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Abstract – As part of the joint project 
“Study of Single Chip Multiprocessors Design,” 

we propose a task allocation algorithm that aims 
at finding an optimal task assignment for any 

parallel programs on the MP-chip based 
multiprocessor systems. The main theme of our 

approach is to traverse a state-space tree that 
enumerates all possible task assignments. The 

key idea o f the ef f icient task allocation algorithm 
is that we apply two pruning rules on each 

traversed state to check whether traversal o f a  
given sub-tree is required by taking advantage o f  

dominance relation and task clustering heuristics.  
The pruning rules try to eliminate partial 

assignments that violate the clustering on tasks 
but still keeping some optimal assignments in 

the future search space. In contrast to previous 
state-space searching methods for task allocation, 

the proposed pruning rules significantly reduce 
the time and space required to obtain an optimal 

assignment and lead the traversal to a near 
optimal assignment in a small number of states. 

Experimental evaluation shows that the pruning 
rules make the state-space searching approach 

feasible for practical use. 
1. Introduction 

As part of the joint project “Study of 
Single-Chip Multiprocessor Design,” the goal of 
this project is to optimize the benchmark 

program for the MP-chip based system. We 
investigate the task allocation problem of  

mapping a parallel program to a multiple 
MP-chip systems. A parallel program is modeled 

as a node- and edge- weighted undirected graph, 
called task graph. The task allocation problem 

becomes a problem of mapping the set of tasks 
to the set of processors such that the completion 

time is minimized, considering both processor 
load and communication overhead. 

The main theme of our approach is to 
traverse a state-space tree that enumerates all 

possible task assignments. The key idea of the 
e f ficient task allocation algorithm is that we 

apply two pruning rules on each traversed state 
to check whether traversal o f a given sub-tree is 

required by taking advantage of dominance 
relation and task clustering heuristics. The 

pruning rules try to eliminate partial assignments 
that violate the clustering on tasks but still 

keeping some optimal assignments in the future 
search space. In contrast to previous state-space 

searching methods for task allocation, the 
proposed pruning rules significantly reduce the 

time and space required to obtain an optimal 
assignment and lead the traversal to a near 

optimal assignment in a small number of states. 
Experiment shows that our proposed pruning 

rule makes state-space searching approach 
feasible for practical use. 

2. Modeling the Task Allocation Problem 
2.1. Formulating the task allocation problem 

We follow [1][2][3] to formulate the task 

allocation problem. 
The input of a task allocation algorithm is a 

task graph G(T,E,e,c) and a machine 
configuration M(P,d). A parallel program is 

represented as a task graph G(T,E,e,c) in which a 
node represents a program module, called a task, 

and an edge represents communication between 
tasks. Weight on a task, denoted e(ti), represents 

the execution time of the task and weight on an 
edge, denoted c(ti,tj), represents the amount of  

data trans fe rred between the two tasks. The 
machine configuration is represented as M(P,d). 

P={p0,p1,…,pm-1} is the set of all processors. For 

each pair o f processors (pk,pl)∈P, a distance 
d(pk,pl) is associated to represent the latency o f  
transferring one unit of data between pk and pl. 

The output of the task allocation algorithm, 
called a complete assignment, is a mapping that 

maps the set of tasks T to the set of processors P. 
An optimal assignment is a complete assignment 

with minimum cost. To find an optimal 
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assignment, the branch-and-bound algorithm 
will go through several partial assignments, 

where only a subset of the tasks has been 
assigned. The cost of an partial/complete 

assignment A is the turn-around time of the last 
processor finishes its execution. The turn-around 

time of processor pk, denoted TAk(A), is the time 
to execute all tasks assigned to pk plus the time 

that these tasks communicate with other tasks 
not assigned to pk, defined as follows: 
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2.2. Transforming to the state-space 

searching problem 
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Figure-1. State-space tree 
 

We traverse the state-space tree, as 
illustrated in Figure-1, to find an optimal 

assignment. During the traversal, an active set, 
denoted ActiveSet, is used to keep track o f all 

partial/complete assignments that have been 
explored but not visited. We follow the approach 

in Shen and Tsai[1] to determine the traverse 
order. For each partial/complete assignment A, a 

lower-bound (denoted L(A) ) on all complete 
assignments extended f rom A (or A itsel f in case 

that A is a complete assignment) is estimated. 
The partial/complete assignment in ActiveSet 

with minimum L(•) is removed for visiting in 
each iteration. L(A) is computed according to the 

additional cost of assigning tasks not assigned in 
A, defined as follows: 
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For a partial assignment A, the cost lower-bound 
L(A) for all complete assignments extended from 

A is estimated to be 
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3. Dominance Relation for State-Space 

Pruning 
We first develop a dominance relation [6] to 

serve as the basis for developing pruning rules. 
The proposed dominance relation checks 

whether a partial assignment can be pruned or 
not according the estimated turn-around time 

difference lower-bound: 
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Theorem 1 (Dominance relation for space 

pruning).  Let A1 and A2 be two partial 
assignments assigning the same set of tasks. If  

TADLk(A1,A2)≥0 for each processor pk, then A1 
dominates A2. 

 
4. Space Pruning by Detecting the Clustering 

on Tasks 
The dominance relation proposed in Section 

3 is only ef f ective when a small cut can be found. 
To overcome this drawback, we develop a 

further pruning rule that integrates the detection 
of clustering on tasks as well as the dominance 

relation. 

AlgorithmPruneTest(A,Ak,Au)
• input:

– A, Ak: partial assignments.
• depth(A

k
)≥depth(A)

– Au: a complete assignment
• output:

– prune=True if  Acan be pruned, otherwise 
prune=False

• method:

1) perform Compute_PA(A,  Ak) to determine 
PA

i

2) /* exclude extensions violating PA */
2.1) success←False
2.2) for each processor p

k
do

ifTALk(A, violate PA)≥cost(Au) then
success ←True

break
2.3) ifsuccess=False then PA

i
←P

3) Ad←the ancestor of Ak in the same level with A
4) prune←True

5) /* dominate extensions obeying PA */
for each processor pk do

ifTADL
k
(A

d
,A,PA)<0 then

prune←False
break

6) return prune

 
Figure-2. Algorithm to examine the partial 
assignment using the pruning rule 
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AlgorithmCompute_PA(A,A
k
)

• input:

– A,  A
k
: partial assignm ents,  

depth(A
k
)≥depth(A)

• output:

– PA
i
⊆P for each task t

i
not assigned in 

A (P is the set of  all processors)

• method :

1) p
c
← A

k
(t
a
) where t

a
is the last task 

assigned in A

2) for each task t
i
not assigned in A do

if t
i
is assigned in A

k
then

PA
i
←{ processor p

k
| d(p

k
, 

p
c
)≤d(A

k
(t

i
),  p

c
) }

else PA
i
←P

 
Figure-3. Algorithm to predict the clustering on 
tasks 

 
Figure-2 presents the algorithm to 

examining a partial assignment A. It calls 
procedure Compute_PA, presented in Figure-3, 

to detect the task clustering. Two additional 
inputs are required: (1) partial assignment 

Ak—called the killer—reflecting the clustering 
on tasks, and (2) complete assignment Au serve 

as an upper bound on the optimal cost, which is 
obtained by the greedy search. 

We determine whether the candidate partial  
assignment A can be pruned or not according to 

the following quantities: 
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The killers are obtained as follows. To 
increase the possibility of pruning a partial  

assignment, we may find multiple killers, called 
a KillerSet, instead of only one killer. To obtain 

the killers, a link to the deepest descendant node 
is associated with each visited partial assignment. 

For each visited partial assignment Aa, we 
associate a pointer deep(Aa) pointing to the 

deepest partial assignment visited in the sub-tree 
of Aa. If two or more partial assignments in the 

same level of the state-space tree are visited, 
deep(Aa) points to the first one visited. The 

KillerSet is the set of all deep(Aa) for each 
ancestor o f A along with the complete 

assignment Au. 

( )
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AAA|Adeep
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5. Task Allocation using Branch-and-Bound 

Method with Preprocessing Stage 

Algorithm BB-Alloc(G,M)
• /* initialization phase */

– L(root of  the state-space tree) ←0
– ActiveSet←{root of  the state-space tree}
– Obtain A

u
by perform greedy search 

starting at the root of the state-space tree

• while not time-out do /* traversal phase */
1) remove a partial/complete assignment A

v

with minimum L(•) f rom ActiveSet and
perform the following to visit(Av)
1.1) /* update deepest link for all 

ancestor of A*/

deep(A)←A
for each Aa: ancestor of  A in the 

state-space tree do

ifdepth(A)>depth(deep(Aa)) 
then deep(Aa)←A

1.2) /* try to improve A
u
*/

perform greedy search starting 
f rom A to obtain a complete 
assignment A

c

ifcost(Ac)<cost(Au) then Au←Ac

2) ifAv is a complete assignment then Au← Av

and terminate the traversal by return A
u

3) /* check if  the sub-tree of  A needs further 
traversal */
KillerSet←{deep(A

a
)| A

a
is an ancestor 

of  A
v
in the state-space tree}∪{A

u
}

prune ←False
for each A

k
∈KillerSetdo

prune←PruneTest(Ak,  Au,Av)
ifprune=True then break

4) /* exploit children of  A if  the sub-tree of  A
needs further traversal */

ifprune=False then
for each child A’vof Av in the 

state-space tree docompute 
L(A’v) and insert A’v into 
ActiveSet

 
Figure-4. The branch-and-bound algorithm for  
task allocation 

 
To exploit the ef fectiveness of the pruning 

rule, tasks should be enumerated in such an 
order that tasks with high communication are 

enumerated fi rst. This can be achieved by 
per forming the max- flow min-cut algorithm 

recursively. 
The branch-and-bound algorithm is 

described in Figure-4. Optimal assignment will 
be obtained if no over flow on the time and space 

required. 
 

Theorem 2 (Correctness of our proposed 
algorithm).  Our proposed branch-and-bound 

algorithm will end up with an optimal 
assignment if neither over flow on the ActiveSet  

nor time-out occurs. 
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The ActiveSet is implemented as an array o f  

heaps. To assign n tasks to m processors, the 
ActiveSet is a two dimensional array heap[i ][j]  

for 1≤i≤n and 1≤j≤m. A (partial) assignment 
assigning tasks {t0,t1,…,ti-1} to j of the m 

processors is placed in heap[i][j]. The 
complexity of the branch-and-bound algorithm is 

controlled by the size of heap[i][j], denoted 
size(i,j), which is a polynomial function of i and 

j. When the number of (partial) assignments in 
the ActiveSet assigning {t0,t1,…,ti-1} using j 

processors exceeds size(i,j), the one in heap[i][j]  

with maximum L(•) will be dropped. 
6. Experimental Evaluation 

The performance and allocation quality are 
evaluated using 240 task graphs and three 

hierarchical machine configurations. On 
generating task graphs, the distribution on 

weights and edge density are chosen to cover all  
degree of clustering on tasks. On selecting the 

machine configuration, the processor distances 
are chosen such that the parallelism in optimal 

assignments ranges from using a few processors 
within a MP-chip to using all processors across 

multiple MP-chip. 
We use the term performance to re fer to the 

execution time that the task allocation algorithm 
spends to obtain an optimal assignment without 

time and space constraint. The metric is: 

 

Speed-up=(number o f states traversed by the 
A*-algorithm)/(number o f states traversed by 

our proposed algorithm) 
 

The evaluation shows that the speed-up ranges 
f rom 1.03-2.20, depending on the degree of  

clustering on tasks and parallelism. 
We use the term allocation quality to refe r to 

how good the complete assignment returned by 
the task allocation algorithm is subject to time 

and space constraint. The metric is: 
 

Allocation quality=(cost of the complete 
assignment returned)/(cost of the optimal 

assignment) 
 

Time and space complexity are controlled by 
setting ActiveSet size and time-out threshold. In 

the experiment, the time-out threshold is set to 
be n*m, where n is the number o f tasks and m is  

the number of processors, and the size of 
heap[i] [j] is set to be i*j. Each test yields an 

allocation quality within 1.14. 
7. Conclusion 

In this report, we proposed a two-stage task 
allocation algorithm that aims at finding an 

optimal assignment. The first stage is a recursive 
partitioning procedure to form a task 

enumerating order such that we can exploit the 
task clustering property. The second stage is a 

branch-and-bound algorithm with pruning rule to 
traverse the state-space tree. The pruning rules 

keep some optimal assignments in the future 
search space and hence an optimal assignment 

will be obtained if neither time-out nor over flow 
on the ActiveSet occurs. 

The key idea to the efficient task allocation 
is the pruning rule, which is a combination of a 

dominance relation and task clustering heuristic. 
The pruning rule reduces the time and space 

required to obtain an optimal assignment. 
Moreover, cooperated with the space ef f icient  

ActiveSet design, the traversal procedure can 
reach a near optimal assignment within a low 

order polynomial number of states. 
The task allocation algorithm is evaluated 

on randomly generated task graphs. The 
experiment shows that our proposed pruning rule 

is ef fective to prune the search space and lead 
the traversal to a near optimal assignment within 

a low order polynomial number of states. This 
makes the state-space searching approach 

feasible for practical use. 
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