[Paper-1999-12-14]

TERRBZ#AELE ¢ FAaT T RRRE
BERKX A~ BRI SR TR
Benchmarking and Performance Evaluation
3+ £ 4%k + NSC- 88-2213-E-009-040
PATEAMR 8T +8 A1 AE88 T AH3l A

EHA L EEER

ST LN LTSl FVEY -
ST 2 KW — AT 381, Rl —
IAEELE Hik, UL AERE R AHZS
ZHLREMASRK, FRIPTRAZIRER
B RMFAKE R TR, BREGCTR
B pruning rule) - L1537 41 A & dominance
relation §2.;BF 75 kAT o 4 F AR
& 3R A, 48 R Ao B R R 8 35 A2 (partial
solution)BkFs, 3E5% £ ARAR G 7k RAFI &
R AR Z R P o LB ey R R R R F kAR
b, TR A KGRI FRAERETF
QBRI 2R, BRI SR ELEEFR N,
BUMEAMRAER - BRERET, AIRAE
WRA, EREERHE L RATRO Y
ko

Abstract — As pat of the joint project
“Study of Single Chip Mukiprocessors Design,”
we propose a task alloc ation algorithm that aims
at finding an optimal task assignment for any
parallel programs on the MP-chip based
multiprocessor systems. The main theme of our
approach is to traverse a state-space tree that
envmmerates all possible task assignments. The
key idea of the efficient task allocation algorithm
is that we apply two prming rules on each
traversed state to check whether traversal of a
given sub-tree is required by taking advant age of
dominance relation and task clustering heuristics.
The prming 1ules ty to eliminate partial
assignments that violate the clustering on tasks
but still keeping some optimal assignments in
the future search space. In contrast to previous
state-space searching methods for task allocation,
the proposed prming rules significantly reduce
the time and space required to obtain an optimal
assignment and lead the traversal to a near
optimal assignment in a small number of states.
Experimental evaluation shows that the prming
rules make the state-space searching approach
feasible for practical use.

1. Introduction

As pat of the jomt project “Study of
Single-Chip Multiprocessor Design,’the goal of
this project is to optimize the benchmark
program for the MP-chip based system. We
mvestigate the task allocation problem of
mapping a parallel program to a multiple
MP-chip systems. Aparallel program is modeled

RBALERNTIEZL A

as anode- and edge- weighted undire cted graph,
called task graph. The task allocation problem
becomes a problem of mapping the set of tasks
to the set of processors such that the completion
time is minimized, considering both processor
load and commumication overhead.

The mam theme of owr approach is to
traverse a state-space tree that emmmerates all
possible task assignments. The key idea of the
efficient task allocation algorithm is that we
apply two pruming rules on each traversed state
to check whether traversal of a given sub-tree is
required by taking advantage of dominance
relation and task clustering hewristics. The
pruming rules try to eliminate partial assignments
that violate the clustering on tasks but stll
keeping some optimal assignments in the future
search space. In contrast to previous state-space
searching methods for task allocation, the
proposed prming rules significantly reduce the
time and space required to obtan an optimal
assignment and lead the traversal to a near
optimal assignment in a small number of states.
Experiment shows that owr proposed pruming
rule makes state-space searching approach
feasible for practical use.

2. Modding the Task Allocation Problan
2.1. Formulating the task allocation problem

We follow [1][2][3] to formulate the task
allocation problem.

The mput of a task allocation algorithm is a
task graph G(T,Eec) and a machine
configuration MP,d). A parallel program is
represented as a task graph G(T B, e ¢) n which a
node represents a program module, called a task,
and an edge represents commumication between
tasks. Weight on a task, denoted e(z), represents
the execution time of the task and weight on an
edge, denoted c(2;), represents the amount of
data transfeired between the two tasks. The
machine configuration is represented as MP d).
P={pyp1,--- D1} 1 the set of all processors. For
each pair of processors (p,p)cP, a distance
d(p,.p) is associated to represent the latency of
transferrng one vmit of data between p, and p,.

The output of the task allocation algorithm,
called a complete assigrment, is a mapping that
maps the set of tasks T'tothe set of processors P.
An optimal assigrment is a complete assignment
with minimvm cost. To find an optimal

Page 1

[Paper-1999-12-14]

assignment, the branch-and-bound algorithm
will go through several partial assigrments,
where only a subset of the tasks has been
assigned. The cost of an partial/complete
assignment 4 ¥ the fom-around time of the last
processor finishes its execution. The turn-arovmd
time of processor p,, denoted I4,(4), is the time
to execute all tasks assigned to p, plus the time
that these tasks commumicate with other tasks
not assigned to p;, defined as follows:

TA,(4) = ‘A(Z)Iie(f,)+ »4(25— ‘A(Z;c([r'[j)*d(pk' A(t)))
2.2. TFansforming toJ the statespace
searching problem
U
°® 0
to=>Po l->P

PN

h-->py H—>p1 4-=py tr->Py H-->Py 4H-->p2

/N

b=>py L->py 4P,

infornalno do : partial as signmont
loaf: complo te asz ignmont
Figurel. State-space tree

We traverse the state-space tree, as
illustrated I Figure-1, to find an optimal
assignment. During the traversal, an active set,
denoted ActiveSet, is used to keep track of all
partial/complete assignments that have been
explored but not visited. We follow the approach
m Shen and Tsai[l] to determine the traverse
order. For each partial/complete assignment 4, a
lower-bound (denoted L(4)) on all complete
assignments extended from A4 (or A4 itself i case
that 4 is a complete assignment) is estimated.
The partial/complete assignment . ActiveSet
with minimun L(e) is removed for visiting in
each iteration. L(4) is computed according to the
additional cost of assigning tasks not assigned m
A, defimed as follows:

.ACk(tj —)pk,.A): e(tj)
+ Z c(tit;)*¥d(pr. At)E pi = p;
42 A(L)#

AC(t; > pL.A)=
Z o(tutj)*d(prp)Epr #pi
ti At)=py
For a partial assignment A, the cost lower-bovnd
L(A4) for all complete assignments extended from
A is estimated to be

L(A)= max

processor py

[TAk(A)+ z (min AC(t; = p,,A)]]
t; ot assigned in 4\ precoessor p;
3. Dominance Reation for State Space

We first develop a domincmnce relation [6] to
serve as the basis for developing pnming rules.
The proposed dominance relation checks
whether a partial assignment can be prumed or
not according the estimated trn-aroumd time
difference lower-boimd.

TADL(A.A)=TA (4)-TA(A)
+Z (mi?l(AQ(ti —>p.h)- AG(E —>P1A41))J

t,eS\ p;eP
Theoxren 1 (Dominance relation for space
pruning). Let 4, and 4 be two partial
assignments assigning the same set of tasks. K
TADL (A, ,4)>0 for each processor p;, then 4
dominates A4,.

4. Space Pruning by Detecting the Cluwteing
on Tasks
The dominance relation proposed i Se ction
3 is only effective when a small cut can be foumd.
To overcome this drawback, we develop a
further pruming rule that mtegrates the detection
of clustering on tasks as well as the dominance
relation.
Algoriflm Pnme Test(AA4,.4,)
* Input:
- A A patialassigrmerts.
depth(4)>cepth(A)
— A, acanplete assigm ent
output
- =True if Acanbe puned, otherwise
prue=Fake
method.:
1) }}ejfonn Canpute_PA(A, A)to determine

2) [*exchude extersians viokting PA */
2.1)success < Fake
22)far each processar p, do
i TAL (A violade PA)>cost(A,)then
success « True
break
23)if success=Fake then PA P
3) A «the ancestar of A, inthe same level with A
4)mne < True
5) I* dan nate extersians cbeying PA */
far eachprocessor p, do
TADIL (A, APA)D then
e «Fake
break
6) retum pume

Figure?2. Algorithm to examine the partial
assignment using the pruming rule

Page 2

[Paper-1999-12-14]

Algoriflan Compute PA(4.4))
© imput:
- A A :patial assigim ents,
depth(A4,)>depth(4)
* oufput:
— PAcPfa eachtask 2 not assighed in
A(Pis the set of allprocessors)
method :
1)p « A (t)where ¢ i the lasttask
assignedn A
2)forx eachtadk 2 not assigned mA do
k1 i assignedin 4 then
PA{ mocessorp| d(p,.
p)<d(A(t).p)}
dse PA P

Figure-3. Algorithm to predict the clustering on
tasks

Figure-2 presents the algorithm to
examining a partial assignment 4. R calls
procedure Compute PA presented i Figure-3,
to detect the task clustering. Two additional
mputs are required: (1) partial assignment
A—called the killer—reflecting the chustering
on tasks, and (2) complete assignment 4, serve
as an upper bound on the optimal cost, which is
obtained by the greedy search.

We determine whether the candidate partial
assignment 4 can be prumed or not according to
the following quantities:

TAL (Aviolate P4)=

T4 (4)

+ Z (min
t; motassignod in A\Processorp,

and/ £

AGt; > B, A)J

+ min ACi(t; > pr. A

processorp; & P4;
TADL ; (Ay, A, PA)=TA (4) = T4, (4,)

+ pA (min (AC((t; = p;, A) = AC, (t; = py. 4g))]

4 not assigned_p;€ PA;

The killers are obtained as follows. To
mcease the possibility of pruming a partial
assignment | we may find multiple killers) called
a KillerSet, mstead of only one killer. To obtain
the killers, a link to the deepest descendant node

is associated with each visited partial assigrnment.

For each visited partial assignment 4, we
associate a pointer deep(4,) pointing to the
deepest partial assignment visited in the sub-tree
of 4,. X two or more partial assignments in the
same level of the state-space tree are visited,
deep(4,) points to the first one visiked. The
KillerSet is the set of all deep(4,) for each
ancestor of A4 along with the complete
assignment 4,.

KillerSef A) =
{deep(4,)| 4, is an ancestor of 4}U{4, }
5. Task Allocation wsing Branch-and-Bound
Method wifth Preprocessing Stage
Algprihm BB- Alloc(GM)
* ¥ nidalization phase */
— I(voct of the state-space tree) <0
— AcdiveSei—{roct of the state-space tree }
- Obtan A4 bypeﬁa:mﬁ%eed_ysearch
starting at the root of the state-space tree
* whillenot time-out do /*travesalphase */

1) remove apatial/complkte assigment 4
wih minimm I(e)fran ActiveSet and
peafam the followmgtovisit(4)

1.1) /*update deepest linkfar all
ancestar of A*/
deep(A)—A
far each A,: acestorof Ainthe
state-space tree do

if depih(Ap> depth(deep(A4,))
B dap oA
12) /*tryto inprove A */
perfam geedysea‘chmnng
fiom Ato cbtaira complete
assigmert A
" o4 Kcost(A,)ﬂ;lmA[AkA
) ¥ a canplete assigment then A <
and term inate the tavarsalby retom 4,
3) /* check £ the sub-tree of Areedsfunther
traersal ¥/
KillarSet—{deep(A) A ¥ anancestar
of A inthe staté-space tree yo{4}
e <—Fake
far ecach A c Killoretdo
prne - PrureTest(4, 4,4)
i pme=Trve then Twreak
4) I* exploit childrend A 1 the sub-tree of A
needsfuther traversal */
Epune=Fake then
far eachchillA° of A inthe
state-space tree do canjte
I(A’))and isat A into
ActiveSet

Figure4. The branch-and-bound algorithm for
task allocation

To explot the effectiveness of the prming
rule, tasks should be emumerated m such an
order that tasks wih high commwmication are
envmerated first. This can be achieved by
performing the max-flow min-cut algorithm

recursively.

The branch-and-bound algorithm is
described . Figure-4. Optimal assighment will
be obtained if no overflow on the time and space
required.

Theorem 2 (Corxectness of our proposed
algorifm). Owr proposed branch-and-boumd
algorithm will end uwp with an optimal
assignment if neither overflow on the ActiveSet
nor time-out ocars.

Page 3

[Paper-1999-12-14]

The ActiveSet is implemented as an aray of
heaps. To assign n tasks to m processors, the
ActiveSet is a two dimensional array heap[r][j]
for 1< and 1g<m. A (partial) assignment
assigning tasks {#),4,...,4;,} to j of the m
processors is placed M heap[f][j]. The
complexity of the branch-and-boumd algorithm is
controlled by the size of heap[i][j], denoted
size(1)), which is a polynomial fimction of 7 and
J. When the number of (partial) assignments i
the ActiveSet assigning {fo,f,...,t;} using j
processors exceeds size(Z)),the one in heap[z][j]
with maximnmm LZ(e) will be dropped.

6. Expaimental Evaluation

The peformance and allocation quality are
evaluated using 240 task graphs and three
hierarchical machine configurations. On
generating task graphs, the distribution on
weights and edge density are chosen to cover all
degree of clustering on tasks. On selecting the
machine configuration, the processor distances
are chosen such that the parallelism in optimal
assignments ranges from using a few processors
within a MP-chip to using all processors across
multiple MP-chip.

We use the term performance to refer to the
execution time that the task allocation algorithm
spends to obtain an optimal assignment without
time and space constraint. The metric is:

Speed-up=@Guwmber of states traversed by the
A*ralgorithm)/@nmmber of states traversed by

owr proposed algorithm)

The evaluation shows that the speed-up ranges
from 1.03-2.20, depending on the degree of
clustering on tasks and parallelism.

We use the term allocation quality to refer to
how good the complete assignment retummed by
the task allocation algorithm is subject to time
and space constraint. The metric is:

Allocation quality=(cost of the
assignment retummed)/(cost of the

assignment)

complete
optimal

Time and space complexity are controlled by
setting ActiveSet size and time-out threshold. In
the experiment, the time-out threshold is set to
be n'm, where 7 is the mmber of tasks and m is
the mumber of processors, and the size of
heap[z][J] is set to be 7. Each test yields an
allocation quality within 1.14.
7. Conclusion

In this report, we proposed a two-stage task
allocation algorithm that aims at finding an
optimal assignment. The first stage is a reamsive
patitioning procechmwe to form a task

emummerating order such that we can exploit the
task clustering property. The second stage is a
branch-and-boumd algorithm with pruming rule to
traverse the state-space tree. The prunming rules
keep some optimal assignments in the future
search space and hence an optimal assignment
will be obtained if neither time-out nor overflow
on the ActiveSet ocars.

The key idea to the efficient task allocation
is the pruning rule , which is a combination of a
dominance relation and task clustering heuristic.
The prming rule reduces the time and space
required to obtain an optimal assignment.
Moreover, cooperated with the space efficient
ActiveSet design, the traversal procedure can
reach a near optimal assignment within a low
order polynomial number of states.

The task allocation algorithm is evaluated
on randomly generated task graphs. The
experiment shows that our proposed pruming rule
is effective to prume the search space and lead
the travers al to a near optimal assignment within
a low order polynomial mmber of states. This
makes the state-space searching approach
feasible for practical use.

Reference:

[1] C. C. Shen and W. H. Tsai “A Graph
Matching Approach to Optimal Task
Assignment i Distributed Computing
Systems Using a Minimax Criterion,’ IEEF
Tremsactions on Compuiters, 34(3):197-203,
March 1985.

[2] C. C. Hui and S. T. Chanson, ““Allocating
Task Interaction Graphs to Processors i
Heterogeneous Networks,” IEEE
Transactions on Parallel and Distributed
Systems , 8(9): 908-925 | September 1997.

[3] N. S. Bowen, C. N. Nikolaou, A. Ghafoor,
“On the Assignment Problem of Arbitrary
Process Systems to Heterogeneous
Distributed Systems)’ IEEE Tramsactions on
Compuiters , 41(3): 257-273 , March 1992.

[4] D. T. Peng and K. G Shin, “Optimal
Scheduling of Cooperative Tasks m a
Distributed System Using an Envmmerative
Method,” IEEE Tramsactions on Sqoftware
Engineering, 19(3):253-267, 1993.

[5] C. C. Hui and S. T. Chanson, ‘Allocating
Task Interaction Graphs to Processors m
Heterogeneous Networks) IEEE
Tramsactions on Parallel amd Distributed
Systems , 8(9):908-925, 1997.

[6] W. H. Kohle ad K. Steiglitz,
““Characterization and Theoretical
Comparison of Branch-and-Bound
Algorithms for Pemutation Problems,)”
Jowrnal of the Association for Computing
Machinery 21(1): 140-156, 1974

Page 4

