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On the Generalizations of the Capability Index
Cpmk for Asymmetric Tolerances
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abstract
Boyles (1994) presented a comprehensive
study of several proposed indices for
processes with asymmetric tolerances, and
provided a comparison between the
proposed and the existing indices on the
accuracy in measuring process potential
and performance. owever, none of
those proposed indices reflect process

capability accurately. In fact, for fixed
process standard deviation o those
indices obtain their maximal values not at
w =T, but at u° which is between the
target value T and the center of the
specification  interval. Recently,
annman (1997) considered several
generalizations of the existing indices for
rocesses with asymmetric tolerances.
ut, those  generalizations either
understates the process capability, or
obtain their maximal values not at u = T.
Therefore, Vannman’s generalizations are
mappiropriate for cases with asymmetric
tolerances. In this paper, we consider a
new generalization of C,. which we
refer to as Cr. We show that the new
generalization Cj. 1s superior to the
existing generalizations. We also
investigate the statistical properties of the
natural estimator of Cj.. assuming the
Erocess 1s normally distributed.

eywords: Process capability index;
Target value;, Process yield, Process
centering, Process loss; Asymmetric
Tolerances; Departure ratio.

1. Introduction

Process capability indices (PCls),
which provide numercal measures on
whether a manufacturing process met the
capability requirement preset in the
factory, have recently been the research
focus In quality assurance literature.
Pearn, Kotz, and }lohnson (1992) proposed
the index called C,.x, which combines
the advantages of C, and C,.. The



Index C,. has been defined as:
min{USL —u, u—LSL}
3ol +(u-T)>

where USL 1s the upper specification limmit,
LSL 1s the lower specification limit, T 1s
the target value, u 1s the process mean,
and o1s the process standard deviation.

Peam and Chen (1998) considered a
generalization of C,. for processes with
asymmetric tolerances. The
generalization takes into account the
asymmetry of the tolerance, which reflects
the process capability more accurately
than the ongmal C,.. In this paper, we
take the same approach and consider a
new generalization of C,., to handle
processes with asymmetric tolerances.
The new generalization, which we refer to
as Cpi, may be defined as:

Cpmk =

Crk = ————,
" 3o A
where A = max{d(u - T)/D, dT -

w/Di}, A" = max{d” (u - T)/D,, d' (T -

w/Dj},D,=USL-T,D,=T-LSL, and
d’ = min{D,, D}}. Obviously, if T = m
(symmetric case), then A = =u-T|

and Cj.. reduces to the original index
Comc. The factors A and A" ensure that
the new generalization C;.. obtains its
maximal value at u = T (process 1is
on-target) regardless of whether the
tolerances are symmetric (T = m) or
asymmetric (T m). It s easy to
verlfy that if the process 1s on the
spec1ﬁcat10n limits (u = LSL, or u=USL),
then CJ.. = 0. On the other hand, if
LSL < p < USL, then CJ.. > 0. We
note that for fied o the value of Crmk
decreases when p shifts away from T. In
fact, the value of C;.. decreases faster
when p moves away from T to the closer
specification limit, and decreases slower
when | moves away from T to the farther
specification limit.

since Yield > 20(3C, ) — 1 and

r

Comk < Cpmc < Cpk, then gven value of
Comi, We can calculate the lower bound of
process yield as 2P(BCru) — 1 (see
Boyles (1991)). For example, given a
process with capability Cp. = 1, the
process yield 1s guaranteed to be no less
than 20 (3) — 1 = 99.73%. On the other
hand, the upper bound on the departure
ratio can be calculated as (A/d) < d/(3cd”
+d) for C/u = ¢. The result indicates
that for large value of Cj.. the process
departure 1s small ~We note that the
departure ratio, A/d= (u - T)/D,1f p >
T, andAld=(T - u)/D;ffu<T.

2. Estimation of Cnk

The natural estimator Clu is
obtained by replacing the process mean |
and the process variance o’ by thewr
conventional estimators X and S2 ,
which may be obtained from a stable
process.

C’ _ d% —A*
pmk T T,
3,52 + A”

where d* = min{D,, D}, A = max{d( X -
T)/D,, dT -X)/Dj}, A" = max{d'(X -
T)/D,, d'(T -X)/D}, X =(ZL,X)/n,
and S2 = >0 (Xi-X)?/n. If the
manufacturing tolerance is symmetric,
thend*=d, A = A* = |X -T|, and the
estimator Cl reduces to Com =(d—|X
—m)/3[S2 + (X - T)J'"?, the natural
estimator of C,. (symmetric case)
considered by Peamn, Kotz, and Johnson
(1992).
3. Distributions aml*Moment*s

We now define D' = n'*(d /0),D =
n'*(d/o), K =nS%/6’, Z=n'""(X-T)/g,
Y = [max{(d/D)Z, - (d/D)Z)}1°, & =
n'*(u — T)/o, and A = &. Under the
assumption of normality, the probability

density function of C;, can be derived
as:



—7»/2 oo i .
Z(D]!S) {Z‘()'O( 1) (ui,vi,x,z)dz}, —%<x <0,

¢ 0

—7»/2 oo j 1 1x
fo ()= B xS D { RSB xz)dz} >0,

otherwise,

where o, = [(D"x D,)/(d +3xd)]?, o, = [(D"xD)/(d"+3xd)] >, B, = (D" xD,)/dT, B =
[(D"xD)/d7T, F, is the cumulative distribution function of K, G,(y) = F, ((3x)' [D-
(d /D)y~ (d/DY*y), G\(y) = F (392D~ (d'/D)y'?1*~(d/D)yy), B = 12(n'"dy
/{(18c)™*I'(n-1)/2]},u,=d"/D,, u,=d" /D, v, = (d/D,)* v, = (d/D)? and

I"(u,v,%,2)= (l-x2z)(uz- 3J\Ti)2 zgnfs)/z[ujz N 3\/\7(2 g
| (ui +3X.\/\Ti) jH(n+3) /2

» (D) [(wz+3,~)? +9(1-v)(1 - xz)2]
1 18(u, +3%,f7,)?

In general, the 1-th moment of Clm canbe obtained as:
12 (1 D* r‘ie—h/z
E(C, - .| =| =—&=
(G- 32{( (%) 57
= n-r+1+j\(l+1+] 1+ 3\ n+1+] |
r I’ I
[ ()

X g x & XI:(S J ,F @@,b;c;z, )+(-1) (g—) JF@biez)|t, (4
u 1

where ,Fi(a, b; c; z) is the Gaussian hypergeometric function (Abramowitz and
Stegun (1970)) with parameters a=1/2,b =(l +1+j)/2, c=(n+1+j)/2,z,=1-(d/D)
2, and Z;= 1 - (d/Dl)2




4. Conclusions
In this paper, we propose a new
generalization of C,. , to handle
rocesses Wwith mmetric tolerances.
he new generalization, which we refer to
as Cj., Incorporates the asymmetry of
the manufactuning tolerance, thus reflects
IlJ_rocess performance more accurately.
he new generalization guarantees the
yield which 1s greater than a certain level
for given index value of C;.. In fact,
rvenvalue of Cj.., we can calculate the
wer bound of process yield as
20 (3C; ) — 1. Further, we obtain the
upper bound on the departure ratio A/d <
d/(Bed” + d) for all CJ.x = ¢c. We
nvestigated the statistical properties of
the natural estimator of C,.« assumin
that the process 1s normally distributed.
We obtamned the exact distribution of the
natural estimator. We also obtamned the
1-th moment, expected value, and the
variance of the natural estimator. In
addition, we derrved the cumulative
distnibution function and the probability
density function of the natural estimator.
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