
��������	

�����

(NSC 88-2213-E-009-007)

��

���� (Object-Oriented, OO) �������	
���������

�� �!"#$%&'()*+,-./�01%2345 6789:;<

=>?@)�����	
ABC���DE(��<�FGHI�����J

KL�M@NO!"#$01� PQR���ST�UVW (X�YST�Z

[W) 3\Y]^�89_`ab�\cYdef�g(hiAB�jk6l�

C++ - Eiffel�30k6l� Smalltalk - SELF<mn�opqrs0k89

_`3!"#$(���tPbuvwx��	
ef
�(yz�{|}~�

f�R���$v�W(��<

ef�Y��3������#sR�4������(������

��(��X��<CG�(���$W����Pb�l� ¡$3��¢£

¤(���t¥# OO AB�¦�l�7§��¨l�8 %)��� %©ª

«¬f¨% 89%23��	
�<=>®¯?°±��¢�£¤<mnC

²���M@\��°±(³®]��tc´µ#¶²(�8<�g(�Y�

�C·¸(����¹º��g���»��|�°±¼½¹¾¿�g®¯�À

�ÁÂ7(wxÃ<

sÄÅ0k89_`���Æ� mnR�¦ÇÈ��«¬(É�% ÊË

´CÌ(´!3Í!Î�CYÏ!%	
´!(#$��3Ï!4Ð%3CPQ

(ab@ÑJÒ0kÓ$89Ô�2ÕÖ E×ØCÙÚ(ÔÛ�ÜÝ(�

�<ÞßÆCPQ(�$W@sàá�4âã(Ï!äå�tæçR���#

$<sPQÆèÇÈÎéêëì�Y¹��(���t±:�abíea��î

ï<

ABSTRACT

Object-oriented(OO) software systems suffer from poor execution efficiency

due to large number of indirect accesses, frequent object creation and destruction, and

lots of polymorphic message sendings. These are central issues in the run-time

environment of OO systems. To improve the overall efficiency, it is crucial to reduce

indirect access, design efficient memory allocator (or garbage collector) and use a

better strategy for message dispatch adapting to various language implementations

including statically typed languages such as C++ and Eiffel, and dynamically typed

environment l ike Smalltalk and SELF. In our research, we focus on the issues of

dynamic message sending and indirect access trying to survey the factors in

influencing software run time behavior and improve several existing techniques for

constructing fast lookup cache for method search.

Since the run time behaviors differ substantially for various application

domains and code patterns, the optimization should be domain or pattern specific. The

proposed concept of control cache tries to capture the difference between data access

and control transfer and preserve special traits in OO environment like class

information, object instance, binding type of variable, message selector and method

body. These are all “subjects” attending in a transfer of control. What we want to

optimize is to make frequently accessed “subject” fast and store necessary

information in appropriate time. Different code patterns for specific applications will

have different control patterns and the attending “subject” will play different roles in

an uncertain extent.

For dealing with the problems of dynamic method dispatch, we must consider

several issues, including binding constraint, time and intermediate space for table

construction in compile time, table access efficiency and table size during execution

time and whether the designated schema allow dynamic resolution of message

selectors for name conflict in multiple inheritance. The basic idea behind the proposed

schema for constructing lookup cache is to explore maximum space reduction for

dispatch table and achieve efficient table access. Practical issues such as name

conflict problems in multiple inheritance and error detection for unknown messages

are discussed and implemented. Comparisons are made with conventional method

resolutions of offset, name and dispatch function in terms of time of schema

construction, table space overhead and dispatch efficiency.

