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Observability of the Depth Estimation for Robot
Visual Servo Control
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1 Abstract

This report investigates the observability
problem of the visual system. We find that
the linear velocity of the camera must satis-
fy some constraints for a success of a depth
estimation method. Some simulation results
show that the components of the linear veloc-
ity also affect the performance of the depth
estimation. This fact indicates that using a
modified camera motion control can improve
the depth estimation.

Keywords: perspective observability, depth
estimation, visual servo control
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2 Introduction

Depth recovery is a very important prob-
lem in 3-D visual applications, such as objec-
t tracking and motion estimation. A hand-
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eye system uses a CCD mounted on the end-
effector of the manipulator to enhance the
tracking accuracy. In this report, we will dis-
cuss on the depth estimation using a single
vision sensor via the dynamic motion.

Pose estimation by a moving camera have
been studied recently [1]. The depth vari-
able was seen as an unknown state, then the
depth estimation problem became an observ-
er design problem and the observability need-
ed checking first. In this report, we relate
the observability to the linear velocity of the
camera by considering the visual dynamic as
a nonlinear system. Some authors use the ex-
tended Kalman filter (EKF) to estimate the
range data [2]. However, little attention has
been paid to the effect of the velocity of the
vision sensor on the observability. Matthies
and Kanade [2] first mentioned that EKF
estimates more effectively when the camer-
a moves almost parallel to the image plane.
Their experimental suggestion motivates us
to investigate the influence of the direction of
the camera velocity on the depth estimation.

In our previous work on visual servoing [3],
a feature-based controllers had been proposed
with EKF used to estimate the depthes of the
feature points under assumption of all opti-
cal parameters given. We conclude that the
components of the linear velocity of the cam-
era will entirely determine the observability



of the visual system. We also attempt to es-
tablish the relationship between the linear ve-
locity of the camera and the performance of
the depth observer. Some simulation results
substantiate our previous statements.

3 Pose Estimation

Consider a pinhole camera model [3]. There
is a 3-D point P with coordinates (X,Y, Z)
with respect to the camera frame Exy . The
value of Z is referred as the depth of point P
to the camera lens. The image of point P pro-
jected onto the image plane is denoted by p.
The coordinates of p with respect to E,,, are
(x,4,0). The projection relationships state

X Y
T= YT Y=y (1)

where v, = f./S; and v, = f./S,, in which
fe is the effective focal length, S, S, are, re-
spectively, the horizontal and vertical lengths
per pixel on the camera sensing array. Equa-
tion (1) is the so-called perspective projec-
tion equation [3]. Let the translation veloc-
ity and the angular velocity of the camera
be represented by v 2 (v, vy, v.]" and
w = [we, wy, w,]”, respectively. The dy-
namic of (z,y) is the so-called optic flow-
motion equation [3]:
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Since the unknown depth Z (Z # 0) is in-
volved in (2), the dynamic equation of Z
needs to be considered together. Let & =
[z, y, Z]" and ¥ = [z, y]T. We describe
the present system by the nonlinear system
of
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Since Z should be greater than zero, we con-
sider £ € M, where M is an open set, and
defined as
M:{§:§=[:E, y, Z)' Yz, y € R, Z>0}
(4)
The pose estimation problem is to estimate
the state vector &. In the state vector &, =
and y are the the measured values, so the only
unknown is the depth Z. Therefore, the state
estimation of the system of (3) is also called
the depth estimation. Since the system (3)
is nonlinear, the input u could affect the ob-
servability. Therefore, we are then interested
in knowing what kind of an input u can make
the output 1) different for different €. For this
purpose, we examine the local observability
at a certain state &, while u(f) satisfies some
special forms, which is the topic of the next
section.

u

(3)

4 Observability of the

Pose Estimation

According to the definitions and theorems on
observability for nonlinear systems [4], we ob-
tain the following theorem. Due to the limi-
tation of the space, the proof is omitted.

Theorem 1 Consider the system of (3),
and the open set M defined in (4). The sys-
tem is locally observable in M if and only
if the projection of v(t) onto the distribution
span{vy(€),v2(€)} is nonzero for some time
interval, where

VI(S) = [_%cv 0, x]Ta VQ(S) = [07 V> y]T
|

Let V3(§) = V1(E) X VQ(S)/(rYfoy) =

[2/Yz, Y/, 1]7. Then vy, vo, and v; are lin-
ear independent and the linear velocity v(¢)
can be expressed as



v(t) = vi(t) + az(t)va(€) (5)

where vi(t) = ai(t)vi(€) + az(t)va(€) and
vs(t)-vs(&€) =0, for a given €. The condition
in Theorem 1 is equivalent to that the input
satisfies ||vs(¢)|| > 0 for some time interval.

Remark: Theorem 1 provides only the
local observability of (3). It applies only to a
slowly varying system or a system with quick
sampling rate, since the local observability
is valid only in the neighborhood of a state
£€,-In pratice, the camera moves slowly to con-
strain the interesting features inside the field
of view, thus the local observability is suffi-
cient for the success of the depth estimation.

4.1 Performance of Depth Esti-
mation

Theorem 1 has indicated that |[v,|| > 0 is
necessary for the estimation of depth. We
are also interested in the influence of v, on
the convergence performance of the depth es-
timator. Since x and y are measurable, the
estimation errors of them could be ignored.
If the variation rate of Z is also small enough
to be negligible, we can use the least squares
estimation theory to analyze the relation of v
to the convergence performance of the depth
estimation.
Assume that the data satisty

Y, =®0+p (6)

where Y, € R™, & ¢ R™" and 8 € R"
is a parameter vector to be estimated. The
last term is a stochastic vector with variance

matrix S. The best unbiased linear estima-
tor [5] is 8" = S71®(®7S~'®)"'Y,. Then
the corresponding minimal value of Cov() is
Cov(é*) — (®'S~1®)L. Since Tr[Cov(d)] =
E[(6—-6)T(6-6)), where Tr(-) is a trace opera-
tor, an increase in (6 —0)? leads to an increase
in Tr[Cov(f)] which can serve as an accuracy
index of the parameter estimation.
Define  a,(§,w) = (2y/vy)ws

(72 + 22 /70 )wy + (V2y/7y)w. and a, (€, w) =

(Ty/ve)wy — (WT/Ve)ws,
then equation (2) can be reformed in
the form of (6) in which & = 1/Z,
YO = [x - aw(gaw)a y - ay(E,w)]T, and
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p1 and po are two zero-mean Gaussian noise
terms.  The variance matrix S is then
diag(q11, g22), where g;; is the variance of p;,
i = 1,2. The unknown parameter 1/Z can
be solved by statistics. Note that v; - v, =
vz - vy = 0. If we substitute (5) and (7) into
Cov(@+), then the covariance of 1/Z is
1 o (vivi vovh -
COV(Z) lvs ( ™ + n ) vsl (8)
Although Cov(1/Z) # Cov(Z), both vari-
ances can be used to measure the accuracy of
the estimated depth. However, this is a linear
result, when Z is almost unchanged. It is dif-
ficult rigorously to obtain a nonlinear version
of this property. Fortunately, this property is
still retained for the nonlinear system (3) ac-

cording to our simulations and is summarized
as a conjecture in the following.

Conjecture 2 Consider the system (3)
with input u = [v, w”|". Suppose that (z,y)
and ||v(t)|| are given. Then the depth estima-
tion has a faster convergent rate, if the linear
velocity of the input leads the greater J,(€,v),
where J,(€,v) = vE(viv] /g1 +Vvav] /qaa) vs.

|

(vg + v/ vy)we —

In the next section, two simulation examples
are used to verify Theroem 1 and support
Conjecture 2.

5 Simulation

Establish a distribution spanned by the or-
thonormal basis {by,---,bs}(§), where b; =
b;/||b;|| and

b= o= 5] 5



where 0 = [0, 0, 0]". Note that the distribu-
tion is independent of the unknown depth Z.
The camera velocity can be spanned by

6

u= Zczbz(s) = [blv T bﬁ] ’ [u]b (10)
=1
where [u], = [c1,---,¢6]7. It is found that

[vi(&)T, 0T)T € span{by,b,}, and ||v,|?* =
¢ + 3. The roles of factors oy and o in the
observability test (see Theorem 1) can be re-
placed by ¢; and ¢y, since af + a2 > 0 is
equivalent to ¢ + ¢3 > 0.

The model in the following simulation
examples is the visual system (3) with

fe = 16.53mm, S, = 0.0161lmm/pixel,
and S, = 0.0189mm/pixel. The states
are estimated by EKF [2] with the
measurement noises covariance matri-
ces R = diag(2.25pixel®, 2.25pixel?),
the system noises covariance matrices

Q = diag(2.25pixel?, 2.25pixel?, 16mm?), and
the image sampling period 200ms. Suppose
that an interesting feature point on the
screen is initially located at (100,100). The
guessed values of the initial depth of the
point is 400mm, while its true depth is
450mm, i.e., the initial depth estimation
error is 50mm.

Example 1: This example tries to verify
Theorem 1, which states that a necessary and
sufficient condition for the system (3) to be lo-
cally observable is ||v4(t)||* > 0 for some time
interval. Fig. 1 shows some simulations of the
depth estimation to verify the sufficiency of
Theorem 1. The camera velocities are listed
as [ollows (cl. (10)):

[ul(S)]b = 8[1: 0,0, 0,0, O]T

[us(€)], = 8]0, —sin(0.1¢), 1, 0, 0, 0]
[us(€)], = 6[0, 0, 1, 0, 0, 0]”

[ws(€)], = 0.2sin(0.12)[0, 0, 0, 1, 0, 0]"
[us(€)], = 0.2[0,0,15,sin(0.1¢), sin(0.2¢), 0"

The inputs u; and u, satisfy the condition
in Theorem 1, i.e., |[vy]|> > 0, even uy sinu-
soidally varies along v,. Fig. 1 shows that

the depth estimation errors for the first two
inputs both converge to zero. This is consis-
tent with the sufficiency of Theorem 1.

Now, consider the inputs uz, uy, u; with
c; = ¢ = 0, which do not satisfy the condi-
tion in Theorem 1. The sinusoidal functions
for the angular velocities are necessary to pre-
vent the values of the depth from approaching
zero (i.e., Z =~ 0) after a small time interval.
Fig. 1 shows that the depth estimation errors
for us, uy, u; do not tend to converge, which
verifies the necessity of Theorem 1. ®

The following example will show that Con-
jecture 2 is acceptable, at least for ||v|| < 10
mm/sec. Consider the input in the form of

w = [[v]| - [Ca(C, by + S,b2) + Syba] + [y,

(11
where Sg = sin(3), Cs = cos(B), S, = sin(y),
C, = cos(y), f# and v € R, and [w], =
0, 0, 0, w"]". It is known that any unit vec-
tor in R can be represented by [C'sC.,, CS.,,
St If || vy(t)|] is fixed (ie., 3 is fixed), v4(t)
can still be adjusted by . By the definition
in Conjecture 2, J(&,v) is proportional to
Cg when C, is fixed. In Example 2, the ratio
of |C| to |Ss| will be changed to investigate
the relationship between the index function
Jo(&,v) and the convergent rate of the depth
estimation error.

~—

Example 2: We consider a family of ve-
locities of the camera with fixed Cs. Set
lv(¢)|| = 10 mm/sec for all cases. In the
first family, v,(¢) varies with Cs and then
|vs(t)]| is proportional to Cz (i.e., ||vs(t)]| =

V@ + 3 = 10Cs). Fig. 2 shows the sim-
ulation results for C, = 1/y/2 and Cs =
1, 0.8, 0.5, 0.3, 0.1, 0, —0.4, and —0.7,
while w = 0.01[2, 1, 3]" rad/sec. It should
be remarked that w is arbitrarily assigned and
does not affect the property of the simula-
tions. It can be seen from the depth estima-
tion errors in Fig. 2 and the cost functions
Jo(&,v) in Fig. 3 that the depth estimation
error converges more quickly as J,(&,,Vv) is
larger.



We also changed the value of the fixed C,,
in the range [—1,1] and found that the sim-
ulations have the same property of the depth
estimation performance as that in Fig. 3. All
these simulations in Fig. 2 and 3 believe that
Jo(€,v) is a good index for the convergent
rate of the depth estimation. B

6 Conclusion

This report investigated the effect of the cam-
era velocity on the observability of the vi-
sual system (3). The results indicate that
the observability of (3) is entirely determined
by the component ratio of the linear velocity
of the camera. By using an index function
Jo(&,v) defined in Conjecture 2, the perfor-
mances of the depth estimations by different
velocities can be compared previously. The
results of this report may be useful to improve
the depth estimation by a modified velocity
controller. Specially, J,(&,v) is described by
a quadratic form of u. It is possible to achieve
the objective of feature-based control and the
improvement of the depth estimation by min-

imizing [|Ju — EH2 — T, (&,v).
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Figure 1: Depth estimation errors by different
inputs, for example 1.
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Figure 2: Depth estimation errors by different
inputs u with ||v|| = 10mm/sec, for example
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Figure 3: The cost function J,(&,v) by dif-
ferent inputs u with ||v|| = 10mm/sec, for
example 2.



