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abstract 
Boyles (1994) presented a comprehensive 
study of several proposed indices for 
processes with asymmetric tolerances, and 
provided a comparison between the 
proposed and the existing indices on the 
accuracy in measuring process potential 
and performance.  However, none of 
those proposed indices reflect process 

capability accurately.  In fact, for fixed 
process standard deviation σ, those 
indices obtain their maximal values not at 
µ = T, but at µ* which is between the 
target value T and the center of the 
specification interval.  Recently, 
Vännman (1997) considered several 
generalizations of the existing indices for 
processes with asymmetric tolerances.  
But, those generalizations either 
understates the process capability, or 
obtain their maximal values not at µ = T.  
Therefore, Vännman’s generalizations are 
inappropriate for cases with asymmetric 
tolerances.  In this paper, we consider a 
new generalization of pmkC  which we 
refer to as pmkC ′′ .  We show that the new 
generalization pmkC ′′  is superior to the 
existing generalizations.  We also 
investigate the statistical properties of the 
natural estimator of pmkC ′′  assuming the 
process is normally distributed. 
Keywords: Process capability index; 
Target value; Process yield; Process 
centering; Process loss; Asymmetric 
Tolerances; Departure ratio. 

1. Introduction 

Process capability indices (PCIs), 
which provide numerical measures on 
whether a manufacturing process met the 
capability requirement preset in the 
factory, have recently been the research 
focus in quality assurance literature.  
Pearn, Kotz, and Johnson (1992) proposed 
the index called pmkC , which combines 
the advantages of pkC  and pmC .  The 
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index pmkC  has been defined as: 

 pmkC  = 
22 )T(3

}LSL,USLmin{

−µ+σ
−µµ−

, 

where USL is the upper specification l imit,  
LSL is the lower specification limit, T is 
the target value, µ is the process mean, 
and σ is the process standard deviation.   
 Pearn and Chen (1998) considered a 
generalization of pkC  for processes with 
asymmetric tolerances.  The 
generalization takes into account the 
asymmetry of the tolerance, which reflects 
the process capability more accurately 
than the original pkC .  In this paper, we 
take the same approach and consider a 
new generalization of pmkC , to handle 
processes with asymmetric tolerances.  
The new generalization, which we refer to 
as pmkC ′′ , may be defined as: 

 pmkC ′′  = 
22

*

A3

Ad

+σ
− ∗

, 

where A = max{d(µ − T)/Du, d(T − 
µ)/Dl}, A

* = max{d*
  (µ − T)/Du, d

*
  (T − 

µ)/Dl}, Du = USL – T, Dl = T – LSL, and 
d*
 = min{Du, Dl}.  Obviously, if T = m 

(symmetric case), then A = A* = |µ − T| 
and pmkC ′′  reduces to the original index  

.Cpmk   The factors A and A* ensure that 
the new generalization pmkC ′′  obtains its 
maximal value at µ = T (process is 
on-target) regardless of whether the 
tolerances are symmetric (T = m) or 
asymmetric (T �  m).  It is easy to 
verify that if the process is on the 
specification limits (µ = LSL, or µ = USL), 
then pmkC ′′  = 0.  On the other hand, if 
LSL < µ < USL, then pmkC ′′  > 0.  We 
note that for fixed σ the value of pmkC ′′  
decreases when µ shifts away from T.  In 
fact, the value of pmkC ′′  decreases faster 
when µ moves away from T to the closer 
specification limit, and decreases slower 
when µ moves away from T to the farther 
specification limit. 
  Since Yield ≥  2Φ (3 pkC ) – 1 and 

pmkC ′′  ≤ pmkC  ≤ pkC , then given value of 
pmkC ′′ , we can calculate the lower bound of 

process yield as 2Φ(3 pmkC ′′ ) – 1 (see 
Boyles (1991)).  For example, given a 
process with capability pmkC ′′  = 1, the 
process yield is guaranteed to be no less 
than 2Φ (3) – 1 = 99.73 %.  On the other 
hand, the upper bound on the departure 
ratio can be calculated as (A/d) ≤ d/(3cd*

  
+ d) for pmkC ′′

 ≥  c.  The result indicates 
that for large value of pmkC ′′  the process 
departure is small.  We note that the 
departure ratio, A/d = (µ − T)/Du if µ ≥  
T, and A/d = (T − µ)/Dl if µ < T. 

2. Estimation of pmkC ′′  

The natural estimator pmkĈ ′′  is 
obtained by replacing the process mean µ  
and the process variance σ 

2 by their 
conventional estimators X  and 2

nS , 
which may be obtained from a stable 
process. 

pmkĈ ′′  = ,
ÂS3

Âd
22

n +

− ∗∗

 

where d
*
 = min{Du, Dl}, Â  = max{d( X − 

T)/Du, d(T − X )/Dl}, 
∗Â  = max{d*(X − 

T)/Du, d
*(T −  X )/Dl}, X  = (∑ =

n

1i iX )/n, 

and 2
nS  = .n)XX(n

1i
2

i∑ = − /   If the 

manufacturing tolerance is symmetric, 

then d* = d, Â  = ∗Â  = |TX| − , and the 

estimator pmkĈ ′′  reduces to pmkĈ  = ( d − |X  

− m| )/3[ 2
nS  + (X  − T)2]1/2, the natural 

estimator of pmkC  (symmetric case) 

considered by Pearn, Kotz, and Johnson 

(1992).   

3.  Distributions and Moments 

We now define D* = n1/2(d*/σ), D = 
n1/2(d/σ), K = n 2

nS /σ 

2, Z = n1/2(X - T)/σ, 
Y = [max{(d/Du)Z, − (d/Dl)Z)}] 

2, δ = 
n1/2(µ − T)/σ, and λ = δ2. Under the 
assumption of normality, the probability 
density function of pmkĈ ′′  can be derived 
as:
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where α0 = [(D
* × Du)/(d

* + 3xd)] 2, α1 = [(D
* × Dl)/(d

* + 3xd)] 2, β0 = [(D
* × Du)/d

*] 2, β1 = 
[(D*

 × Dl)/d
*]2, KF  is the cumulative distribution function of K, G0(y) = KF ( (3x) -2  [D*

 − 

(d*/Du) y
1/2] 2 − (d/Du) 

2
 y ), G1(y) = KF ( (3x) -2 [D*

 − (d*/Dl)y
1/2] 2 − (d/Dl)

2
 y ), B*

 = 12(n1/2d*) n 

/{(18σ2) n/2 Γ[(n − 1)/2]}, u0 = d
*/Du, u1 = d

*/Dl, v0 = (d/Du) 
2, v1 = (d/Dl) 
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In general, the r-th moment of pmkĈ ′′  can be obtained as: 

 E( pmkĈ ′′ ) r = ( )∑
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where 2F1(a, b; c; z) is the Gaussian hypergeometric function (Abramowitz and 

Stegun (1970)) with parameters a = r/2, b = (1 + i + j)/2, c = (n + i + j)/2, zu = 1 − (d/Du) 
2, and zl = 1 − (d/Dl) 

2.
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4. Conclusions 

In this paper, we propose a new 
generalization of pmkC , to handle 
processes with asymmetric tolerances.  
The new generalization, which we refer to 
as pmkC ′′ , incorporates the asymmetry of 
the manufacturing tolerance, thus reflects 
process performance more accurately.  
The new generalization guarantees the 
yield which is greater than a certain level 
for given index value of pmkC ′′ .  In fact, 
given value of pmkC ′′ , we can calculate the 
lower bound of process yield as 
2Φ (3 pmkC ′′ ) – 1.  Further, we obtain the 
upper bound on the departure ratio A/d ≤ 
d/(3cd*

  + d) for all pmkC ′′  ≥  c.  We 
investigated the statistical properties of 
the natural estimator of pmkC ′′  assuming 
that the process is normally distributed.  
We obtained the exact distribution of the 
natural estimator.  We also obtained the 
r-th moment, expected value, and the 
variance of the natural estimator.  In 
addition, we derived the cumulative 
distribution function and the probability 
density function of the natural estimator.  
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