
[Paper-1999-12-14]

Page 1

��������	
��
�����

�������������
Benchmarking and Performance Evaluation

�!"#NSC- 88-2213-E-009-040

$�%W' 8(1)* 88' 7(31)
+,-#./0 123�456��7

����--�������”�	
��

������”������, ������

������ , � !��
�	
�"#

���
�$% , &'()*+�,-�

�./01234567&�, 8��9:;

< (pruning rule).=9:;<> dominance

relation ?@A��BCD.7&*EFG=

9:;<, HI�@AJ<�K@L (partial

solution)MN, 8H,-LOPQRSH7T

�3456U.?VW�34567&��X

Y , =9:;<Z[�\]7&,-LB^

�_6?56, 8`7&*Eabc_6d,

efgfh,-L.ijklmn, B��9

:;<, `34567&��, D�i2��

�.

Abstract – As part of the joint project
“Study of Single Chip Multiprocessors Design,”

we propose a task allocation algorithm that aims
at finding an optimal task assignment for any

parallel programs on the MP-chip based
multiprocessor systems. The main theme of our

approach is to traverse a state-space tree that
enumerates all possible task assignments. The

key idea o f the ef f icient task allocation algorithm
is that we apply two pruning rules on each

traversed state to check whether traversal o f a
given sub-tree is required by taking advantage o f

dominance relation and task clustering heuristics.
The pruning rules try to eliminate partial

assignments that violate the clustering on tasks
but still keeping some optimal assignments in

the future search space. In contrast to previous
state-space searching methods for task allocation,

the proposed pruning rules significantly reduce
the time and space required to obtain an optimal

assignment and lead the traversal to a near
optimal assignment in a small number of states.

Experimental evaluation shows that the pruning
rules make the state-space searching approach

feasible for practical use.
1. Introduction

As part of the joint project “Study of
Single-Chip Multiprocessor Design,” the goal of
this project is to optimize the benchmark

program for the MP-chip based system. We
investigate the task allocation problem of

mapping a parallel program to a multiple
MP-chip systems. A parallel program is modeled

as a node- and edge- weighted undirected graph,
called task graph. The task allocation problem

becomes a problem of mapping the set of tasks
to the set of processors such that the completion

time is minimized, considering both processor
load and communication overhead.

The main theme of our approach is to
traverse a state-space tree that enumerates all

possible task assignments. The key idea of the
e f ficient task allocation algorithm is that we

apply two pruning rules on each traversed state
to check whether traversal o f a given sub-tree is

required by taking advantage of dominance
relation and task clustering heuristics. The

pruning rules try to eliminate partial assignments
that violate the clustering on tasks but still

keeping some optimal assignments in the future
search space. In contrast to previous state-space

searching methods for task allocation, the
proposed pruning rules significantly reduce the

time and space required to obtain an optimal
assignment and lead the traversal to a near

optimal assignment in a small number of states.
Experiment shows that our proposed pruning

rule makes state-space searching approach
feasible for practical use.

2. Modeling the Task Allocation Problem
2.1. Formulating the task allocation problem

We follow [1][2][3] to formulate the task

allocation problem.
The input of a task allocation algorithm is a

task graph G(T,E,e,c) and a machine
configuration M(P,d). A parallel program is

represented as a task graph G(T,E,e,c) in which a
node represents a program module, called a task,

and an edge represents communication between
tasks. Weight on a task, denoted e(ti), represents

the execution time of the task and weight on an
edge, denoted c(ti,tj), represents the amount of

data trans fe rred between the two tasks. The
machine configuration is represented as M(P,d).

P={p0,p1,…,pm-1} is the set of all processors. For

each pair o f processors (pk,pl)∈P, a distance
d(pk,pl) is associated to represent the latency o f
transferring one unit of data between pk and pl.

The output of the task allocation algorithm,
called a complete assignment, is a mapping that

maps the set of tasks T to the set of processors P.
An optimal assignment is a complete assignment

with minimum cost. To find an optimal

[Paper-1999-12-14]

Page 2

assignment, the branch-and-bound algorithm
will go through several partial assignments,

where only a subset of the tasks has been
assigned. The cost of an partial/complete

assignment A is the turn-around time of the last
processor finishes its execution. The turn-around

time of processor pk, denoted TAk(A), is the time
to execute all tasks assigned to pk plus the time

that these tasks communicate with other tasks
not assigned to pk, defined as follows:

∑∑∑
≠==

+=
kjjkiikii

ptAt
jkji

ptAtptAt
ik tApdttcteATA

)(:)(:)(:

))(,(*),()()(

2.2. Transforming to the state-space

searching problem

roo t

t0-->p 1

t1-->p 1 t1-->p2t 1-->p0

t 0-->p0

t1-->p 0 t 1-->p1 t1-->p2

t2-->p0 t2-->p1 t
2
-->p

2

i nternal node: parti al as signment

l eaf: complete ass ignment

roo t

t0-->p 1

t1-->p 1 t1-->p2t 1-->p0

t0-->p 1

t1-->p 1 t1-->p2t 1-->p0

t 0-->p0

t1-->p 0 t 1-->p1 t1-->p2

t2-->p0 t2-->p1 t
2
-->p

2

t 0-->p0

t1-->p 0 t 1-->p1 t1-->p2

t2-->p0 t2-->p1 t
2
-->p

2

i nternal node: parti al as signment

l eaf: complete ass ignment

Figure-1. State-space tree

We traverse the state-space tree, as
illustrated in Figure-1, to find an optimal

assignment. During the traversal, an active set,
denoted ActiveSet, is used to keep track o f all

partial/complete assignments that have been
explored but not visited. We follow the approach

in Shen and Tsai[1] to determine the traverse
order. For each partial/complete assignment A, a

lower-bound (denoted L(A)) on all complete
assignments extended f rom A (or A itsel f in case

that A is a complete assignment) is estimated.
The partial/complete assignment in ActiveSet

with minimum L(•) is removed for visiting in
each iteration. L(A) is computed according to the

additional cost of assigning tasks not assigned in
A, defined as follows:

lk
p)t(A:t

ikji

jkjk

pp))t(A,p(d*)t,t(c

)t(e)A,pt(AC

kii

=∑+

=→

≠
 if

lk
p)t(A:t

lkji

ljk

pp)p,p(d*)t,t(c

)A,pt(AC

kii

≠∑

=→

=
 if

For a partial assignment A, the cost lower-bound
L(A) for all complete assignments extended from

A is estimated to be














∑ 













→+

≡

A:t
lik

p
k

p

i l

k

)A,pt(ACmin)A(TA

max)A(L

 in assignednot prcoessor

processor

3. Dominance Relation for State-Space

Pruning
We first develop a dominance relation [6] to

serve as the basis for developing pruning rules.
The proposed dominance relation checks

whether a partial assignment can be pruned or
not according the estimated turn-around time

difference lower-bound:
()

() ()()∑ 












→−→+

−≡

∈ ∈St
liklik

Pp

kkk

i l

A,ptACA,ptACmin

)A(TA)A(TAA,ATADL

12

1221

Theorem 1 (Dominance relation for space

pruning). Let A1 and A2 be two partial
assignments assigning the same set of tasks. If

TADLk(A1,A2)≥0 for each processor pk, then A1
dominates A2.

4. Space Pruning by Detecting the Clustering

on Tasks
The dominance relation proposed in Section

3 is only ef f ective when a small cut can be found.
To overcome this drawback, we develop a

further pruning rule that integrates the detection
of clustering on tasks as well as the dominance

relation.

AlgorithmPruneTest(A,Ak,Au)
• input:

– A, Ak: partial assignments.
• depth(A

k
)≥depth(A)

– Au: a complete assignment
• output:

– prune=True if Acan be pruned, otherwise
prune=False

• method:

1) perform Compute_PA(A, Ak) to determine
PA

i

2) /* exclude extensions violating PA */
2.1) success←False
2.2) for each processor p

k
do

ifTALk(A, violate PA)≥cost(Au) then
success ←True

break
2.3) ifsuccess=False then PA

i
←P

3) Ad←the ancestor of Ak in the same level with A
4) prune←True

5) /* dominate extensions obeying PA */
for each processor pk do

ifTADL
k
(A

d
,A,PA)<0 then

prune←False
break

6) return prune

Figure-2. Algorithm to examine the partial
assignment using the pruning rule

[Paper-1999-12-14]

Page 3

AlgorithmCompute_PA(A,A
k
)

• input:

– A, A
k
: partial assignm ents,

depth(A
k
)≥depth(A)

• output:

– PA
i
⊆P for each task t

i
not assigned in

A (P is the set of all processors)

• method :

1) p
c
← A

k
(t
a
) where t

a
is the last task

assigned in A

2) for each task t
i
not assigned in A do

if t
i
is assigned in A

k
then

PA
i
←{ processor p

k
| d(p

k
,

p
c
)≤d(A

k
(t

i
), p

c
) }

else PA
i
←P

Figure-3. Algorithm to predict the clustering on
tasks

Figure-2 presents the algorithm to

examining a partial assignment A. It calls
procedure Compute_PA, presented in Figure-3,

to detect the task clustering. Two additional
inputs are required: (1) partial assignment

Ak—called the killer—reflecting the clustering
on tasks, and (2) complete assignment Au serve

as an upper bound on the optimal cost, which is
obtained by the greedy search.

We determine whether the candidate partial
assignment A can be pruned or not according to

the following quantities:
()

()

()

()A,ptACmin

A,ptACmin

ATA

PA,ATAL

lik
PAp

ljk
p

tt
At

k

ik

il

l

ij

j

→+














→∑+

≡

∉

≠

processor

processor
 and

 in assignednot

 violate

() () ()

() ()()













→−→∑+

−=

∈
dliklik

PApt

dkkdk

A,ptACA,ptACmin

ATAATAPA,A,ATADL

ili assignednot

The killers are obtained as follows. To
increase the possibility of pruning a partial

assignment, we may find multiple killers, called
a KillerSet, instead of only one killer. To obtain

the killers, a link to the deepest descendant node
is associated with each visited partial assignment.

For each visited partial assignment Aa, we
associate a pointer deep(Aa) pointing to the

deepest partial assignment visited in the sub-tree
of Aa. If two or more partial assignments in the

same level of the state-space tree are visited,
deep(Aa) points to the first one visited. The

KillerSet is the set of all deep(Aa) for each
ancestor o f A along with the complete

assignment Au.

()
(){ } { }

uaa
AAA|Adeep

AKillerSet

∪
=

 ofancestor an is

5. Task Allocation using Branch-and-Bound

Method with Preprocessing Stage

Algorithm BB-Alloc(G,M)
• /* initialization phase */

– L(root of the state-space tree) ←0
– ActiveSet←{root of the state-space tree}
– Obtain A

u
by perform greedy search

starting at the root of the state-space tree

• while not time-out do /* traversal phase */
1) remove a partial/complete assignment A

v

with minimum L(•) f rom ActiveSet and
perform the following to visit(Av)
1.1) /* update deepest link for all

ancestor of A*/

deep(A)←A
for each Aa: ancestor of A in the

state-space tree do

ifdepth(A)>depth(deep(Aa))
then deep(Aa)←A

1.2) /* try to improve A
u
*/

perform greedy search starting
f rom A to obtain a complete
assignment A

c

ifcost(Ac)<cost(Au) then Au←Ac

2) ifAv is a complete assignment then Au← Av

and terminate the traversal by return A
u

3) /* check if the sub-tree of A needs further
traversal */
KillerSet←{deep(A

a
)| A

a
is an ancestor

of A
v
in the state-space tree}∪{A

u
}

prune ←False
for each A

k
∈KillerSetdo

prune←PruneTest(Ak, Au,Av)
ifprune=True then break

4) /* exploit children of A if the sub-tree of A
needs further traversal */

ifprune=False then
for each child A’vof Av in the

state-space tree docompute
L(A’v) and insert A’v into
ActiveSet

Figure-4. The branch-and-bound algorithm for
task allocation

To exploit the ef fectiveness of the pruning

rule, tasks should be enumerated in such an
order that tasks with high communication are

enumerated fi rst. This can be achieved by
per forming the max- flow min-cut algorithm

recursively.
The branch-and-bound algorithm is

described in Figure-4. Optimal assignment will
be obtained if no over flow on the time and space

required.

Theorem 2 (Correctness of our proposed
algorithm). Our proposed branch-and-bound

algorithm will end up with an optimal
assignment if neither over flow on the ActiveSet

nor time-out occurs.

[Paper-1999-12-14]

Page 4

The ActiveSet is implemented as an array o f

heaps. To assign n tasks to m processors, the
ActiveSet is a two dimensional array heap[i][j]

for 1≤i≤n and 1≤j≤m. A (partial) assignment
assigning tasks {t0,t1,…,ti-1} to j of the m

processors is placed in heap[i][j]. The
complexity of the branch-and-bound algorithm is

controlled by the size of heap[i][j], denoted
size(i,j), which is a polynomial function of i and

j. When the number of (partial) assignments in
the ActiveSet assigning {t0,t1,…,ti-1} using j

processors exceeds size(i,j), the one in heap[i][j]

with maximum L(•) will be dropped.
6. Experimental Evaluation

The performance and allocation quality are
evaluated using 240 task graphs and three

hierarchical machine configurations. On
generating task graphs, the distribution on

weights and edge density are chosen to cover all
degree of clustering on tasks. On selecting the

machine configuration, the processor distances
are chosen such that the parallelism in optimal

assignments ranges from using a few processors
within a MP-chip to using all processors across

multiple MP-chip.
We use the term performance to re fer to the

execution time that the task allocation algorithm
spends to obtain an optimal assignment without

time and space constraint. The metric is:

Speed-up=(number o f states traversed by the
A*-algorithm)/(number o f states traversed by

our proposed algorithm)

The evaluation shows that the speed-up ranges
f rom 1.03-2.20, depending on the degree of

clustering on tasks and parallelism.
We use the term allocation quality to refe r to

how good the complete assignment returned by
the task allocation algorithm is subject to time

and space constraint. The metric is:

Allocation quality=(cost of the complete
assignment returned)/(cost of the optimal

assignment)

Time and space complexity are controlled by
setting ActiveSet size and time-out threshold. In

the experiment, the time-out threshold is set to
be n*m, where n is the number o f tasks and m is

the number of processors, and the size of
heap[i] [j] is set to be i*j. Each test yields an

allocation quality within 1.14.
7. Conclusion

In this report, we proposed a two-stage task
allocation algorithm that aims at finding an

optimal assignment. The first stage is a recursive
partitioning procedure to form a task

enumerating order such that we can exploit the
task clustering property. The second stage is a

branch-and-bound algorithm with pruning rule to
traverse the state-space tree. The pruning rules

keep some optimal assignments in the future
search space and hence an optimal assignment

will be obtained if neither time-out nor over flow
on the ActiveSet occurs.

The key idea to the efficient task allocation
is the pruning rule, which is a combination of a

dominance relation and task clustering heuristic.
The pruning rule reduces the time and space

required to obtain an optimal assignment.
Moreover, cooperated with the space ef f icient

ActiveSet design, the traversal procedure can
reach a near optimal assignment within a low

order polynomial number of states.
The task allocation algorithm is evaluated

on randomly generated task graphs. The
experiment shows that our proposed pruning rule

is ef fective to prune the search space and lead
the traversal to a near optimal assignment within

a low order polynomial number of states. This
makes the state-space searching approach

feasible for practical use.
Reference:

[1] C. C. Shen and W. H. Tsai, “A Graph
Matching Approach to Optimal Task

Assignment in Distributed Computing
Systems Using a Minimax Criterion,” IEEE

Transactions on Computers, 34(3):197-203,
March 1985.

[2] C. C. Hui and S. T. Chanson, “Allocating
Task Interaction Graphs to Processors in

Heterogeneous Networks,” IEEE
Transactions on Parallel and Distributed

Systems, 8(9): 908-925, September 1997.
[3] N. S. Bowen, C. N. Nikolaou, A. Ghafoor,

“On the Assignment Problem of Arbitrary
Process Systems to Heterogeneous

Distributed Systems,” IEEE Transactions on
Computers, 41(3): 257-273, March 1992.

[4] D. T. Peng and K. G. Shin, “Optimal
Scheduling of Cooperative Tasks in a

Distributed System Using an Enumerative
Method,” IEEE Transactions on Software

Engineering, 19(3):253-267, 1993.
[5] C. C. Hui and S. T. Chanson, “Allocating

Task Interaction Graphs to Processors in
Heterogeneous Networks,” IEEE
Transactions on Parallel and Distributed

Systems, 8(9):908-925, 1997.
[6] W. H. Kohler and K. Steiglitz,

“Characterization and Theoretical
Comparison of Branch-and-Bound

Algorithms for Permutation Problems,”
Journal of the Association for Computing

Machinery 21(1): 140-156, 1974

