N AS(u)] =n — k — 1> 1if n — k> 2. Tt means that we can find a subcomponent
AJl which j; € (n) — {i}, such that there exist two disjoint edges (u, p;) and (¢, ¢;) in E/'. By Proposition 1,
(pl q,) € E(A{jk) Since |[N*(t)] =n — k> 2, we can find a subcomponentAnk different from 4’ , and 4/ i and a
vertex # € V(Asz) such that (1,¢) € E*" for some h, € (n) — {i,j;}. By Proposition 2, d(t,v) <2 hence
AS(t) D {j1, b} and AS(f) # AS(v), and |N*(v)| =n — k> 2, we can find another subcomponent Ank, and a
vertex v/ € V(4™,) such that (v, v7) € E"" for some h, € (n) — {i,j,h,}. By Lemma 1, there exists a hamiltonian
path HP of Ai’\’,ﬁf{i} joining ¢ and v’. Thus (s, Py, t,#,HP, v/, v, RP,s) forms a hamiltonian cycle, and for each
lo € {d(s,t),d(s,t) + 1,d(s,t) + 2,...,|V(4,,)| — d(s,t)}, the distance between s and 7 on the cycle is /.

Now we present an algorithm called st-expansion to expand the path P, between s and ¢ to various lengths.

We describe the details as follows. A
We can insert one subcomponent of 4”! ai Into Po as follows. See Fig. 9a for an illustration. Because P and ¢,

are adjacent, and A4,,_; . is edge symmetric, we may regard them as in the same subcomponent of An o say C.



Y.-H. Teng et al. | Applied Mathematics and Computation 198 (2008) 414-432 427

Fig. 8. Theorem 2, Case 1.

C is isomorphic to A4, _54_>. By Theorem 1, there is a hamiltonian path HP; of C joining p; and ¢; with
L(HP,) = |V(4y,—24—2)| — 1. We can insert more than one subcomponent of A{;k‘into Py as following. See
Fig. 9b for an illustration. We regard p; and ¢, as in different subcomponents of 4/,. By Lemma 1, there is a
hamiltonian path HP; joining p; and ¢, with L(HP;) =m|V(A4, > x_»)|—1, where m is the number of
subcomponents of 47!, we wanted to insert. Thus we can construct a path HP; between p; and ¢; such that
L(HP)) = 11|V(A,,,2,k;2)| — 1 for each integer I} with 1 < I <n — 1. Let Py = (s, LP,u,p;, HP,q;,1). Thus we

have L(P1) =1lo+ 1|V (dy 25 2)| = lo + 23 Since d(s,2) < I < |V(4l,)] — d(s,7), we have 403ty

(n—k)!
d(s,t) <L(Py) <R 20— d(s,1). For each 1<I<n—1, U2ty il q(s g > Ldty
d(s,t) if n = 5. Therefore, for each /) € {d(s,t),d(s,t) + 1,d(s,t) +2,.. .,2<<n":kl))!! —d(s,t)}, we can construct

a path P; from s to ¢ such that the distance between s and ¢ on the path is /;.
Similar as above, we can expand the path between s and  more. For each 2 < x < (5], let u,_ and 7,_; be
two adjacent vertices on HP, ;, where HP, ; is a hamiltonian path of 4’' joining p, | and ¢, ;. By

Fig. 9. st-Expansion.
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Propositions 1 and 2, there exist two distinct edges (u,_1, py) and (¢,_1, ¢,) in E/~1Yx for some j, € (n)—
{i,hs,hy,jy, ... j,_1} such that (p,,q,) € E(Aj‘ ). See Fig. 9c for an illustration. We can insert one
subcomponent of A"k into P, as follows. Because P~ and g, are adjacent, and 4,_; ,_; is edge symmetric,
we may regard them as in the same subcomponent of An 4w say C. Cis isomorphic to 4,,_5 x_>. By Theorem 1,
there is a hamiltonian path HP, of C joining p, and ¢, with L(HP,) = |V(A,-2x—>)| — 1. We can insert more
than one subcomponent of 4’ i Into Po as follows. We regard p, and ¢, as in different subcomponents of A,
By Lemma 1, there is a hamiltonian path HP, joining p, and ¢, with L(HP,) = m|V (4,-24-2)| — 1, where m 1s
the number of subcomponents of Aj . we wanted to insert. Thus we can construct a path HP,. between p, and
g such that LHP,) = I | V(4,24 2)| — 1 for each integer I, with | < I, <n— 1. Let Py = (s,LP,u,p;,...,p,,
HP,.q.,...,q1, > Thus we have L(Py) = lo + (x — D|V(An-141)| + LV (Ay2s2)| = o + "(}1{“,1)!” + Bt
Since d(s, z) < V() ) = d(s, 1), we have S0 BU2E (s, 1) < L(Py) < B Tl d(s, ).
Foreach 1 < I, <n — 1, L 2)

= '+x(”:]j))!! —d(s,t) > [‘fq':j,)’ 4 &= 1)("> Dty d(s,t)if n = 5. Therefore, for each
I, €{d(s,t), (s, 1)+ 1,d(s, 1) +2,... ftan)Uud) d(s,t)}, we can construct a path P, from s to ¢ such that the

(n ( (
. (n—k)! ) . . . .
distance between s and ¢ on the path is /, by using st-expansion. Notice that the maximal value of /, is

W = k)., and |V(é”"’)‘ = 2<n’fk)!. Hence for any integer / with d(s,t) <

I < M, we can construct a path joining s and 7 with the length of the path being /. We will use sz-expansion
for the remaining cases of the proof.

To complete the construction of a hamlltoman cycle, we consider the followmg two subcases:

Subcase 1.1: All the vertices of A4, U e “} are on the path P, for some 1 <x< LzJ See Fig. 8a for an
illustration. By Lemma 1, there is a hamlltonlan path HP of A > Wi} joining ¢ and v’ in which # € V(Aﬁ’k)
and v/ € V(Aﬁ‘k) Thus (s, P, t, ¢/, HP, v/, v, RP,s) forms a hamlltoman cycle, and for each / € {d(s,t),d(s,t)+
L,d(s,t) +2,. ‘V(A”k ‘} the dlstance between s and ¢ on the cycle is /.

Subcase 1. 2 Not all the vertices of 4 """”‘} are on the path P, for some 1 < x < [5]. See Fig. 8b for an
illustration. Then we can find two adjacent vertices y and z in 47 w Which are not on the path P.. Let F C V(P,).
By Propositions 1 and 2, there exist two distinct edges (y y) € Eif and (z,7') € /" such that
XS V(Ah’) and Z £V € V(Ah ), respectively. If A/‘ — F is isomorphic to A4, 5, », by Theorem 1,
there is a hamiltonian path HP from y to z in A’ L —F.If A’ * — F contains more than one subcomponent of
Aijk, by Lemma 1, there is a hamiltonian path HP from ytoz 1n A’ * — F. By Lemma 7, there exist two disjoint
paths DP; and DP,, such that DP; joins ¢’ and y’, and DP, j JOIHS v and z'. Moreover, the two paths span all of
the vertices in A< =i Thys (s, Py, t,t',DP,y,y,HP,z,Z/ ., DP,, V', v, RP, s) forms a hamiltonian cycle, and

for each / € {d(s, 1),d(s,t) +1,d(s,t) +2,... ,M}, the distance between s and ¢ on the cycle is /.

Case 2 _

Suppose that s and ¢ belong to different subcomponents of A, . We assume that s € V (4, ,) and ¢ € V' (4/,,)
for any i # j € (n). By Lemma 6, there exists a minimum length path connecting s and ¢ with the form
(s, MP,u1,1) or (s, MP,¢", t', 1), where MP is a path in 4, " € V(4,,), and /' € V(4; ;). Hence we have the
following two subcases:

Subcase 2.1: The minimum length path connecting s and ¢ has the form (s, MP,¢",t). Then
d(s,t) = d(s,?") + 1. See Fig. 10a for an illustration. Since 4’ .+ 18 isomorphic to 4,_;x_1, by the inductive
hypothesis, for each Iy € {d(s,?"),d(s,¢") + 1,d(s,¢") + 2,. |V(Aﬁ1 | —d(s, ")}, we can construct a ham-
iltonian cycle HC; of 4, such that the distance between s and t" on the cycle is /y. Let u and v be the two
neighbors of /" on HC,. Tet HC; = (s, LP,u,t",v,RP,s), and let Py = (s, LP,u, t/1,t). Without loss of generality,
let L(Py) = Iy + 1. By Proposition 2, d(¢",u) = 1, so we have [4S(¢") N AS(u)| =n —k — 1> 1ifn — k> 2. This
means that we can find a subcomponent 4’ i i which j; € (n) — {i,/}, such that there exist two disjoint edges
(u, py) and (7", qy) in E™1. By Proposition 1, (p,,q,) € E(A’l ). By Proposition 2, d(1”, v) < 2 hence AS(¢") 2
{J, jl} and AS(?") # AS(v), and |N*(v)] —n—k>2 we can find a subcomponent A" . and a ver-
tex v’ € V(4" k? such that (v,v') € E*" for some h, € (n) — {i,j,j;}. By Lemma 1, there exists a hamiltonian
path HP of 4, ) ) joining ¢ and v’. Thus (s, Py, ¢, HP,v',v,RP,s) forms a hamlltonlan cycle, and for each
Iy € {d(s,1), (s )+ 1,d(s,0) +2,..., V(A )| —d(s,t) + 1} the distance between s and ¢ on the cycle is /.

Similar to Case 1, by using st ’—expahsion for any integer // with d(s,¢") < 1" < ‘V(é”‘)l, we can
construct a path joining s and ¢/ with the length of the path being /. Since d(s,¢") = d(s,t) — 1, for any

—d(s,t), which is greater than 3
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Fig. 10. Theorem 2, Subcase 2.1 and Subcase 2.2.

integer / with d(s,t) << W(éi""’)‘, we can construct a path joining s and ¢ with the length of the path
being /.

To complete the construction of a hamiltonian cycle, the proof is the same as that given in Subcase 1.1 and
Subcase 1.2 by replacing vertices ¢ and ¢ in Case 1 with vertices ¢/ and ¢ in this case, respectively.

Subcase 2.2: The minimum length path connecting s and ¢ has the form (s, MP,¢" ¢ ,t). Then
d(s,t) = d(s,") + 2. See Fig. 10b for an illustration. Since 4’ ok 1 isomorphic to A, 141, by the inductive
hypothesis, for each Iy € {d(s,?"),d(s,?") + 1,d(s,t") + 2,. ..,|V(A; o) —d(s,?")}, we can construct a ham-
iltonian cycle HC; of 4’ n Such that the distance between s and " on the cycle is /. Let u and v be the two
neighbors of ¢/ on HC Let HC; = (s,LP,u,t",v,RP,s), and let Py = (s,LP,u,t",¢,¢). Without loss of
generality, let L(Py) = [y + 2. By Proposition 2, d(t”, u) =1, so we have |[AS(!") N AS(u)| =n—k—-1>1if
n — k> 2. This means that we can find a subcomponent 4;, in which j; € (n) — {i, j}, such that there exist two
disjoint edges (u, p;) and (¢, ¢;) in E'. By Proposmon L, (p;,q,) € E(4 nk) By Proposition 2, d(t” v) <2
hence AS([”) D {j.j1}, and AS(¢") # AS(v), and |[N*(v)| =n — k> 2, we can find a subcomponent A" k> and a
vertex v' € V(Aﬁk) such that (v,v') € E" for some h, € ( n) — {i, ], j1}. Let FC V(A,, ;) and F' = {t'}. By
Lemma 1, there exists a hamiltonian path HP of A<,Z i) L F’ joining ¢ and v'. Thus (s, Py,t, HP, ', v, RP,s)
forms a hamlltoman cycle, and for each Iy € {d(s,t),d(s,1) + 1,d(s,t) +2,..., |V (4, ,)| —d(s,1) + 2}, the
distance between s and ¢ on the cycle is /.

By using st”-expansion, for any integer /” with d(s,?") < 1" < Vdnil ”‘)‘ , We can construct a path joining s and
¢ with the length of the path being /. Since d(s, ") = d(s,t) — 2, for any integer [/ with d(s,7) < I < L we
can construct a path joining s and ¢ with the length of the path being /.

To construct a hamiltonian cycle, we consider the following two subcases:

Subcase 2.2.1: All the vertices of 4, U A /) are on the path P, for some 1 <x < [5]. By Lemma 1, there is a

hamiltonian path HP ofAn’k (i1} F’ joining 7 and v" which F' = {¢'}, t € V(Afl’k) and v € V(AZJC). Thus

(s, Py, 0", ¢, t, HP, v/, v, RP,s) forms a hamiltonian cycle, and for each [ € {d(s,?),d(s,t) + 1,d(s,t) +2,...,
WA"‘ ‘} the distance between s and ¢ on the cycle is /.

Subcase 2.2.2: Not all the vertices of A{j‘ """ 7} are on the path P, for some 1 < x < [5]. See Fig. 10b for an
illustration. Then we can find two ad]acent Vertlces yand zin AJ ‘, Which are not on the path P.. Let F C V(P,).
By Prop051t10ns 1 and 2, there exist two distinct edges (y y) € Ex™ and (z,7) € E/+" such that
V#ELeV(A, y .) and 2 # v € V(A ), respectively. If A" — F is isomorphic to A4, 5 », by Theorem I,

there is a hamlltonlan path HP from ytozin A/‘ —F.If Aj‘ — F contains more than one subcomponents of
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Af;k, by Lemma 1, there is a hamiltonian path HP from y to z in Afl‘k — F. By Lemma 7, there exist two disjoint
paths DP, and DP-, such that DP, joins ¢ and y’, and DP, joins v’ and z’. Moreover, the two paths span all the
vertices in A<> fidd _ F which F! = {¢'}. Thus (s, P,,¢",¢ t,DPy,y,y,HP,z,Z, DPy, v/, v, RP,s) forms a
hamiltonian cycle, and for each / € {d(s,?),d(s,t) + 1,d(s,t) +2,... W(A
the cycle is /.

Hence the theorem is proved. [

= |} the distance between s and ¢ on

Applying the above theorem we can prove that A4, is panconnected for alln > 3 and n — k > 2.

Theorem 3. The arrangement graph A, is panconnected for alln = 3 and n — k = 2.

Proof. For k=1, by Lemma 3, 4,; is panconnected for all » > 3. Chiang and Chen [22] showed that the
Appois 1somorphlc to the n-alternating group graph AG,, and Chang et al. [18] proved that 4G, is pancon-
nected for all » = 4. Hence the result holds for » > 4 and k = n — 2. Now we prove that 4, is panconnected
for allm > 5 and n — k> 2. Suppose that u and v are any two distinct vertices in A, . By Theorem 2, 4,,; is

panpositionable hamiltonian. That is, for each integer / with d(u,v) < I < |V(4,x)| — d(u,v), we can construct
a path P of length / joining u and v.
For each integer / with |V (4,4)| —d(u,v) +1 <1< |V(4,4)| — 1,we can construct a path P of length /

joining u and v as following. The diameter of 4, is L3"J and we have d(u,v) < |¥%]. By Theorem 1, 4, is
k(n — k) — 3 fault tolerant hamiltonian connected. For n > 5 and n— k>2, we have k(n— k) -3=
|3 — 1. That means that for each integer / with |V(A4,,4)| — d(u, v) + 1 <1< |V(A4,,)| — 1, we can construct a
path P of length / joining u# and v by regarding the vertices not in P as faulty vertices. Therefore, for each
integer / with d(u, v) <1< |V (4,4)| — 1, there is a path of length / joining # and v in A, ;. The theorem is
proved. O

For example, there are 60 vertices in As 3, and the diameter of As 5 is 4. Let u and v be two vertices in A5 3
with d(u, v) = 4. By the panpositionable hamiltonian property, we can find a path joining u and v with length
le{4,5,6,...,56}. Let FC V(As3) — {u, v}. We can find three paths of length 57, 58, and 59 joining « and v
with |F] =2, |[F| =1, and |F| = 0, respectively. By choosing two adjacent vertices u and v and applying the
above theorem, we can obtain the following corollary immediately.

Corollary 1. The arrangement graph A, is pancyclic for alln = 3 and n — k = 2.

5. Concluding remarks

In this paper, we have proposed a new concept called panpositionable hamiltonicity. We have showed that
the arrangement graph A4, is panpositionable hamiltonian if k£ > 1 and n — k > 2. Applying this result we
can prove that 4, is panconnected and pancyclic if k > 1 and n — k > 2. We now explain some relationship
between the panpositionable hamiltonian property and the panconnected property. We give an example to
show that a panconnected graph G is not necessarily panpositionable hamiltonian. Consider the circulant
graph, let n,s1,s,,...,s, be integers with 1 < s; <5, <---<s,. A circulant graph C(n;sy,ss,...,s,) is the graph
with vertex set {0,1,...,n — 1}. Two vertices i and j are adjacent if and only if i — j = £s,(modn) for some k
where 1 < k < r. We can check that C(n;1,2) is panconnected by brute force for n € {5,6,7,8,9,10}. How-
ever, C(10;1,2) is not panpositionable hamiltonian. In fact, the circulant graph C(n;1,2) is panconnected
for every n = 5, but it is not panpositionable hamiltonian for some values of n. Therefore, the panpositionable
hamiltonian property is a stronger property for an interconnection network.

Another important issue in the design of an interconnection network is connectivity. It is a widely used
measurement for evaluating the reliability of an interconnection network. The connectivity of G, 1(G) is the
minimum number of nodes whose removal leaves the remaining graph disconnected or trivial. Let G be a
graph with connectivity x(G) = k. It follows from Menger’s Theorem [23] that there are [ internally vertex-dis-
Jjoint (abbreviated as disjoint) paths joining any two vertices u and v when / < x(G). A container C(u,v) between
two distinct nodes u and v in G is a set of internally disjoint paths Pq,Ps, ... ,P, between u and v. The width of
C(u,v) is r. A w-container is a container of width w. The length of a C(u,v), written as /(C(u, v)), is the length of
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the longest path in C(u,v). A w-container C(u,v) is a w*-container if every vertex of G is incident with a path in
C(u,v). A graph G is w*-connected if there exists a w™-container between any two distinct vertices « and v. Obvi-
ously, a graph G is 2*-connected if it is hamiltonian. We also define w*-distance between any two vertices u and
v, d*(u,v), to be min{/(C(u,v))|C(u,v) is w*-container}. The w* — spanning diameter of G, denoted by D’ (G),
as the maximum number of d'*(u, v). The spanning diameter is used to measure the performance of multipath
communication in networks [24,25].

By the panpositionable hamiltonian property of the arrangement graph A4,,x, for any two different vertices x
and y in 4, and for any integer / satisfying d(x, y) < I < |V(4,4)| — d(x,y), there exists a hamiltonian cycle of

A, such that the relative distance between x and y on the cycle is [. Since the diameter of A4, is L3—2"J,

d(x,y) < |%]. Then [%] <l ip(g, ) — %], Let = L4 ol we can find a hamiltonian cycle
C = (x,P,y,Py,x) of A, such that the distance between x and y on Ci 1s Vidnol 5 ) . Obviously, P; and P, forms
a 2"-container. Moreover, L(P;) = M = 2 o and Py = Vi, 3 Ol — 2<n7/<>!' Hence the following corollary
holds.

Corollary 2. Suppose that k > 2 andn — k > 2. Then d} (x,y) = &2”*)' = 3 k : for any two vertices x and y in
the arrangement graph A, ;. That is, the 2" -diameter D3 (4, ;) = M = z(n”—lk),

For a graph G with even vertices, D} (G) = @ The arrangement graph A4, , with k > 2 has even vertices,
thus our result about the 2*-diameter of A4, is optimal.

Future work will try to find the panpositionable hamiltonicity of other interconnection networks. It would
be interesting to study some relationship between these specific properties, such as panpositionable hamilto-
nicity, panconnectivity and pancyclicity, and the other criteria for measuring the performance of a network.
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