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Abstract

The arrangement graph An,k is a generalization of the star graph. It is more flexible in its size than the star graph. There
are some results concerning hamiltonicity and pancyclicity of the arrangement graphs. In this paper, we propose a new
concept called panpositionable hamiltonicity. A hamiltonian graph G is panpositionable if for any two different vertices
x and y of G and for any integer l satisfying dðx; yÞ 6 l 6 jV ðGÞj � dðx; yÞ, there exists a hamiltonian cycle C of G such
that the relative distance between x and y on C is l. A graph G is panconnected if there exists a path of length l joining
any two different vertices x and y with dðx; yÞ 6 l 6 jV ðGÞj � 1. We show that An,k is panpositionable hamiltonian and
panconnected if k P 1 and n � k P 2.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Network topology is a crucial factor for an interconnection network since it determines the performance of
the network and the distributed systems. Many interconnection network topologies have been proposed in lit-
erature for the purpose of connecting a large number of processing elements and the design of a parallel com-
puting systems [1–6]. The hypercube [5] and the star graph [1,7] are two examples. The hypercube possesses
many good properties and is implemented as many multiprocessor systems [8]. Akers et al. [1] proposed
the star graph, which has smaller degree, diameter, and average distance than the hypercube while reserving
symmetry properties and desirable fault-tolerant characteristics. As a result, the star graph has been recog-
nized as an alternative to the hypercube. However, the hypercube and the star are less flexible in adjusting
their sizes.

The arrangement graph [2] was proposed by Day and Tripathi as a generalization of the star graph.
It is more flexible in its size than the star graph. Given two positive integers n and k with n > k, the
0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2007.08.073

q This work was supported in part by the National Science Council of the Republic of China under Contract NSC 94-2213-E-009-138.
* Corresponding author.

E-mail address: jmtan@cs.nctu.edu.tw (J.J.M. Tan).

mailto:jmtan@cs.nctu.edu.tw


Y.-H. Teng et al. / Applied Mathematics and Computation 198 (2008) 414–432 415
(n,k)-arrangement graph An,k is the graph (V,E), where V ¼ fpjp is an arrangement of k elements out of the
symbols : 1; 2; . . . ; ng and E ¼ fðp; qÞjp; q 2 V and p; q differ in exactly one positiong. A more precise defini-
tion and an example will be given in the following section. An,k is a regular graph of degree k(n � k) with n!

ðn�kÞ!
vertices. The diameter of An,k is b3k

2
c. An,1 is isomorphic to the complete graph Kn and An,n�1 is isomorphic to

the n-dimensional star graph. Moreover, An,k is vertex symmetric and edge symmetric [2]. Many related works
about the arrangement graph have appeared in the literature [2,9–13]. Day and Tripathi showed that there
exist vertex-disjoint paths between any two vertices in the arrangement graph [9]. The existence of hamiltonian
cycles and the cycles of all lengths ranging between three to the size of the graph was proved in [10]. It was
further proved that the multidimensional grids, hypercubes and spanning trees all with constant dilations
can be embedded in the arrangement graph [11]. Hsieh et al. [12] and Hsu et al. [13] studied the fault tolerant
hamiltonian property of the arrangement graph to enhance the reliability of the specific interconnection
network.

Computer network topologies are usually represented by graphs where vertices represent processors and
edges represent links between processors. In this paper, a network is represented as an undirected graph.
For the graph definitions and notation, we follow [14]. Let G = (V,E) be a graph if V is a finite set and E is
a subset of {(u,v)j(u,v) is an unordered pair of V}. We say that V is the vertex set and E is the edge set of G.
Two vertices u and v are adjacent if (u,v) 2 E. A path is a sequence of vertices such that two consecutive vertices
are adjacent. A path is represented by hv0; v1; v2; . . . ; vni. The length of a path P is the number of edges in P,
denoted by L(P). We sometimes write the path hv0; v1; v2; . . . ; vki as hv0; P 1; vi; viþ1; . . . ; vj; P 2; vt; . . . ; vki, where
P1 is the path hv0; v1; . . . ; vii and P2 is the path hvj; vjþ1; . . . ; vti. It is possible to write a path
hv0; v1; P ; v1; v2; . . . ; vki if L(P) = 0. We use dG(u,v), or simply d(u,v) if there is no ambiguity, to denote the dis-
tance between u and v in a graph G, i.e., the length of shortest path joining u and v in G. We use dC(u,v) and
DC(u,v) to denote the shorter and the longer distance between u and v on a cycle C of G, respectively. It is pos-
sible that DCðu; vÞ ¼ dCðu; vÞ if the lengths of the two disjoint paths joining u and v in C are equal. A cycle is a
path of at least three vertices such that the first vertex is the same as the last one. A hamiltonian path is a path
such that its vertices are distinct and span V. A graph G is hamiltonian connected if there exists a hamiltonian
path joining any two vertices of G. A hamiltonian cycle is a cycle such that its vertices are distinct except for the
first vertex and the last vertex and span V. A hamiltonian graph is a graph with a hamiltonian cycle.

For designing a good interconnection network, there are several desired properties we have to consider. The
hamiltonian property is one of the major requirements in designing an interconnection network because the
property is related to the reliability and the performance of a distributed system. A high-reliability network
can be designed by embedding a hamiltonian cycle in it. Many related works have appeared in the literature
[10,12,13,15]. Further attempts at hamiltonian problems led researches into the study of super-hamiltonian
graphs, such as pancyclic graphs and panconnected graphs. A graph G is pancyclic if it contains a cycle of
length l for each l satisfying 3 6 l 6 jV(G)j. The concept of pancyclic graphs is proposed by Bondy [16]. A
graph G is panconnected if there exists a path of length l joining any two different vertices x and y with
dðx; yÞ 6 l 6 jV ðGÞj � 1. The concept of panconnected graphs is proposed by Alavi and Williamson [17].
There are some studies concerning panconnectivity and pancyclicity of some interconnection network [18–20].

We propose a new concept called panpositionable hamiltonicity. A hamiltonian graph G is panpositionable if
for any two different vertices x and y of G and for any integer l satisfying dðx; yÞ 6 l 6 jV ðGÞj � dðx; yÞ, there
exists a hamiltonian cycle C of G such that the relative distance between x and y on C is l; more precisely,

dCðx; yÞ ¼ l if l 6 bjV ðGÞj
2
c or DCðx; yÞ ¼ l if l > jV ðGÞj

2
. Given a hamiltonian cycle C, if dC(x,y) = l, we have

DCðx; yÞ ¼ jV ðGÞj � dCðx; yÞ. Therefore, a graph is panpositionable hamiltonian if for any integer l with

dðx; yÞ 6 l 6 jV ðGÞj
2

, there exists a hamiltonian cycle C of G with dCðx; yÞ ¼ l. One example, the alternating
group graph is proved to be panpositionable hamiltonian [21]. Similar to the importance of hamiltonicity
for the communication between processors in an interconnection network, panpositionable hamiltonicity
allows more flexible communication in a hamiltonian network. The panpositionable hamiltonian property
inherits the hamiltonian property and advances it further. The concept is interesting and useful in the study
of interconnection networks. In [21], an example was given to show that a panconnected graph is not neces-
sarily panpositionable hamiltonian. Therefore, the panpositionable hamiltonian property is a stronger prop-
erty for an interconnection network.
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In this paper, we study the panpositionable hamiltonicity of the arrangement graph An,k. For n � k = 1,
An,n�1 is isomorphic to the n-dimensional star graph, which is bipartite and clearly is not panpositionable
hamiltonian. Thus, throughout this paper, we only consider the case that n � k P 2. We show that the
arrangement graph is panpositionable hamiltonian for all k P 1 and n � k P 2, and we find that it is closely
related to its panconnected and pancyclic properties. Applying our result, we can show that the arrangement
graph is panconnected and pancyclic. In the following section, we discuss some basic properties of the arrange-
ment graphs. In Section 3, we prove that An,1 and An,2 are panpositionable hamiltonian if n � k P 2. In Sec-
tion 4, we prove that An,k is panpositionable hamiltonian and panconnected for all k P 1 and n � k P 2. In
the final section, we present our conclusion and derive some relationship between the panpositionable ham-
iltonicity and the other useful properties for a interconnection network.

2. Some properties of the arrangement graphs

Let n and k be two positive integers with n > k. And, let hni and hki denote the sets f1; 2; . . . ; ng and
f1; 2; . . . ; kg, respectively. Then, the vertex set of the arrangement graph An,k, V ðAn;kÞ ¼ fpjp ¼ p1p2 . . . pk with
pi 2 hni for 1 6 i 6 k and pi 5 pj if i 5 j} and the edge set of An,k, E(An,k) = {(p,q)jp, q 2 V(An,k), p and q dif-
fer in exactly one position}. Fig. 1 illustrates A4,2.

Let i and j be two positive integers with 1 6 i, j 6 n. And, let V ðAðj:iÞn;k Þ ¼ fpjp ¼ p1p2 . . . pk and pj ¼ ig. It is

the set of all vertices with the jth position being i. For a fixed position j, fV ðAðj:iÞn;k Þj1 6 i 6 ng forms a partition

of V(An,k). Let Aðj:iÞn;k denote the subgraph of An,k induced by V ðAðj:iÞn;k Þ. It is easy to see that each Aðj:iÞn;k is isomor-

phic to An�1,k�1. Thus, An,k can be recursively constructed from n copies of An�1,k�1. Each Aðj:iÞn;k represents a

subcomponent of An,k, and we say that An,k is decomposed into subcomponents according to the jth position.

Let I be a subset of f1; 2; . . . ; ng. We use Aðj:IÞn;k to denote the subgraph of An,k induced by
S

i2IV ðA
ðj:iÞ
n;k Þ. Aðj:IÞn;k is

called an incomplete arrangement graph if jIj < n. We observe that each Aðj:iÞn;k can be recursively decomposed

into its smaller subcomponents. For simplicity, if there is no ambiguity, we shall concentrate on the last posi-

tion, and we use Ai
n;k and AI

n;k to denote Aðk:iÞ
n;k and Aðk:IÞ

n;k , respectively, where k is the last position, and Ei,j to

denote the set of edges between Ai
n;k and Aj

n;k. Let F be a faulty set which may include faulty edges, faulty ver-
tices, or both. The good edge set GEi,j(F) is the set of edges (u,v) 2 Ei,j such that fu; v; ðu; vÞg \ F ¼ ;. We need
some basic properties of the arrangement graph. The following proposition follows directly from the definition
of the arrangement graphs.

Proposition 1. Let n, k be two positive integers with n, k P 2, and let i and j be two distinct elements of hni.
Suppose that H is one subcomponent of Aj

n;k with the (k � 1)th position being h and the kth position being j for

some h 2 hni � {j}. Then jEi;jj ¼ ðn�2Þ!
ðn�k�1Þ!, and the number of edges between Ai

n;k and H is
ðn�3Þ!
ðn�k�1Þ!. Moreover, if

(u, v) and (u 0, v 0) are distinct edges in Ei,j, then {u, v} ˙ {u 0, v 0} = ;, and ðu; u0Þ 2 EðAi
n;kÞ if and only if

ðv; v0Þ 2 EðAj
n;kÞ.
42

3212
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4143 23 21
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Fig. 1. The arrangement graph A4,2.
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Let u 2 V ðAi
n;kÞ for some i 2 hni. We say that v is a neighbor of u if v is adjacent to u. Let I be a subset of

f1; 2; . . . ; ng, and we use NI(u) to denote the set of all neighbors of u which are in AI
n;k. Particularly, we use

N*(u) and Ni(u) as an abbreviation of N hni�figðuÞ and N{i}(u), respectively. We call vertices in N*(u) the outer

neighbors of u. It follows from the definitions, jNiðuÞj ¼ ðk � 1Þðn� kÞ and jN �ðuÞj ¼ ðn� kÞ. We say that ver-
tex u is adjacent to subcomponent Aj

n;k if u has an outer neighbor in Aj
n;k. Then, we define the adjacent subcom-

ponent ASðuÞ of u asfj j u is adjacent to Aj
n;kg. We have the following proposition:

Proposition 2. Suppose that k P 2, n � k P 2, and i 2 hni. Let u and v be two distinct vertices in Ai
n;k.

(a) If d(u, v) = 1, then jAS(u) \ AS(v)j = n � k � 1.

(b) If d(u, v) 6 2, then AS(u) 5 AS(v).
Proof. Let u ¼ u1u2 . . . uk, v ¼ v1v2 . . . vk, and uk = vk = i. If d(u,v) = 1, we have us 5 vs for some s 2 hk � 1i,
and ut = vt for all t 5 s. Then, ASðuÞ ¼ hni � fu1; u2; . . . ; us; . . . ; ukg and ASðvÞ ¼ hni � fv1; v2; . . . ; vs; . . . ; vkg.
Thus ASðuÞ \ ASðvÞ ¼ hni � fu1; u2; . . . ; us; . . . ; uk; vsg and jASðuÞ \ ASðvÞj ¼ n� ðk þ 1Þ ¼ n� k � 1. Since
us 5 vs, vs 2 AS(u) but vs 62 AS(v).

If d(u,v) = 2, there exists a vertex w 2 V ðAi
n;kÞ such that d(u,w) = d(w,v) = 1. Let w ¼ w1;w2; . . . ;wk. And,

let s 0 and t 0 be two indices such that ws0 6¼ us0 and vt0 6¼ wt0 . Clearly, s 0 5 t 0 or d(u,v) = 1. Hence ws0 is not in
fu1; u2; . . . ; ukg but in fv1; v2; . . . ; vkg. Thus ws0 2 ASðuÞ but ws0 62 ASðvÞ. Hence, the statement follows. h

Hsu et al. studied the fault hamiltonicity and fault hamiltonian connectivity of the arrangement graphs in
[13]. Some results are listed as follows.

Theorem 1 [13]. Let n and k be two positive integers with n � k P 2. Then An,k is k(n � k) � 2 fault tolerant
hamiltonian and k(n � k) � 3 fault tolerant hamiltonian connected.

The above theorem states that with up to k(n � k) � 2 faulty edges and faulty vertices An,k still has a ham-
iltonian cycle, and with up to k(n � k) � 3 faulty edges and faulty vertices An,k is still hamiltonian connected.

Lemma 1 [13]. Suppose that

1. k P 3 and n � k P 2,

2. t is a fixed position with 1 6 t 6 k,
3. I � hni with jIjP 2,

4. F � V(An,k) [ E(An,k), and

5. Aðt:lÞn;k � F is hamiltonian connected for each l 2 I and jF ðAðt:IÞn;k Þj 6 kðn� kÞ � 3.

Then, for any x 2 V ðAðt:iÞn;k Þ and y 2 V ðAðt:jÞn;k Þ with i 5 j 2 I, there is a hamiltonian path of Aðt:IÞn;k � F joining x

and y.

The following lemma considers the hamiltonian connectivity of the incomplete arrangement graphs An,2.
The lemma states that for any two vertices x and y in different subcomponents of the incomplete arrangement
graphs An,2, there exists a hamiltonian path joining them if n P 5. The result holds even when there is one
faulty vertex or one faulty edge if n P 6.

Lemma 2. Suppose that n P 5, t is a fixed position with 1 6 t 6 2, F � V(An,2), and I � hni with jIjP 2.

(a) If n P 5, then for any x 2 V ðAðt:iÞn;2 Þ and y 2 V ðAðt:jÞn;2 Þ with i 5 j 2 I, there is a hamiltonian path of Aðt:IÞn;2 joining

x and y.

(b) If n P 6 and jFj 6 1, then for any x 2 V ðAðt:iÞn;2 Þ and y 2 V ðAðt:jÞn;2 Þ with i 5 j 2 I, there is a hamiltonian path of
Aðt:IÞn;2 � F joining x and y.
Proof. Because of the symmetric property of An,2, without loss of generality, we may assume that t = 2. By
Proposition 1, jEi;jj ¼ ðn�2Þ!

ðn�2�1Þ! ¼ n� 2 P 3 if n P 5, and n � 2 P 4 if n P 6 for every i, j 2 I, and
fu; vg

T
fu0; v0g ¼ ; if (u,v) and (u 0,v 0) are distinct edges in Ei,j. Hence the number of good edge jGEi;jjP 3
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if n P 5, or n P 6 with jFj 6 1. We then prove this lemma by induction on jIj. Suppose that jIj = 2, and
I = {i, j} for some i, j. Since jGEi,jjP 3, there exists an edge ðu; vÞ 2 GEi;j such that u 6¼ x 2 V ðAi

n;2Þ and
v 6¼ y 2 V ðAj

n;2Þ. By Theorem 1, for each l 2 I, Al
n;2 � F is hamiltonian connected if jFj 6 1. There is a hamil-

tonian path P1 of Ai
n;2 � F from x to u and a hamiltonian path P2 of Aj

n;2 � F from v to y. Thus hx; P 1; u; v; P 2; yi
forms a hamiltonian path of AI

n;2 � F from x to y.
Assume that the statement is true for all I 0 with 2 6 jI 0j < jIj. There exists an i 0 2 I with i 0 5 i, j. Since

jGEi0, jjP 3, we can find an edge (u,v) 2 GEi0,j withu 2 V ðAi0
n;2Þ and v 6¼ y 2 V ðAj

n;2Þ. Then there is a
hamiltonian path P1 of AI�fjg

n;2 � F from x to u and a hamiltonian path P2 of Aj
n;2 � F from v to y. Thus

hx; P 1; u; v; P 2; yi forms a hamiltonian path of AI
n;2 � F from x to y. Hence the lemma follows. h
3. Panpositionable hamiltonicity of An,1 and An,2

We shall prove that the arrangement graph An,k is panpositionable hamiltonian for all k P 1 and
n � k P 2. The basic idea is to study An,1 and An,2 first, and then to prove the general case by induction
on k.

Lemma 3. The arrangement graph An,1 is panconnected and panpositionable hamiltonian for all n P 3.

Proof. Since An,1 is isomorphic to the complete graph Kn, the lemma follows trivially. h

Lemma 4. The arrangement graph An,2 is panpositionable hamiltonian for all n P 4.

Proof. Chiang and Chen [22] showed that the An,n�2 is isomorphic to the n-alternating group graph AGn, and
the panpositionable hamiltonian property of AGn, which n P 4, has been shown in [21]. Hence the result holds
for n = 4. Alternatively, we can verify this case, A4,2, by brute force. Suppose that n P 5, and s and t are two
distinct vertices of An,2. Then for each l 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ;

jV ðAn;2Þj
2
g, we shall find a hamilto-

nian cycle of An,2 such that the distance between s and t on the cycle is l.
We would like to make a remark here. Throughout the paper, the proof idea of the panpositionable

hamiltonian property of the arrangement graph is essentially similar to Case 1 described below except for
some minor adjustments.

Case 1

Suppose that s and t belong to the same subcomponent Ai
n;2. See Fig. 2. We assume that s; t 2 V ðAi

n;2Þ for
some i 2 hni. Since Ai

n;2 is isomorphic to the complete graph Kn�1, we have d(s, t) = 1. For each
l0 2 f1; 2; 3; . . . ; n� 2g, we can construct a hamiltonian cycle HCi of Ai

n;2 such that the distance between s

and t on the cycle is l0. Node t has two distinct neighbors on cycle HCi. Let u and v be two neighbors of t on
HCi. Let HCi ¼ hs; LP ; u; t; v;RP ; si and P 0 ¼ hs; LP ; u; ti. Without loss of generality, let L(P0) = l0. Since
jN*(t)j = n � 2 P 3 for n P 5, we can find a subcomponent Aht

n;2 different from Ai
n;2, and a vertex t0 2 V ðAht

n;2Þ
such that ðt; t0Þ 2 Ei;ht for some ht 2 hni � {i}. By Proposition 2, d(t,u) = 1, hence we have
jAS(t) \ AS(u)j = n � 3 P 2 for n P 5. It means that we can find a subcomponent Aj1

n;2 which
j1 2 hni � fi; htg, such that there exist two disjoint edges (u,p1) and (t,q1) in Ei;j1 . By Proposition 1,
ðp1; q1Þ 2 EðAj1

n;2Þ. Since jN �ðvÞj ¼ n� 2 P 3 for n P 5, we can find a subcomponent Ahv
n;2, and a vertex

v0 2 V ðAhv
n;2Þ such that ðv; v0Þ 2 Ei;hv for some hv 2 hni � fi; ht; j1g. By Lemma 2(a), there exists a hamiltonian

path HP of Ahni�fign;2 joining t 0 and v 0. Thus hs; P 0; t; t0;HP; v0; v;RP ; si forms a hamiltonian cycle, and for each
l0 2 f1; 2; 3; . . . ; n� 2g, the distance between s and t on the cycle is l0.

Now we present an algorithm to expand the path P 0 ¼ hs; LP ; u; ti between s and t to various lengths. The
idea is to expand the path by inserting the vertices of Aj1

n;2 into P0. We now describe the details.
If we want to insert p1 and q1 into P0, let P 1 ¼ hs; LP ; u; p1; q1; ti. See Fig. 3a for an illustration. Thus we

have L(P1) = l0 + 2. We can expand the path P1 to a longer path as follows. By Theorem 1, there is a
hamiltonian path HP1 from p1 to q1 in Aj1

n;2. So we can join all the vertices of Aj1

n;k to P1, let
P �1 ¼ hs; LP ; u; p1;HP1; q1; ti. Hence LðP �1Þ ¼ l0 þ n� 1. Since 1 6 l0 6 n � 2, we have 3 6 L(P1) 6 n and
n 6 LðP �1Þ 6 2n� 3. Therefore, for each l1 2 f1; 2; 3; . . . ; 2n� 3g, we can construct a path PP 1 2 fP 0; P 1; P �1g
from s to t such that the distance between s and t on the path is l1.
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Using the same idea, we can expand the path HP1. Let u1 and t1 be two adjacent vertices on HP1. That is,
HP1 ¼ hp1; LP 1; u1; t1;RP 1; q1i. By Propositions 1 and 2, there exist two distinct edges (u1,p2) and (t1,q2) in
Ej1;j2 for some j2 2 hni � fi; ht; hv; j1g such that ðp2; q2Þ 2 EðAj2

n;2Þ. See Fig. 3b for an illustration. Let
P 2 ¼ hs; LP ; u; p1; LP 1; u1; p2; q2; t1;RP 1; q1; ti. Thus we have L(P2) = l0 + n + 1. By Theorem 1, there is a
hamiltonian path HP2 from p2 to q2 in Aj2

n;2. Let P �2 ¼ hs; LP ; u; p1; LP 1; u1; p2;HP2; q2; t1;RP 1; q1; ti. Hence we
have LðP �2Þ ¼ l0 þ 2n� 2. Since 1 6 l0 6 n � 2, we have n + 2 6 L(P2) 6 2n � 1 and 2n� 1 6 LðP �2Þ 6 3n� 4.
Therefore, for each l2 2 f1; 2; 3; . . . ; 3n� 4g, we can construct a path PP 2 2 fP 0; P 1; P �1; P 2; P �2g from s to t

such that the distance between s and t on the path is l2 if n P 5. The maximal value of l2 is 3n � 4. If n = 5,
then we have 3n� 4 P jV ðAn;2Þj

2 ¼ nðn�1Þ
2 .

We can use the algorithm repeatedly for n P 6. For each 3 6 x 6 bn2c, let ux�1 and tx�1 be the two adjacent
vertices on HPx�1. That is, HPx�1 ¼ hpx�1; LP x�1; ux�1; tx�1;RP x�1; qx�1i. By Propositions 1 and 2, there exist
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two distinct edges (ux�1,px) and (tx�1,qx) in Ejx�1;jx for some jx 2 hni � fi; ht; hv; j1; . . . ; jx�1g such that
ðpx; qxÞ 2 EðAjx

n;2Þ. Let P x ¼ hs; LP ; u; p1; LP 1; u1; . . . ; ux�1; px; qx; tx�1; . . . ; t1;RP 1; q1; ti. Thus we have
LðP xÞ ¼ l0 þ ðx� 1Þðn� 1Þ þ 2. By Theorem 1, there is a hamiltonian path HPx from px to qx in Ajx

n;2. Let
P �x ¼ hs; LP ; u; p1; LP 1; u1; . . . ; ux � 1; px;HPx; qx; tx�1; . . . ; t1;RP 1; q1; ti. Hence we have LðP �xÞ ¼ l0þ
ðx� 1Þðn� 1Þ þ n� 1. Since 1 6 l0 6 n � 2, we have ðx� 1Þðn� 1Þ þ 3 6 LðP xÞ 6 ðx� 1Þðn� 1Þ þ n and
ðx� 1Þðn� 1Þ þ n 6 LðP �xÞ 6 ðx� 1Þðn� 1Þ þ 2n� 3. Therefore, for each lx 2 f1; 2; 3; . . . ; ðx� 1Þðn� 1Þþ
2n� 3g, we can construct a path PP x 2 fP 0; P 1; P �1; . . . ; P x; P �xg from s to t such that the distance between s and
t on the path is lx if n P 6. The maximal value of lx is ðbn2c � 1Þðn� 1Þ þ 2n� 3, and ðbn2c � 1Þðn� 1Þþ
2n� 3 P jV ðAn;2Þj

2 ¼ nðn�1Þ
2 . To construct a hamiltonian cycle, we consider the following two subcases.

Subcase 1.1: Consider the case PP x 2 fP 0; P �1; . . . ; P �xg for each 1 6 x 6 bn2c. See Fig. 2a for an illustration.

By Lemma 2(a), there exists a hamiltonian path HP of Ahni�fi;j1;...;jxg
n;2 joining t 0 and v 0 which t0 2 V ðAht

n;2Þ and

v0 2 V ðAhv
n;2Þ. Thus hs; PP x; t; t0;HP; v0; v;RP ; si forms a hamiltonian cycle, and for each l 2 f1; 2; 3; . . . ;

jV ðAn;2Þj
2 g,

the distance between s and t on the cycle is l.
Subcase 1.2: Consider the case PP x 2 fP 1; . . . ; P xg for each 1 6 x 6 bn2c. See Fig. 2b for an illustration.

Assume that H1,H2 2 hni � {i, j1, . . . ,jx} and H1 \ H2 = ;. Let ht; hy 2 H1 and hv; hz 2 H2. Let F � V ðAjx
n;2Þ

and F ¼ fpx; qxg. Let y, z be two distinct vertices in Ajx
n;2 � F . Since jN�ðyÞj ¼ jN �ðzÞj ¼ n� 2 P dn2e for n P 5,

there exist two distinct edges ðy; y0Þ 2 Ejx;hy and ðz; z0Þ 2 Ejx;hz such that y0 6¼ t0 2 V ðAhy

n;2Þ and z0 6¼ v0 2 V ðAhz
n;2Þ,

respectively. Ajx
n;2 � F is isomorphic to Kn�3, hence there is a hamiltonian path HP from y to z in Ajx

n;2 � F . By
Theorem 1 and Lemma 2(a), there exist a hamiltonian path DP1 from t 0 to y 0 in AH1

n;2 and a hamiltonian path
DP2 from v 0 to z 0 in AH2

n;2. Thus hs; PP x; t; t0;DP 1; y0; y;HP; z; z0;DP 2; v0; v;RP ; si forms a hamiltonian cycle, and

for each l 2 f1; 2; 3; . . . ;
jV ðAn;2Þj

2 g, the distance between s and t on the cycle is l.
Case 2

Suppose that s and t belong to different subcomponents of An,2. We assume that s 2 V ðAi
n;2Þ and t 2 V ðAht

n;2Þ
for i 5 ht 2 hni. Each subcomponent of An,2 is isomorphic to the complete graph Kn�1, and jEi;ht j > 0, we have
d(s, t) = 1, d(s, t) = 2 or d(s, t) = 3. In the case of d(s, t) = 1, suppose that s ¼ s1s2 . . . sk�1i and t ¼ t1t2 . . . tk�1ht

are adjacent, and sx = tx for each 1 6 x 6 k � 1. We may decompose An,2 into subcomponents according to
the first position such that s and t belong to the same subcomponent. Hence the case for d(s, t) = 1 is the same
as Case 1. In the following, we discuss the other two cases.

Subcase 2.1: Suppose that d(s, t) = 2. See Fig. 4 for an illustration. Without loss of generality, let (t00, t) be an
edge in Ei;ht such that t0 2 V ðAi

n;2Þ and t 0 2 N*(t). Since Ai
n;2 is isomorphic to complete graph Kn�1, we have

d(s, t 0) = 1. For each l0 2 f1; 2; 3; . . . ; n� 2g, we can construct a hamiltonian cycle HCi of Ai
n;2 such that the
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distance between s and t 0 on the cycle is l0. Let u and v be two neighbors of t 0 on HCi, and
HCi ¼ hs; LP ; u; t0; v;RP ; si. Let P 0 ¼ hs; LP ; u; t0; ti. Without loss of generality, we may assume that
L(P0) = l0 + 1.

By Proposition 2, d(t 0,u) = 1, so we have jAS(t 0) \ AS(u)j = n � 3 P 2 if n P 5. This means that we can find
an index j1 2 hni � fi; htg, such that there exist two disjoint edges (u, p1) and (t 0, q1) in Ei;j1 . By Proposition 1,
ðp1; q1Þ 2 EðAj1

n;2Þ. Since jN*(v)j = n � 2 P 3 if n P 5, we can find a vertex v0 2 V ðAhv
n;2Þ such that ðv; v0Þ 2 Ei;hv

for some hv 2 hni � fi; ht; j1g. If we want to join p1 and q1 to P0, let P 1 ¼ hs;LP ; u; p1; q1; t
0; ti. Then we have

L(P1) = l0 + 3. By Theorem 1, there is a hamiltonian path HP1 from p1 to q1 in Aj1

n;2. Let
P �1 ¼ hs; LP ; u; p1;HP1; q1; t

0; ti. Hence we have LðP �1Þ ¼ l0 þ n. Since 1 6 l0 6 n � 2, we have 4 6 L(P1) 6 n + 1
and nþ 1 6 LðP �1Þ 6 2n� 2. Therefore, for each l1 2 f2; 3; 4; . . . ; 2n� 2g, we can construct a path PP 1 2
fP 0; P 1; P �1g from s to t such that the distance between s and t on the path is l1.

Recursively, for each 2 6 x 6 bn2c, let ux�1 and tx�1 be two adjacent vertices on HPx�1. That is,
HPx�1 ¼ hpx�1;LP x�1; ux�1; tx�1;RP x�1; qx�1i. By Propositions 1 and 2, there exist two distinct edges ðux�1; pxÞ
and ðtx�1; qxÞ in Ejx�1;jx for some jx 2 hni � fi; ht; hv; j1; . . . ; jx�1g. And, ðpx; qxÞ 2 EðAjx

n;2Þ. Let
P x ¼ hs; LP ; u; p1; LP 1; u1; . . . ; ux�1; px; qx; tx�1; . . . ; t1;RP 1; q1; t0; ti. Thus we have LðP xÞ ¼ l0 þ ðx� 1Þðn� 1Þþ
3. By Theorem 1, there is a hamiltonian path HPx from px to qx in Ajx

n;2. Let P �x ¼ hs; LP ; u; p1; LP 1; u1; . . . ; ux�1;
px;HPx; qx; tx�1; . . . ; t1;RP 1; q1; t

0; ti. Hence we have LðP �xÞ ¼ l0 þ ðx� 1Þðn� 1Þ þ n. Since 1 6 l0 6 n � 2, we
have ðx� 1Þðn� 1Þ þ 4 6 LðP xÞ 6 ðx� 1Þðn� 1Þ þ nþ 1 and ðx� 1Þðn� 1Þ þ nþ 1 6 LðP �xÞ 6 ðx� 1Þ
ðn� 1Þ þ 2n� 2. Therefore, for each lx 2 f2; 3; 4; . . . ; ðx� 1Þðn� 1Þ þ 2n� 2g, we can construct a path
PP x 2 fP 0; P 1; P �1; . . . ; P x; P �xg from s to t such that the distance between s and t on the path is lx if n P 5. The

maximal value of lx is ðbn2c � 1Þðn� 1Þ þ 2n� 2, and ðbn2c � 1Þðn� 1Þ þ 2n� 2 P jV ðAn;2Þj
2 ¼ nðn�1Þ

2 . To construct
a hamiltonian cycle, we consider the following two subcases:

Subcase 2.1.1: Consider the case PP x 2 fP 0; P �1; . . . ; P �xg for each 1 6 x 6 bn2c. See Fig. 4a for an illustration.
By Lemma 2(a), there exists a hamiltonian path HP of Ahni�fi;j1;...;jxg

n;2 joining t and v 0. Thus hs; PP x; t0; t;HP;
v0; v;RP ; si forms a hamiltonian cycle, and for each l 2 f2; 3; 4; . . . ;

jV ðAn;2Þj
2 g, the distance between s and t on the

cycle is l.
Subcase 2.1.2: Consider the case PP x 2 fP 1; . . . ; P xg for each 1 6 x 6 bn2c. See Fig. 4b for an illustration.

Assume that H1;H2 � hni � fi; j1; . . . ; jxg and H1 \ H2 = ;. Let ht; hy 2 H 1 and hv; hz 2 H 2. Let F � V ðAjx
n;2Þ

and F = {px,qx}. Let y and z be two distinct vertices in Ajx
n;2 � F . Since jN�ðyÞj ¼ jN �ðzÞj ¼ n� 2 P dn2e for

n P 5, there exist two distinct edges ðy; y0Þ 2 Ejx;hy and ðz; z0Þ 2 Ejx;hz such that y0 6¼ t 2 V ðAhy

n;2Þ and
z0 6¼ v0 2 V ðAhz

n;2Þ, respectively. Since Ajx
n;2 � F is isomorphic to Kn�3, there is a hamiltonian path HP from y

to z in Ajx
n;2 � F . By Theorem 1 and Lemma 2(a), there exist a hamiltonian path DP1 from t to y 0 in AH1

n;2 and a
hamiltonian path DP2 from v 0 to z 0 in AH 2

n;2. Thus hs; PP x; t0; t;DP 1; y0; y;HP; z; z0;DP 2; v0; v;RP ; si forms a
hamiltonian cycle, and for each l 2 f2; 3; 4; . . . ;

jV ðAn;2Þj
2 g, the distance between s and t on the cycle is l.

Subcase 2.2: Suppose that d(s, t) = 3 and n P 6. See Fig. 5 for an illustration. We shall discuss the subcase
d(s, t) = 3 and n = 5 later in Subcase 2.3. Let (t 0, t00) be an edge in Ei;ht such that t0 2 V ðAi

n;2Þ, t00 2 V ðAht
n;2Þ,

t00 2 N(t), and t00 2 N*(t 0). Since Ai
n;2 is isomorphic to complete graph Kn�1, we have d(s, t 0) = 1. For each

l0 2 f1; 2; 3; . . . ; n� 2g, we can construct a hamiltonian cycle HCi of Ai
n;2 such that the distance between s and

t 0 on the cycle is l0. Suppose that u and v are two distinct vertices in V ðAi
n;2Þ, and u and v are two neighbors of t 0

on HCi. Let HCi ¼ hs; LP ; u; t0; v;RP ; si. Let P 0 ¼ hs; LP ; u; t0; t00; ti. Hence, without loss of generality, we have
L(P0) = l0 + 2.

By Proposition 2, d(t 0,u) = 1, so we have jAS(t 0) \ AS(u)j = n � 3 P 2 if n P 6. It means that we can find
an index j1 2 hni � {i,ht}, such that there exist two disjoint edges (u, p1) and (t 0, q1) in Ei;j1 . By Proposition 1,
ðp1; q1Þ 2 EðAj1

n;2Þ. Since jN*(v)j = n � 2 P 3 if n P 5, we can find a vertex v0 2 V ðAhv
n;2Þ such that ðv; v0Þ 2 Ei;hv

for some hv 2 hni � fi; ht; j1g. If we want to join p1 and q1 to P0, let P 1 ¼ hs; LP ; u; p1; q1; t
0; t00; ti. Thus we have

L(P1) = l0 + 4. By Theorem 1, there is a hamiltonian path HP1 from p1 to q1 in Aj1

n;2. Let P �1 ¼ hs; LP ;
u; p1;HP1; q1; t

0; t00; ti. Hence we have LðP �1Þ ¼ l0 þ nþ 1. Since 1 6 l0 6 n � 2, we have 5 6 L(P1) 6 n + 2 and
nþ 2 6 LðP �1Þ 6 2n� 1. Therefore, for each l1 2 f3; 4; 5; . . . ; 2n� 1g, we can construct a path PP 1 2
fP 0; P 1; P �1g from s to t such that the distance between s and t on the path is l1.

Similarly, for each 2 6 x 6 bn2c, let ux�1 and tx�1 be the two adjacent vertices on HPx�1. That is,
HPx�1 ¼ hpx�1;LP x�1; ux�1; tx�1;RP x�1; qx�1i. By Propositions 1 and 2, there exist two distinct edges ðux�1; pxÞ
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and (tx�1, qx) in Ejx�1;jx for some jx 2 hni � fi; ht; hv; j1; . . . ; jx�1g. And, ðpx; qxÞ 2 EðAjx
n;2Þ. Let P x ¼ hs; LP ; u;

p1; LP 1; u1; . . . ; ux�1; px; qx; tx�1; . . . ; t1;RP 1; q1; t
0; t00; ti. Thus we have LðP xÞ ¼ l0 þ ðx� 1Þðn� 1Þ þ 4. By

Lemma 1, there is a hamiltonian path HPx from px to qx in Ajx
n;2. Let P �x ¼ hs; LP ; u; p1; LP 1; u1; . . . ; ux�1; px;

HPx; qx; tx�1; . . . ; t1;RP 1; q1; t
0; t00; ti. Hence we have LðP �xÞ ¼ l0 þ ðx� 1Þðn� 1Þ þ nþ 1. Since 1 6 l0 6 n � 2,

we have ðx� 1Þðn� 1Þ þ 5 6 LðP xÞ 6 ðx� 1Þðn� 1Þ þ nþ 2 and ðx� 1Þðn� 1Þ þ nþ 2 6 LðP �xÞ 6 ðx� 1Þ
ðn� 1Þ þ 2n� 1. Therefore, for each lx 2 f3; 4; 5; . . . ; ðx� 1Þðn� 1Þ þ 2n� 1g, we can construct a path
PP x 2 fP 0; P 1; P �1; . . . ; P x; P �xg from s to t such that the distance between s and t on the path is lx if n P 5. The

maximal value of lx is ðbn2c � 1Þðn� 1Þ þ 2n� 1, and ðbn2c � 1Þðn� 1Þ þ 2n� 1 P jV ðAn;2Þj
2 ¼ nðn�1Þ

2 . To construct
a hamiltonian cycle, we consider the following two subcases:

Subcase 2.2.1: Consider the case PP x 2 fP 0; P �1; . . . ; P �xg for each 1 6 x 6 bn2c. See Fig. 5a for an illustration.
Let F t � V ðAht

n;2Þ and Ft = {t 0}. By Lemma 2(b), there exists a hamiltonian path HP of Ahni�fi;j1;...;jxg
n;2 � F t

joining t and v 0. Thus hs; PP x; t0; t00; t;HP; v0; v;RP ; si forms a hamiltonian cycle, and for each
l 2 f3; 4; 5; . . . ;

jV ðAn;2Þj
2 g, the distance between s and t on the cycle is l.
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Fig. 6. The arrangement graph A5,2.
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Subcase 2.2.2: Consider the case PP x 2 fP 1; . . . ; P xg for each 1 6 x 6 bn2c. See Fig. 5b for an illustration.
Assume that H1;H2 2 hni � fi; j1; . . . ; jxg and H1 \ H2 = ;. Let ht; hy 2 H 1 and hv; hz 2 H 2. Let F j � V ðAjx

n;2Þ
and Fj = {px, qx}. Let y and z be two distinct vertices in Ajx

n;2 � F j. Since jN�ðyÞj ¼ jN �ðzÞj ¼ n� 2 P dn2e for
n P 5, there exist two distinct edges ðy; y0Þ 2 Ejx;hy and ðz; z0Þ 2 Ejx;hz such that y0 6¼ t; t00 2 V ðAhy

n;2Þ and
z0 6¼ v0 2 V ðAhz

n;2Þ, respectively. Ajx
n;2 � F j is isomorphic to Kn�3, hence there is a hamiltonian path HP from y to

z in Ajx
n;2 � F j. By Theorem 1 and Lemma 2(b), there exist a hamiltonian path DP1 from t to y 0 in AH1

n;2 � F t and
a hamiltonian path DP2 from v 0 to z 0 in AH2

n;2. Thus hs; PP x; t0; t00; t;DP 1; y0; y;HP; z; z0;DP 2; v0; v;RP ; si forms a
hamiltonian cycle, and for each l 2 f3; 4; 5; . . . ;

jV ðAn;2Þj
2 g, the distance between s and t on the cycle is l.

Subcase 2.3: Suppose that d(s, t) = 3 and n = 5. Let s and t be two distinct vertices of A5,2 in Fig. 6. By the
vertex and edge symmetric properties, we may assume that s = 12 and t = 21 for d(s, t) = 3. The corresponding
hamiltonian cycle HC in A5,2 are listed below.
dHC(s, t)
 The cycle HC
3
 h21; 23; 13; 12; 15; 25; 35; 45; 43; 53; 54; 14; 24; 34; 32; 42; 52; 51; 41; 31; 21i

4
 h21; 31; 32; 42; 12; 52; 53; 13; 23; 43; 41; 51; 54; 14; 24; 34; 35; 45; 15; 25; 21i

5
 h21; 31; 32; 42; 52; 12; 13; 53; 23; 43; 41; 51; 54; 14; 24; 34; 35; 45; 15; 25; 21i

6
 h21; 31; 41; 42; 32; 52; 12; 13; 23; 43; 53; 51; 54; 14; 24; 34; 35; 45; 15; 25; 21i

7
 h21; 31; 41; 51; 52; 42; 32; 12; 13; 23; 43; 53; 54; 14; 24; 34; 35; 45; 15; 25; 21i

8
 h21; 31; 41; 51; 53; 52; 42; 32; 12; 13; 43; 23; 24; 14; 54; 34; 35; 45; 15; 25; 21i

9
 h21; 31; 41; 51; 53; 43; 42; 32; 52; 12; 13; 23; 24; 14; 54; 34; 35; 45; 15; 25; 21i

10
 h21; 31; 41; 51; 53; 13; 43; 42; 32; 52; 12; 15; 45; 35; 34; 54; 14; 24; 23; 25; 21i
Hence the lemma follows. h
4. Panpositionable hamiltonicity and panconnectivity of An,k

In this section, we show that the arrangement graph An,k is panpositionable hamiltonian for n � k P 2 and
k P 3. We need some known results on An,k. It is known that the An,n�2 is isomorphic to the n-alternating
group graph AGn [22], and AGn is known to be panpositionable hamiltonian for all n P 3 in [21]. Therefore,
we have the following result.

Lemma 5. An,k is panpositionable hamiltonian if k P 1 and n � k = 2.

Day and Tripathi [2] presented a shortest path routing algorithm for the arrangement graph, and gave some
characterizations of the minimum length path between two arbitrary vertices in An,k. We can derive the fol-
lowing lemma directly from their routing algorithm.

Lemma 6. Let u ¼ u1; u2; . . . ; uk and v ¼ v1; v2; . . . ; vk be two vertices in An,k. There exists a way of decomposing

An,k into subcomponents such that one of the following three cases holds.

(a) If ux = vx = i for some position x 2 hki and i 2 hni, we decompose An,k into subcomponents according to the

xth position. Then u and v belong to the same subcomponent and u; v 2 V ðAðx:iÞ
n;k Þ. Moreover, a shortest path

from u to v in An,k is completely contained in Aðx:iÞ
n;k .

(b) If ux 5 vx for every x 2 hki and fu1; u2; . . . ; ukg 6¼ fv1; v2; . . . ; vkg, there exists a position

uy 62 fv1; v2; . . . ; vkg for some y 2 hki, say the yth position. We decompose An,k into subcomponents accord-

ing to the yth position, then u and v belong to different subcomponents, say u 2 V ðAðy:iÞ
n;k Þ and v 2 V ðAðy:jÞ

n;k Þ for

some i 5 j 2 hni. Moreover, a minimum length path connecting u and v has the form hu,P,u 0, vi, in which

u0 2 V ðAðy:iÞ
n;k Þ, and P is a path completely contained in Aðy:iÞ

n;k .
(c) If ux 5 vx for every x 2 hki and fu1; u2; . . . ; ukg ¼ fv1; v2; . . . ; vkg, decomposing An,k into subcomponents

according to any position, say yth position, y 2 hki, then u and v belong to different subcomponents, say

u 2 V ðAðy:iÞ
n;k Þ and v 2 V ðAðy:jÞ

n;k Þ for some i 5 j 2 hni. Moreover, a minimum length path connecting u and v

has the form hu,P,u 0, v 0, vi, in which u0 2 V ðAðy:iÞ
n;k Þ, v0 2 V ðAðy:jÞ

n;k Þ, and P is a path completely contained in Aðy:iÞ
n;k .
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Example. Suppose that u and v are two vertices in A7,5. If u = 12345 and v = 13452, then u; v 2 V ðAð1:1Þ
7;5 Þ. A

minimum length path connecting u and v is h12345, 12645,13645,13642,13652,13452i which is completely

contained in Að1:1Þ
7;5 , and case (a) holds. If u = 12345 and v = 26453, then u 2 V ðAð1:1Þ

7;5 Þ and v 2 V ðAð1:2Þ
7;5 Þ. A

minimum length path connecting u and v is h12345, 12346,12356,12456,12453,16453,26453i, and case (b)

holds. If u = 12345 and v = 23451, then u 2 V ðAð1:1Þ
7;5 Þ and v 2 V ðAð1:2Þ

7;5 Þ. A minimum length path connecting u
and v is h12345, 12346,12356,12456,13456,23456, 23451i, and case (c) holds.

We need the following lemma later in our main theorem. One may skip the proof temporarily, and come
back to it later.

Lemma 7. Suppose that

1. k P 3, n � k P 2,

2. I � hni with jIjP 2,
3. F � V ðAI

n;kÞ with jFj 6 1, and

4. x1 2 V ðAi1
n;kÞ � F and x2 2 V ðAi2

n;kÞ � F with i1 5 i2 2 I.

Then, for any pair of distinct vertices fy1; y2g in V ðAI
n;kÞ � F , there exist two disjoint paths, one joining x1 and

yi for some i 2 {1,2}, and the other joining x2 and yj with i 5 j, such that these two paths span all the vertices in

AI
n;k � F .

Proof. Let i1; i2; . . . ; ijIj be jIj distinct indices of hni. We prove this lemma by finding two disjoint paths P1 and
P2 in AI

n;k � F such that P1 joins x1 and yi, and P2 joins x2 and yj with i 5 j. Moreover, P1 and P2 span all the
vertices in AI

n;k � F . According to the location of y1 and y2, we have the following cases:
Case 1

Suppose that y1 and y2 are located in different subcomponents.
Subcase 1.1: Suppose that x1, x2, yi and yj are located in four different subcomponents. yi 2 V ðAi3

n;kÞ and
yj 2 V ðAi4

n;kÞ with jIjP 4. See Fig. 7a for an illustration. By Lemma 1, we can find a hamiltonian path P1 from
x1 to yi in Afi1;i3gn;k � F . Similarly, we can find a hamiltonian path P2 from x2 to yj in AI�fi1;i3g

n;k � F .Therefore, P1

and P2 are two disjoint paths spanning all the vertices in AI
n;k � F .

Subcase 1.2: Suppose that one of y1, y2 and one of x1, x2 are located in the same subcomponent. Without
loss of generality, we may assume that x1 and yi are located in the same subcomponent, and x2 and yj are
located in different subcomponents. yi 2 V ðAi1

n;kÞ and yj 2 V ðAi3
n;kÞ with jIjP 3. See Fig. 7b for an illustration.

By Theorem 1, since Ai1
n;k � F is hamiltonian connected, we can find a hamiltonian path P1 from x1 to yi in

Ai1
n;k � F . By Lemma 1, we can find a hamiltonian path P2 from x2 to yj in AI�fi1g

n;k � F . Therefore, P1 and P2 are
two disjoint paths spanning all the vertices in AI

n;k � F .
Subcase 1.3: Suppose that x1 and yi are located in the same subcomponent for some i 2 {1,2}, and x2 and yj

are located in the same subcomponent with i 5 j. yi 2 V ðAi1
n;kÞ and yj 2 V ðAi2

n;kÞ with jIjP 2. See Fig. 7c for an
illustration.Without loss of generality, we may assume that i = 1 and j = 2. By Theorem 1, since Ai1

n;k � F is
hamiltonian connected, we can find a hamiltonian path P1 from y1 to x1 in Ai1

n;k � F . If jIjP 3, since
jN*(y2)j > 2, we can find an edge ðy2; y

0
2Þ 2 Ei2;j such that y02 2 V ðAj

n;kÞ for some j 2 I � {i1, i2}. By Lemma 1, we
can find a hamiltonian path P 02 from y02 to x2 in AI�fi1g

n;k � fy2g [ F . Let P 2 ¼ hy2; y
0
2; P

0
2; x2i. If jIj = 2, by

Theorem 1, there is a hamiltonian path P 02 from y2 to b2 in Ai2
n;k � F . Let P 2 ¼ hy2; P

0
2; x2i. Therefore, P1 and P2

are two disjoint paths spanning all the vertices in AI
n;k � F .

Case 2

Suppose that yi and yj are located in the same subcomponent.
Subcase 2.1: Suppose that y1; y2 2 V ðAi1

n;kÞ or y1; y2 2 V ðAi2
n;kÞ with jIjP 2. See Fig. 7d for an

illustration.Without loss of generality, we consider the former case and assume that i = 1 and j = 2. By
Theorem 1, Ai1

n;k � ðfy2g [ F Þ is hamiltonian connected, hence we can find a hamiltonian path P1 from y1 to x1

in Ai1
n;k � fy2g [ F . If jIjP 3, since jN*(y2)j > 2, we can find an edge ðy2; y

0
2Þ 2 Ei1;j such that y02 2 V ðAj

n;kÞ for

some j 2 I � fi1; i2g. By Lemma 1, we can find a hamiltonian path P 02 from y02 to x2 in AI�fi1g
n;k � F . If jIj = 2,

there exists an edge ðy2; y
0
2Þ 2 Ei1;i2 such that y02 2 V ðAi2

n;kÞ. By Theorem 1, there is a hamiltonian path P 02 from
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Fig. 7. Illustrations for Lemma 7. Notice that jFj 6 1 in each AI

n;k .
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y02 to x2 in Ai2
n;k � F . Let P 2 ¼ hy2; y

0
2; P

0
2; x2i. Therefore, P1 and P2 are two disjoint paths spanning all the

vertices in AI
n;k � F .

Subcase 2.2: Suppose that y1; y2 2 V ðAi3
n;kÞ. Without loss of generality, we consider the following two

subcases:
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Subcase 2.2.1: Suppose that there exists some i1 2 AS(y1) for i 2 {1,2} with jIjP 3.Without loss of
generality, we may assume that i = 1. See Fig. 7e for an illustration. Since x1 2 AS(y1), we can find an edge
ðy1; y

0
1Þ 2 Ei1;i3 such that y01 2 V ðAi1

n;kÞ and x1 6¼ y01. By Theorem 1, we can find a hamiltonian path P 01 from y01 to
x1 in Ai1

n;k � F . Let P 1 ¼ hy1; y
0
1; P

0
1; x1i. Let y02 6¼ y1 2 V ðAi3

n;kÞ. By Theorem 1, since Ai3
n;k � fy1g [ F is

hamiltonian connected, we can find a hamiltonian path P 002 from y2 to y02 in Ai3
n;k � fy1g [ F . If jIjP 4, since

jN �ðy02Þj > 2, we can find an edge ðy02; y002Þ 2 Ei3;j such that y002 2 V ðAj
n;kÞ for some j 2 I � fi1; i2; i3g. By Lemma

1, we can find a hamiltonian path P 02 from y002 to x2 in AI�fi1;i3g
n;k � F . If jIj = 3, there exists an edge ðy02; y002Þ 2 Ei3;i2

such that y002 2 V ðAi2
n;kÞ.By Theorem 1, there is a hamiltonian path P 02 from y002 to x2 in Ai2

n;k � F . Let
P 2 ¼ hy2; P

00
2 ; y
0
2; y
00
2 ; P

0
2; x2i. Therefore, P1 and P2 are two disjoint paths spanning all the vertices in AI

n;k � F .
Subcase 2.2.2: Suppose that fi1; i2g

T
fASðy1Þ [ ASðy2Þg ¼ ; with jIjP 4. See Fig. 7(f) for an illustration.

Since jN*(y1)j > 2, we can find an edge ðy1; y
0
1Þ 2 Ei1;j1 such that y01 2 V ðAj1

n;kÞ for some j1 2 I � fi1; i2; i3g. By

Lemma 1, we can find a hamiltonian path P 01 from y01 to x1 in Afi1;j1g
n;k � F . Let P 1 ¼ hy1; y

0
1; P

0
1; x1i. Let

y02 2 V ðAi3
n;kÞ and y02 2 Ni3ðy1Þ. By Proposition 2, we have ASðy1Þ 6¼ ASðy02Þ.By Theorem 1, since Ai3

n;k � fy1g [ F
is hamiltonian connected, we can find a hamiltonian path P 002 from y2 to y02 in Ai3

n;k � fy1g [ F . If jIjP 5, since
jN �ðy02Þj > 2, we can find an edge ðy02; y002Þ 2 Ei3;j2 such that y002 2 V ðAj2

n;kÞ for some j2 2 I � fi1; i2; i3; j1g. By

Lemma 1, we can find a hamiltonian path P 02 from y002 to x2 in AI�fi1;i3;j1g
n;k � F . If jIj = 4, since jN �ðy02Þj > 2, we

can find an edge ðy02; y002Þ 2 Ei3;i2 such that y002 2 V ðAi2
n;kÞ. Since Ai2

n;k � F is hamiltonian connected, there is a

hamiltonian path P 02 from y002 to x2 in Ai2
n;k � F . Let P 2 ¼ hy2; P

00
2 ; y
0
2; y
00
2 ; P

0
2; x2i. Therefore, P1 and P2 are two

disjoint paths spanning all the vertices in AI
n;k � F .

Thus the lemma follows. h

We now prove our main result.

Theorem 2. The arrangement graph An,k is panpositionable hamiltonian if k P 1 and n � k P 2.

Proof. By Lemma 5, An,k is panpositionable hamiltonian if k P 1 and n � k = 2. Hence we consider the case
that n � k > 2 in our proof. We prove this theorem by induction on k. By Lemma 3, An,1 is panpositionable
hamiltonian for all n > 3. By Lemma 4, An,2 is panpositionable hamiltonian for all n > 4. Suppose that the result
holds for An,k�1 for some k P 3 and for all n � (k � 1) > 2. Consider An,k for n � k > 2, we observe that An,k

can be recursively constructed from n copies of An�1,k�1, and each An�1,k�1 is panpositionable hamiltonian by
the inductive hypothesis, since (n � 1) � (k � 1) > 2. Let s and t be two distinct vertices of An,k. For each
l 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ;

jV ðAn;kÞj
2
g, we shall find a hamiltonian cycle of An,k such that the distance

between s and t on the cycle is l. The basic idea of our construction is similar to that presented in Lemma 4.
Case 1

Suppose that s and t belong to the same subcomponent Ai
n;k. See Fig. 8 for an illustration. We assume that

s; t 2 V ðAi
n;kÞ for some i 2 hni. Since Ai

n;k is isomorphic to An�1;k�1, by the inductive hypothesis, for each
l0 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ; jV ðAi

n;kÞj � dðs; tÞg, we can construct a hamiltonian cycle HCi of Ai
n;k

such that the distance between s and t on the cycle is l0. Let u and v be the two neighbors of t on HCi. Let
HCi ¼ hs; LP ; u; t; v;RP ; si, and let P 0 ¼ hs; LP ; u; ti. Without loss of generality, let L(P0) = l0. By Proposition
2, d(t,u) = 1, we have jAS(t) \ AS(u)j = n � k � 1 > 1 if n � k > 2. It means that we can find a subcomponent
Aj1

n;k which j1 2 hni � {i}, such that there exist two disjoint edges (u, p1) and (t, q1) in Ei;j1 . By Proposition 1,
ðp1; q1Þ 2 EðAj1

n;kÞ. Since jN*(t)j = n � k > 2, we can find a subcomponent Aht
n;k different from Ai

n;k and Aj1

n;k, and a

vertex t0 2 V ðAht
n;kÞ such that ðt; t0Þ 2 Ei;ht for some ht 2 hni � {i,j1}. By Proposition 2, d(t, v) 6 2 hence

AS(t) � {j1, ht} and AS(t) 5 AS(v), and jN*(v)j = n � k > 2, we can find another subcomponent Ahv
n;k, and a

vertex v0 2 V ðAhv
n;kÞ such that ðv; v0Þ 2 Ei;hv for some hv 2 hni � fi; j1; htg. By Lemma 1, there exists a hamiltonian

path HP of Ahni�fign;k joining t 0 and v 0. Thus hs; P 0; t; t0;HP; v0; v;RP ; si forms a hamiltonian cycle, and for each

l0 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ; jV ðAi
n;kÞj � dðs; tÞg, the distance between s and t on the cycle is l0.

Now we present an algorithm called st-expansion to expand the path P0 between s and t to various lengths.
We describe the details as follows.

We can insert one subcomponent of Aj1

n;k into P0 as follows. See Fig. 9a for an illustration. Because p1 and q1

are adjacent, and An�1,k�1 is edge symmetric, we may regard them as in the same subcomponent of Aj1

n;k, say C.
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C is isomorphic to An�2,k�2. By Theorem 1, there is a hamiltonian path HP1 of C joining p1 and q1 with
LðHP1Þ ¼ jV ðAn�2;k�2Þj � 1. We can insert more than one subcomponent of Aj1

n;k into P0 as following. See
Fig. 9b for an illustration. We regard p1 and q1 as in different subcomponents of Aj1

n;k. By Lemma 1, there is a
hamiltonian path HP1 joining p1 and q1 with L(HP1) = mjV(An�2, k�2)j�1, where m is the number of
subcomponents of Aj1

n;k we wanted to insert. Thus we can construct a path HP1 between p1 and q1 such that
LðHP1Þ ¼ I1jV ðAn�2;k�2Þj � 1 for each integer I1 with 1 6 I1 6 n � 1. Let P1 = hs,LP,u,p1,HP1,q1, ti. Thus we

have LðP 1Þ ¼ l0 þ I1jV ðAn�2;k�2Þj ¼ l0 þ I1ðn�2Þ!
ðn�kÞ! . Since dðs; tÞ 6 l0 6 jV ðAi

n;kÞj � dðs; tÞ, we have I1ðn�2Þ!
ðn�kÞ! þ

dðs; tÞ 6 LðP 1Þ 6 I1ðn�2Þ!
ðn�kÞ! þ

ðn�1Þ!
ðn�kÞ!� dðs; tÞ. For each 1 6 I1 6 n � 1, ðI1�1Þðn�2Þ!

ðn�kÞ! þ ðn�1Þ!
ðn�kÞ!� dðs; tÞP I1ðn�2Þ!

ðn�kÞ! þ
dðs; tÞ if n P 5. Therefore, for each l1 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ; 2ðn�1Þ!

ðn�kÞ! � dðs; tÞg, we can construct
a path P1 from s to t such that the distance between s and t on the path is l1.

Similar as above, we can expand the path between s and t more. For each 2 6 x 6 bn2c, let ux�1 and tx�1 be
two adjacent vertices on HPx�1, where HPx�1 is a hamiltonian path of Ajx�1

n;k joining px�1 and qx�1. By
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Propositions 1 and 2, there exist two distinct edges (ux�1, px) and (tx�1, qx) in Ejx�1;jx for some jx 2 hni�
fi; ht; hv; j1; . . . ; jx�1g such that ðpx; qxÞ 2 EðAjx

n;kÞ. See Fig. 9c for an illustration. We can insert one
subcomponent of Ajx

n;k into P0 as follows. Because px and qx are adjacent, and An�1,k�1 is edge symmetric,
we may regard them as in the same subcomponent of Ajx

n;k, say C. C is isomorphic to An�2,k�2. By Theorem 1,
there is a hamiltonian path HPx of C joining px and qx with L(HPx) = jV(An�2,k�2)j � 1. We can insert more
than one subcomponent of Ajx

n;k into P0 as follows. We regard px and qx as in different subcomponents of Ajx
n;k.

By Lemma 1, there is a hamiltonian path HPx joining px and qx with LðHPxÞ ¼ mjV ðAn�2;k�2Þj � 1, where m is
the number of subcomponents of Ajx

n;k we wanted to insert. Thus we can construct a path HPx between px and
qx such that L(HPx) = IxjV(An�2,k�2)j � 1 for each integer Ix with 1 6 Ix 6 n � 1. Let P x ¼ hs; LP ; u; p1; . . . ; px;

HPx; qx; . . . ; q1; ti. Thus we have LðP xÞ ¼ l0 þ ðx� 1ÞjV ðAn�1;k�1Þj þ IxjV ðAn�2;k�2Þj ¼ l0 þ ðx�1Þðn�1Þ!
ðn�kÞ! þ

Ixðn�2Þ!
ðn�kÞ! .

Since dðs; tÞ 6 l0 6 jV ðAi
n;kÞj � dðs; tÞ, we have ðx�1Þðn�1Þ!

ðn�kÞ! þ
Ixðn�2Þ!
ðn�kÞ! þ dðs; tÞ 6 LðP xÞ 6 Ixðn�2Þ!

ðn�kÞ! þ
xðn�1Þ!
ðn�kÞ! � dðs; tÞ.

For each 1 6 Ix 6 n � 1, ðIx�1Þðn�2Þ!
ðn�kÞ! þ xðn�1Þ!

ðn�kÞ! � dðs; tÞP Ixðn�2Þ!
ðn�kÞ! þ

ðx�1Þðn�1Þ!
ðn�kÞ! þ dðs; tÞ if n P 5. Therefore, for each

lx 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ; ðxþ1Þðn�1Þ!
ðn�kÞ! � dðs; tÞg, we can construct a path Px from s to t such that the

distance between s and t on the path is lx by using st-expansion. Notice that the maximal value of lx is
ðbn2cþ1Þðn�1Þ!
ðn�kÞ! � dðs; tÞ, which is greater than n!

2ðn�kÞ!, and jV ðAn;kÞj
2 ¼ n!

2ðn�kÞ!. Hence for any integer l with dðs; tÞ 6
l 6 jV ðAn;kÞj

2 , we can construct a path joining s and t with the length of the path being l. We will use st-expansion
for the remaining cases of the proof.

To complete the construction of a hamiltonian cycle, we consider the following two subcases:
Subcase 1.1: All the vertices of Afj1;...;jxg

n;k are on the path Px for some 1 6 x 6 bn2c. See Fig. 8a for an
illustration. By Lemma 1, there is a hamiltonian path HP of Ahni�fi;j1;...;jxg

n;k joining t 0 and v 0 in which t0 2 V ðAht
n;kÞ

and v0 2 V ðAhv
n;kÞ. Thus hs; P x; t; t0;HP; v0; v;RP ; si forms a hamiltonian cycle, and for each l 2 fdðs; tÞ; dðs; tÞþ

1; dðs; tÞ þ 2; . . . ;
jV ðAn;kÞj

2 g, the distance between s and t on the cycle is l.
Subcase 1.2: Not all the vertices of Afj1;...;jxg

n;k are on the path Px for some 1 6 x 6 bn2c. See Fig. 8b for an
illustration. Then we can find two adjacent vertices y and z in Ajx

n;k which are not on the path Px. Let F � V(Px).
By Propositions 1 and 2, there exist two distinct edges ðy; y0Þ 2 Ejx;hy and ðz; z0Þ 2 Ejx;hz such that
y0 6¼ t0 2 V ðAhy

n;kÞ and z0 6¼ v0 2 V ðAhz
n;kÞ, respectively. If Ajx

n;k � F is isomorphic to An�2,k�2, by Theorem 1,
there is a hamiltonian path HP from y to z in Ajx

n;k � F . If Ajx
n;k � F contains more than one subcomponent of

Ajx
n;k, by Lemma 1, there is a hamiltonian path HP from y to z in Ajx

n;k � F . By Lemma 7, there exist two disjoint
paths DP1 and DP2, such that DP1 joins t 0 and y 0, and DP2 joins v 0 and z 0. Moreover, the two paths span all of
the vertices in Ahni�fi;j1;...;jxg

n;k . Thus hs; P x; t; t0;DP 1; y0; y;HP; z; z0;DP 2; v0; v;RP ; si forms a hamiltonian cycle, and

for each l 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ;
jV ðAn;kÞj

2 g, the distance between s and t on the cycle is l.
Case 2

Suppose that s and t belong to different subcomponents of An,k. We assume that s 2 V ðAi
n;kÞ and t 2 V ðAj

n;kÞ
for any i 5 j 2 hni. By Lemma 6, there exists a minimum length path connecting s and t with the form
hs;MP ; t00; ti or hs,MP, t00, t 0, ti, where MP is a path in Ai

n;k, t00 2 V ðAi
n;kÞ, and t0 2 V ðAj

n;kÞ. Hence we have the
following two subcases:

Subcase 2.1: The minimum length path connecting s and t has the form hs,MP, t00, ti. Then
d(s, t) = d(s, t00) + 1. See Fig. 10a for an illustration. Since Ai

n;k is isomorphic to An�1,k�1, by the inductive
hypothesis, for each l0 2 fdðs; t00Þ; dðs; t00Þ þ 1; dðs; t00Þ þ 2; . . . ; jV ðAi

n;kÞj � dðs; t00Þg, we can construct a ham-
iltonian cycle HCi of Ai

n;k such that the distance between s and t00 on the cycle is l0. Let u and v be the two
neighbors of t00 on HCi. Let HCi = hs,LP,u, t00,v,RP, si, and let P 0 ¼ hs; LP ; u; t00; ti. Without loss of generality,
let L(P0) = l0 + 1. By Proposition 2, d(t00,u) = 1, so we have jAS(t00) \ AS(u)j = n � k � 1 > 1 if n � k > 2. This
means that we can find a subcomponent Aj1

n;k in which j1 2 hni � fi; jg, such that there exist two disjoint edges
(u, p1) and (t00, q1) in Ei;j1 . By Proposition 1, ðp1; q1Þ 2 EðAj1

n;kÞ. By Proposition 2, d(t00, v) 6 2 hence ASðt00Þ �
fj; j1g, and AS(t00) 5 AS(v), and jN*(v)j = n � k > 2, we can find a subcomponent Ahv

n;k, and a ver-
tex v0 2 V ðAhv

n;kÞ such that ðv; v0Þ 2 Ei;hv for some hv 2 hni � fi; j; j1g. By Lemma 1, there exists a hamiltonian
path HP of Ahni�fign;k joining t and v 0. Thus hs; P 0; t;HP; v0; v;RP ; si forms a hamiltonian cycle, and for each
l0 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ; jV ðAi

n;kÞj � dðs; tÞ þ 1g, the distance between s and t on the cycle is l0.
Similar to Case 1, by using st00-expansion, for any integer l00 with dðs; t00Þ 6 l00 6 jV ðAn;kÞj

2 , we can
construct a path joining s and t00 with the length of the path being l00. Since dðs; t00Þ ¼ dðs; tÞ � 1, for any
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integer l with dðs; tÞ 6 l 6 jV ðAn;kÞj
2 , we can construct a path joining s and t with the length of the path

being l.
To complete the construction of a hamiltonian cycle, the proof is the same as that given in Subcase 1.1 and

Subcase 1.2 by replacing vertices t and t 0 in Case 1 with vertices t00 and t in this case, respectively.
Subcase 2.2: The minimum length path connecting s and t has the form hs;MP ; t00; t0; ti. Then

dðs; tÞ ¼ dðs; t00Þ þ 2. See Fig. 10b for an illustration. Since Ai
n;k is isomorphic to An�1,k�1, by the inductive

hypothesis, for each l0 2 fdðs; t00Þ; dðs; t00Þ þ 1; dðs; t00Þ þ 2; . . . ; jV ðAi
n;kÞj � dðs; t00Þg, we can construct a ham-

iltonian cycle HCi of Ai
n;k such that the distance between s and t00 on the cycle is l0. Let u and v be the two

neighbors of t00 on HCi. Let HCi ¼ hs;LP ; u; t00; v;RP ; si, and let P 0 ¼ hs; LP ; u; t00; t0; ti. Without loss of
generality, let L(P0) = l0 + 2. By Proposition 2, d(t00, u) = 1, so we have jAS(t00) \ AS(u)j = n � k � 1 > 1 if
n � k > 2. This means that we can find a subcomponent Aj1

n;k in which j1 2 hni � fi; jg, such that there exist two
disjoint edges (u, p1) and (t00, q1) in Ei;j1 . By Proposition 1, ðp1; q1Þ 2 EðAj1

n;kÞ. By Proposition 2, d(t00, v) 6 2
hence AS(t00) � {j, j1}, and AS(t00) 5 AS(v), and jN*(v)j = n � k > 2, we can find a subcomponent Ahv

n;k, and a
vertex v0 2 V ðAhv

n;kÞ such that ðv; v0Þ 2 Ei;hv for some hv 2 h ni � {i, j, j1}. Let F � V(An, k) and F 0 = {t 0}. By
Lemma 1, there exists a hamiltonian path HP of Ahni�fign;k � F 0 joining t and v 0. Thus hs; P 0; t;HP; v0; v;RP ; si
forms a hamiltonian cycle, and for each l0 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ; jV ðAi

n;kÞj � dðs; tÞ þ 2g, the
distance between s and t on the cycle is l0.

By using st00-expansion, for any integer l00 with dðs; t00Þ 6 l00 6 jV ðAn;kÞj
2 , we can construct a path joining s and

t00 with the length of the path being l00. Since dðs; t00Þ ¼ dðs; tÞ � 2, for any integer l with dðs; tÞ 6 l 6 jV ðAn;kÞj
2 , we

can construct a path joining s and t with the length of the path being l.
To construct a hamiltonian cycle, we consider the following two subcases:
Subcase 2.2.1: All the vertices of Afj1;...;jxg

n;k are on the path Px for some 1 6 x 6 bn2c. By Lemma 1, there is a

hamiltonian path HP of Ahni�fi;j1;...;jxg
n;k � F 0 joining t and v 0 which F 0 = {t 0}, t 2 V ðAj

n;kÞ and v0 2 V ðAhv
n;kÞ. Thus

hs; P x; t00; t0; t;HP; v0; v;RP ; si forms a hamiltonian cycle, and for each l 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ;
jV ðAn;kÞj

2 g, the distance between s and t on the cycle is l.
Subcase 2.2.2: Not all the vertices of Afj1;...;jxg

n;k are on the path Px for some 1 6 x 6 bn2c. See Fig. 10b for an
illustration. Then we can find two adjacent vertices y and z in Ajx

n;k which are not on the path Px. Let F � V(Px).
By Propositions 1 and 2, there exist two distinct edges ðy; y0Þ 2 Ejx;hy and ðz; z0Þ 2 Ejx;hz such that
y0 6¼ t0 2 V ðAhy

n;kÞ and z0 6¼ v0 2 V ðAhz
n;kÞ, respectively. If Ajx

n;k � F is isomorphic to An�2,k�2, by Theorem 1,
there is a hamiltonian path HP from y to z in Ajx

n;k � F . If Ajx
n;k � F contains more than one subcomponents of
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Ajx
n;k, by Lemma 1, there is a hamiltonian path HP from y to z in Ajx

n;k � F . By Lemma 7, there exist two disjoint
paths DP1 and DP2, such that DP1 joins t and y 0, and DP2 joins v 0 and z 0. Moreover, the two paths span all the
vertices in Ahni�fi;j1;...;jxg

n;k � F 0 which F 0 ¼ ft0g. Thus hs; P x; t00; t0; t;DP 1; y0; y;HP; z; z0;DP 2; v0; v;RP ; si forms a

hamiltonian cycle, and for each l 2 fdðs; tÞ; dðs; tÞ þ 1; dðs; tÞ þ 2; . . . ;
jV ðAn;kÞj

2 g, the distance between s and t on
the cycle is l.

Hence the theorem is proved. h

Applying the above theorem we can prove that An,k is panconnected for all n P 3 and n � k P 2.

Theorem 3. The arrangement graph An,k is panconnected for all n P 3 and n � k P 2.

Proof. For k = 1, by Lemma 3, An,1 is panconnected for all n P 3. Chiang and Chen [22] showed that the
An,n�2 is isomorphic to the n-alternating group graph AGn, and Chang et al. [18] proved that AGn is pancon-
nected for all n P 4. Hence the result holds for n P 4 and k = n � 2. Now we prove that An,k is panconnected
for all n P 5 and n � k > 2. Suppose that u and v are any two distinct vertices in An,k. By Theorem 2, An,k is
panpositionable hamiltonian. That is, for each integer l with dðu; vÞ 6 l 6 jV ðAn;kÞj � dðu; vÞ, we can construct
a path P of length l joining u and v.

For each integer l with jV ðAn;kÞj � dðu; vÞ þ 1 6 l 6 jV ðAn;kÞj � 1,we can construct a path P of length l

joining u and v as following. The diameter of An,k is b3k
2 c, and we have dðu; vÞ 6 b3k

2 c. By Theorem 1, An,k is
k(n � k) � 3 fault tolerant hamiltonian connected. For n P 5 and n � k > 2, we have kðn� kÞ � 3 P
b3k

2 c � 1. That means that for each integer l with jV(An,k)j � d(u, v) + 1 6 l 6 jV(An,k)j � 1, we can construct a
path P of length l joining u and v by regarding the vertices not in P as faulty vertices. Therefore, for each
integer l with d(u, v) 6 l 6 jV (An,k)j � 1, there is a path of length l joining u and v in An,k. The theorem is
proved. h

For example, there are 60 vertices in A5,3, and the diameter of A5,3 is 4. Let u and v be two vertices in A5,3

with d(u, v) = 4. By the panpositionable hamiltonian property, we can find a path joining u and v with length
l 2 {4,5,6,. . ., 56}. Let F � V(A5,3) � {u, v}. We can find three paths of length 57, 58, and 59 joining u and v

with jFj = 2, jFj = 1, and jFj = 0, respectively. By choosing two adjacent vertices u and v and applying the
above theorem, we can obtain the following corollary immediately.

Corollary 1. The arrangement graph An,k is pancyclic for all n P 3 and n � k P 2.
5. Concluding remarks

In this paper, we have proposed a new concept called panpositionable hamiltonicity. We have showed that
the arrangement graph An,k is panpositionable hamiltonian if k P 1 and n � k P 2. Applying this result we
can prove that An,k is panconnected and pancyclic if k P 1 and n � k P 2. We now explain some relationship
between the panpositionable hamiltonian property and the panconnected property. We give an example to
show that a panconnected graph G is not necessarily panpositionable hamiltonian. Consider the circulant
graph, let n; s1; s2; . . . ; sr be integers with 1 6 s1 < s2 < � � � < sr. A circulant graph Cðn; s1; s2; . . . ; srÞ is the graph
with vertex set f0; 1; . . . ; n� 1g. Two vertices i and j are adjacent if and only if i � j = ±sk(mod n) for some k

where 1 6 k 6 r. We can check that C(n; 1,2) is panconnected by brute force for n 2 f5; 6; 7; 8; 9; 10g. How-
ever, C(10;1,2) is not panpositionable hamiltonian. In fact, the circulant graph C(n; 1,2) is panconnected
for every n P 5, but it is not panpositionable hamiltonian for some values of n. Therefore, the panpositionable
hamiltonian property is a stronger property for an interconnection network.

Another important issue in the design of an interconnection network is connectivity. It is a widely used
measurement for evaluating the reliability of an interconnection network. The connectivity of G, j(G) is the
minimum number of nodes whose removal leaves the remaining graph disconnected or trivial. Let G be a
graph with connectivity j(G) = j. It follows from Menger’s Theorem [23] that there are l internally vertex-dis-

joint (abbreviated as disjoint) paths joining any two vertices u and v when l 6 j(G). A container C(u,v) between
two distinct nodes u and v in G is a set of internally disjoint paths P1,P2, . . . ,Pr between u and v. The width of
C(u,v) is r. A w-container is a container of width w. The length of a C(u,v), written as l(C(u,v)), is the length of
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the longest path in C(u,v). A w-container C(u,v) is a w*-container if every vertex of G is incident with a path in
C(u,v). A graph G is w*-connected if there exists a w*-container between any two distinct vertices u and v. Obvi-
ously, a graph G is 2*-connected if it is hamiltonian. We also define w*-distance between any two vertices u and
v, dsL

w ðu; vÞ, to be min{l(C(u,v))jC(u,v) is w*-container}. The w�L � spanning diameter of G, denoted by DsL
w ðGÞ,

as the maximum number of dsL
w ðu; vÞ. The spanning diameter is used to measure the performance of multipath

communication in networks [24,25].
By the panpositionable hamiltonian property of the arrangement graph An,k, for any two different vertices x

and y in An,k and for any integer l satisfying dðx; yÞ 6 l 6 jV ðAn;kÞj � dðx; yÞ, there exists a hamiltonian cycle of
An,k such that the relative distance between x and y on the cycle is l. Since the diameter of An,k is b3k

2
c,

dðx; yÞ 6 b3k
2
c. Then b3k

2
c 6 jV ðAn;kÞj

2
6 jV ðAn;kÞj � b3k

2
c. Let l ¼ jV ðAn;kÞj

2
, we can find a hamiltonian cycle

C ¼ hx; P 1; y; P 2; xi of An,k such that the distance between x and y on C is
jV ðAn;kÞj

2
. Obviously, P1 and P2 forms

a 2*-container. Moreover, LðP 1Þ ¼ jV ðAn;kÞj
2
¼ n!

2ðn�kÞ!, and P 2 ¼ jV ðAn;kÞj
2
¼ n!

2ðn�kÞ!. Hence the following corollary
holds.

Corollary 2. Suppose that k P 2 and n � k P 2. Then dsL
2 ðx; yÞ ¼

jV ðAn;kÞj
2 ¼ n!

2ðn�kÞ! for any two vertices x and y in

the arrangement graph An,k. That is, the 2�L -diameter DsL
2 ðAn;kÞ ¼ jV ðAn;kÞj

2 ¼ n!
2ðn�kÞ!.

For a graph G with even vertices, DsL
2 ðGÞP

jV ðGÞj
2

. The arrangement graph An,k with k P 2 has even vertices,
thus our result about the 2�L -diameter of An,k is optimal.

Future work will try to find the panpositionable hamiltonicity of other interconnection networks. It would
be interesting to study some relationship between these specific properties, such as panpositionable hamilto-
nicity, panconnectivity and pancyclicity, and the other criteria for measuring the performance of a network.
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