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Abstract 

����Finding consistent global checkpoints of a 

given distributed computation is a central 

problem in many distributed applications, such 

as distributed testing, distributed debugging, 

and fault-tolerant computing. Given a set of 

local checkpoints S, each from a different 

process, we consider the problem of construct-

ing all consistent global checkpoints containing 

S. We first provide a mechanism to generate 

C-cone(S), the set of checkpoints that are 

causally unordered with S, by combining the 

C-cones of individual checkpoints in S. Then, 

an algorithm that uses C-cones to enumerate all  

consistent global checkpoints containing S  is 

given. Finally, to facilitate the construction of 

C-cone(S), we present an algorithm to generate 

C-cones of local checkpoints on-line.   
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t�uXdv+�
Finding consistent global checkpoints of a 

given distributed computation is a central 

problem in distributed systems, such as distrib-

uted debugging [9] and fault-tolerant comput-

ing [3]. In this paper, we consider the problem 

of constructing all consistent global check-

points containing a given set of local check-

points S. The definition of consistency states 

that if S can belong to a consistent global 

checkpoint, then S must contain one checkpoint 

from each of the n processes and none hap-

pened before [4] any other in S. However, when 

|S | < n, having no causal path (C-path for short) 

between checkpoints in S is not sufficient to 
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ensure that S can be extended to a consistent 

global checkpoint. Netzer and Xu [7] proved 

the necessary and sufficient condition for an 

arbitrary set of local checkpoints to belong to a 

consistent global checkpoint by introducing 

zigzag paths (Z-paths for short). Manivannan, 

Netzer, and Singhal [6] proved exactly which 

local checkpoints can be used for constructing 

consistent global checkpoints. They observed 

that only those checkpoints in Z-cone(S) 

[Definition 2] that are not involved in a zigzag 

cycle can be combined with S to form consis-

tent global checkpoints. These checkpoints are 

said to be USEFUL to S. They also provided an 

algorithm, which we call  Algorithm MNS97, 

to enumerate all consistent global checkpoints 

containing S.   

The time spent on finding USEFUL  

checkpoints will become the performance 

bottleneck of Algorithm MNS97 unless an 

efficient algorithm for finding Z-cones is 

provided. Unfortunately, such algorithms do 

not exist currently. Two methods can be con-

sidered to improve the performance of Algo-

rithm MNS97: ��� To impose some constraint on the 
checkpoint and communication pattern 

such that the pattern satisfies 

RD-trackability [11]. This will cause 

Z-cone(S) and C-cone(S) to become 

equivalent. However, extra checkpoints 

must be created in this method.���� To select candidates from a broader but 
easier acquired set of local check-

points, such as C-cones. The drawback 

of this method is that it is possible to 

select a non-USEFUL checkpoint that 

cannot be combined with S. In this 

situation, backtracking must be per-

formed.��
    Constructing C-cones of local checkpoints 

on-line is promising because we observe that 

C-cones of past checkpoints can be obtained 

while execution progressing. In this paper, we 

introduce an algorithm that constructs C-cones 

of local checkpoints on-line. Moreover, we 

present a variant of Algorithm MNS97 to 

enumerate all  consistent global checkpoints 

containing a given set of local checkpoints by 

using C-cones. �
 

w�x\dyz �
   The notion of the Z-cone, and of which 

checkpoints within the Z-cone are USEFUL,  

provides a new understanding of the structure 

of consistent global checkpoints. However, 

finding Z-cones based on the R-graph of a 

given checkpoint and communication pattern is 

a time-consuming job and will become the 

performance bottleneck of Algorithm MNS97. 

Since Z-cones are too difficult to be found, we 

pay our attention to the broader but easier 

acquired sets -- the C-cones. In this paper, we 

provide an on-line algorithm for finding 

C-cones of local checkpoints to facilitate the 

construction of consistent global checkpoints. 

In general, it is possible to select a 

non-USEFUL checkpoint in the C-cone and 

backtracking must be performed in this case. If 

some constraint, such as RD-trackabil ity, is 

imposed on the checkpoint and communication 

pattern, the C-cone and Z-cone of a given set of 

checkpoints will become equivalent; under 

such a constraint, our algorithm can construct 

Z-cones of local checkpoints efficiently. 
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