

��������	
��
�������

�

������������ !"#$%�

�

&�'()*+,-.�&/*0(-12,*1(3�,34�5-(*.6*1(3�7.60,3189�)(-�

7(:1;.�<(4.�'=8*.98�

�

��>?@� A'<BBCDDEFCGCHHICHEJ�

K�LM�BJ N HB O HE LP BB N HJ O FE L�

��QRS@TTU�

VWQRS@�

�

�

�

K�XY@��Z[\]�^_`�
�a�

�bc� BB N HJ O FE L�

Abstract

With the rapid development of Internet, software usage and development are

changing day by day. In the past, a software developer distributes his software by

selling channel, computer merchant, etc. And most of users only use this software in

centralized operating environment, just like PC or workstation. Furthermore, due to

poor distribution of software in the real world, most of users can’t update their

software and get the newest version immediately.

Today, through the Internet, any users can download the newest software and run

it dynamically. They will no longer be asked to purchase the whole software when

they just need to use part of the features. For software developer, they can always

provide the newest software for users, and accounting the software usage times. This

is called mobile code technology. But following the wider using of Internet, there

comes a serious problem in software authorization and protection.

In the past, many approaches have been proposed to prevent software piracy,

such as key disks, parallel-port locks, and custom serial-number validations. These

schemes with authentication process embedded in the software cannot effectively

protect the security attacks by a smart cracker. Once the software is cracked, it will be

then distributed widely on the network.

This project is purposed for finding a practical method in software authentication

and protection. In the beginning, we will survey the operating environment and clarify

the operating roles in the mobile code system. Finally, we will intend to present a

method to ensure the software authorization and protection for mobile code systems.

On the other hand, for making it practical, we will also try to balance of “security”

and “convenience” in our method.

���

���������	
���
������������

�������� ��!"#�$%&'()*+���,	-��!.�/0�12�1314!51�#6	

���789:;<��1042/!�4�#+�=>?@���ABCDEFGHIJ

KL����-�MNOPQRSTU�AVWXY�Z[\#]���^[��(

_`-�8abV���c?@defg��haNO��-ijkl_m
n

��(2

o����dpqrsm�tu�����-v7wxy�z{���|}

kl~���)���'�L���,	-z{���d�w*������-

����_������_m��n�F��l���c�m,	��K��(

���� �030 ��m;��������� ,¡
������¢j�W£

Q¤¥¦¢§P�¨©��]�ª6���'��k�«$¬£­¨���L�

��B �®��-���¯°±`²³´��µw¶·¸¹º»�¼kl_½

�mn�(�����k³6¾�$½'�'�±¿!��412À!�1 (̧�³�Á%�

��ÂÃ�i6dQ�ÄÅ�Æ��$½'�'�Ç����È)*��EÉ_

N�ÊËFÌÍKÎÏÐÑ(2

)*���ÒÓ�ÔÕ���AÖ×��1��042" ¿�1�#ÔÕFØÙÔÕFÚ

�ÛK�Q�Üm����c?@��ÝÞ�ßà�áâ(tuSã��ä]�

����å��-Næ�çèFiÒÓ���(k��é��ê���)*�Ô

Õëì�íî���ÊË- w�Ã���§��ÊË�¢j���)csï�

ð���ÒÓJñ]�_Nòó��ha��,	-ôaõö���Æ�÷ød

ù(2

��úk³ûôü¹�$½'�'�ý*���TU�þsSV�$���

ÒÓ�ÔÕ�¢j(Q��ú+��£§�ô$½'�'�ý*��[TU[�

����º��	
����bVTU��
���[&'±�³Á%·ùÝ�

�ê��:��$½�'���[TU�6��£������������Ã

u��	
(¸��¹M³ûô������s��Ô���ÎÏ���ÒÓ¢

j�ÔÕIJ(�lQ�	
�+��£ Ä!"#�$ÎÏÅ%�$��&'%

�(àÁ)�Á%SVP³*aÎÏÔÕ�����w+h«$&',-F��

dÂ�.�(�ô���ÎÏIJå��èðB/��I 0N123�(2

2

2

2

 i

Table of Contents

Chapter 1 Introduction..1

1.1 Background ..1

1.2 Software Security and Protection...2

1.3 Contributions..6

1.4 Synopsis..6

Chapter 2 Related Work..8

2.1 Software Protection Schemes...8

2.1.1 ABYSS: Architecture for Software Protection8

2.1.2 Software Protection and Simulation on Oblivious RAMs....................9

2.2 Java Language and RMI Technologies ..9

Chapter 3 Proposed Model for Software Authorization and Protection..............12

3.1 System Model...13

3.1.1 The Proposed Protection Model..13

3.1.2 Licenses for the Software ..16

3.1.3 Using the Software ..19

3.1.4 License Registration and Revocation ..21

3.2 Illicit Dissemination and Unauthorized Use of the Software.........................23

 ii

3.2.1 Discouraging Ill icit Dissemination..23

3.2.2 Discouraging Unauthorized Use ...24

3.3 Security Analysis..27

Chapter 4 Software Partitioning...29

4.1 Proposed Model for Partitioning ..30

4.1.1 Assignment for Applets...33

4.1.2 Complexity of an Applet...35

4.2 Partitioning for Performance Considerations...37

4.2.1 Finding Maximum Weighted Independent Set38

4.2.2 Considering both Computation and Communication Load.................39

4.3 Partitioning Between Proxies ...43

4.3.1 Approximate Partitioning for Proxies ...44

4.3.2 Exact Partitioning for Proxies ...47

4.3.3 Guidelines for Partitioning between Proxies.......................................47

Chapter 5 Conclusions...49

References...51

 iii

List of Figures

Figure 1.1 Common software protection schemes...5

Figure 3.1 The proposed protection model ..14

Figure 3.2 System components..15

Figure 3.3 Publication l icense updating ...18

Figure 3.4 Applet downloading and verification..20

Figure 3.5 JDK 1.1 Security Model ...25

Figure 3.6 Discouraging the unauthorized use of software..26

Figure 3.7 Nontransferable message digest..27

Figure 4.1 Example of partitioning ..30

Figure 4.2 The proposed partitioning model ..31

Figure 4.3 An example for initial applet assignment ...34

Figure 4.4 Delegated computing ..35

Figure 4.5 Calculating communication degree...40

2

2

2

2

2

 1

Chapter 1

Introduction

 With the fast development of Internet, network transmission speed grows faster

and faster. Advancements in network technology allow the network users to do a lot

of jobs that were difficult to be accomplished in the past. Due to the evolution of

network technology and the interest of market, large scale distributed systems are

becoming of paramount importance. The growing importance of telecommunication

networks has stimulated research on a new generation of programming languages.

Recently, mobile code languages [Ghezzi97][Gosling96][Gray95][Hall96][Jaeger96]

have been proposed as a technological answer to the problem. Such languages view

the network and its resources as a global environment in which computations take

place [Bic96][Carzaniga97][Ciancarini97][Nog96][Perret96].

1.1 Background

 The development of World Wide Web combines many traditional services and

lets every user to navigate the whole Internet using a single Web browser. In

mid-1995, Sun Microsystems announced the Java [Gosling96] language. The Java

language is a simple, object-oriented, portable, and robust language that supports

mobile codes. Java augments the present WWW capabilities by dynamically

downloading the mobile code fragments, called applets, and running this code

 2

fragments locally.

 The development of mobile code technologies changes the style of software

usage. The mobility and cross-platform characteristics of Java language allow

software rental on the network. For users, when they want to execute some

functions of the software, they can download the newest software across the network

and run it dynamically. They will no longer be asked to purchase the whole software

when they just need to use part of the feature. Revision for software in the

environment becomes simple. For software developers, they can always provide the

newest software for users, and they know how many times the user has downloaded

software. Software rental requires a good software authorization and protection

model to prevent unauthorized use.

 There are several projects for supporting authorization-based access control in

the WWW environment [Samarati96][Kahan95], that protects the information in

hypertext systems. Java applets can be integrated as a part of the hypertext system,

however, the current authorization models for WWW are inadequate for protection of

Java applets. There are many differences between Java applets and common

documents in a hypertext system. Documents in a hypertext system contain only

data, which displays on the screen at the host of the browser. Java applets contains

both code and data, and the state of browser may be different for different users in

different locations. Users without restriction can execute some code, but some code

has to be executed under control. There are many situations that the code has to be

executed under control. For example, sometimes we want to know how many times

 3

a user executes the code and which function of the code the user executes.

1.2 Software Security and Protection

 Although the rapid development of network and advanced technologies enable

new software capabilities and wide market interest, the software piracy is still a

serious and tough problem for a long time. Various software protection schemes

have been proposed, but a malicious user can easily crack some schemes, and some

require additional costs for users.

Software security

 The problem of software piracy causes considerable losses to software vendors

[Curtis94][Neff94]. Copyright laws [Donovan94][Darkin95] regarding software are

rarely enforced, thereby causing major losses to the software vendors.

 A serious problem in the authorization model of a hypertext system is that the

data can be copied or disseminated [Samarati96]. A user accessing a document can

copy the document, and then disseminate it without the permission of its owner.

This problem happens because the authorization is only done on server, once the user

receives a document, he becomes the owner of this document and has unlimited

privileges on it.

 Such problem appears to be even more serious in software applications.

 4

Software piracy is the unauthorized copying, use, or distribution of software products,

and this problem becomes more serious on the network environment. Here are

several basic software piracy problems [Curtis94]:

 Illicit dissemination: Making extra copies of the program and disseminating to

other unauthorized users.

 Unauthorized use: Unauthorized use of software applications designed for

restricted use such as executing for a period of time or a number of times.

 Counterfeiting: The illegal duplication and sale of copyrighted software, often in

a form designed to make the product appear legitimate.

 To deal with the problems of the software on the network, not only the software

itself but also the environment associated with the software must be considered. The

modified version of software is be harmful to users executing it, since it may contain a

Trojan horse or a Virus [Barker89][Dean96][Rubin95]. The malicious code that

contains a Trojan horse or a virus accessing user’s system resources such as the file

system, the CPU, the network, and the graphics display may cause unpredictable

effects from stealing user’s privacy to damaging resources in user’s environment.

Besides Trojan horse and virus, a user who modifies the code to deviate from the

prescribed execution may cause more problems to other parties on the network. For

example, a user may cheat in a multi-player game on the network if he has the ability

to modify the prescribed code of the software. Some execution results of the

 5

software might be supposed to write to a database server on the network, and a user

can modify the code to stop the writing process or forging fake results. Therefore,

such problem must also be considered in the software protection on the network.

Software protection

 There have been many approaches to stopping software piracy [Wilson97],

ranging from key disks [Voelker86] to parallel-port locks. Most of these software

protection schemes embed access control mechanisms in the code, and a user has to

pass these authentication processes before using the software. The process may

require the serial number of the corresponding user, password from the manual, or

checking the source place where the software is located (CD or floppy disk, for

example). Many crackers have cracked these authentication processes. The

difficulty to crack such protection scheme depends on how complexity this part of

code is written. For example, some software vendors put checksum values for the

authentication process in the software, if someone tries to modify the code to bypass

the authentication process, an error may be found in the future and the execution will

be terminated. This adds the difficulty to crack the software. However, it is not a

long-term solution that prevents from unauthorized use but just increases the time to

protect from been cracked.

 6

Software

Authentication Process

Main Program

software
cracker

modify t he
authent ication

process

access the
main program

directly

• Authentication process may check key disks, parallel-port locks,
or custom serial-number validations

Fig 1.1 Common software protection schemes

 Problem of illicit dissemination of software appears to be more serious on the

network. We wish to control the access that only authorized users can download and

use the software. Before a user downloads the software, we can easily control the

access to allow only legal users to have the download permission. However, after a

user gets the applet, it’s difficult to control the permission. Therefore, common

software protection schemes that combine the authentication processes in the software

itself cannot effectively protect the software from been cracked by a smart cracker.

 A practical software protection should ensure that illicitly duplicating or

unauthorized use of the software is at least as hard as rewriting it from scratch

[White90]. A purely software-based solution is almost impossible, since any

software is just a binary sequence. Stronger schemes have been proposed to protect

 7

the software with the help of tamper-resistant hardware devices, which consists of

physically shielded CPU and memory [Best79][Kent80]. However additional costs

of these schemes often discourage users to purchase the software.

1.3 Contributions

 In this project, a software authorization and protection model for mobile code

systems is proposed. To achieve flexible and global security for the rapid growing

network environment, the protection for both the software property and principles in

the network environment have been taken into consideration. In the model, the

privileges to access the applets in software are separated and distributed to a number

of trusted principles called trusted computational proxies. Dependent applets are

distributed to different proxies, which leaks little information in the case that a proxy

is compromised. In this environment, an optimal assignment of applets is also

proposed to minimize, under the security constraint, the computation load of the

proxies and the communication load between proxies and users.

1.4 Synopsis

 This report is organized as follows, chapter 2 gives the related work regarding

software protection methods, Java language, and RMI technologies. In chapter 3,

our proposed model for software authorization and protection is presented, which is

 8

based on the concept of separation of execution privileges. A model for software

partitioning to achieve protection in this environment is presented in chapter 4, and

related issues for performance and security are concerned. Finally, we give the

conclusions in chapter 5.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

 9

Chapter 2

Related Work

 In this chapter, we present some related software protection schemes, Java

language, and RMI (Remote Method Invocation).

2.1 Software Protection Schemes

 There have been many approaches to stopping software piracy, ranging from key

disks to parallel-port locks. Most software protected with these schemes has been

broken easily. Once they have been broken, the software was then spread widely.

Since the above schemes protect the software from only naive users instead of smart

crackers, stronger protection schemes must be designed. In this section, we present

two stronger software protection schemes, which protect the software based on

tamper-resistant hardware.

2.1.1 ABYSS: Architecture for Software Protection

 ABYSS (A Basic Yorktown Security System)[White90] is an architecture for

protecting the execution of application software. It can be used as a uniform security

service across the range of computing systems. In ABYSS, applications are

partitioned into protected and unprotected processes. The protected application

 10

processes are executed in a secure computing environment called a protected

processor. Execution of the applications are determined by a logical object called

Right-To-Execute. The protected processor enforces the access control with respect

to the Right-To-Execute for applications. Authorization process of

Right-To-Execute can be carried out by tokens, which are introduced as a new

use-once authorization mechanism and useful when authorization are distributed

physically.

 To protect an application, the software vendor must create a part of the

application to be executed securely, encrypt it, create a corresponding

Right-To-Execute, and create an authorization process for installing that

Right-To-Execute. The same ABYSS processors, which execute protected

applications, can be used to perform the critical steps in this process, so no special

development systems are needed.

2.1.2 Software Protection and Simulation on Oblivious RAMs

 A machine is oblivious if the sequence in which it accesses memory locations is

equivalent for any two inputs with the same running time. In this paper

[Goldreich96], the key problem of learning about program from its execution has been

formulated, and the problem of software protection is reduced to the problem of

on-line simulation of an arbitrary program on an oblivious RAM. It provides

theoretical treatment of software protection.

 11

 It is showed that if the one-way functions exist, this software protection scheme

is robust against a polynomial-time adversary who is allow to alter memory contents

during execution in a dynamic fashion.

2.2 Java Language and Remote Method Invocation

 Mobile code technology enables the code to be downloading dynamically from a

remote server and executed in the local machine. Here we present the Java language,

which is most popular mobile code technology in the current Internet environment.

The RMI (Remote Method Invocation) which enables cooperation between machines

on the network in the Java environment is also discussed.

2.2.1 Java Language

 Java applications, or applets, are different from ordinary applications in that they

reside on the network in centralized servers. The network delivers the applet to your

system when you request them.

 The Java language changes the passive nature of the Internet and WWW by

allowing architecturally neutral code to be dynamically loaded and run on a

heterogeneous network of machines such as the Internet. Java provides this

functionality by incorporating the following features into its architecture. These

features make Java the most promising contender for being the major protocol for the

 12

Internet in the near future.

2.2.2 Remote Method Invocation

 Distributed systems require that computations running in different address spaces,

potentially on different hosts, be able to communicate. The development of Remote

Method Invocation (RMI)[Sun96a] enables software developers to create distributed

Java-to-Java applications, in which the methods of remote Java objects can be

invoked from other Java virtual machines, possibly on different hosts. With the RMI

technology, a Java program can make a call on a remote object once it obtains a

reference to the remote object, either by looking up the remote object in the

bootstrap-naming service provided by RMI, or by receiving the reference as an

argument or a return value.

 The Java remote method invocation system described in this specification has

been specifically designed to operate in the Java environment. While other RMI

systems can be adapted to handle Java objects, these systems fall short of seamless

integration with the Java system due to their interoperability requirement with other

languages. For example, CORBA presumes a heterogeneous, Multilanguage

environment and thus must have a language- neutral object model. In contrast, the

Java language's RMI system assumes the homogeneous environment of the Java

Virtual Machine, and the system can therefore take advantage of the Java object

model whenever possible.

 13

Chapter 3

The Proposed Authorization and Protection Model

 As the speed of network transmission becomes faster and faster, many jobs tend

to be processed by tightly connected computers. A network-computing environment

can be established by the mobile code technologies. In this environment, the

computational and storage resources may be spread on different locations instead of a

single computer.

 In mobile code systems, the software is composed of many applets. The applet

is a piece of software that can be downloaded dynamically from the remote machine

and executed in the local machine, and the cooperating of these applets can process

the job. In the environment, an authorization and protection is proposed which

provides security for the software by delegating some critical execution services to a

trusted and protected party.

3.1 System Model

 The execution of software can be viewed as the following three parts, incoming

flow information, transformation process, and outgoing flow information. For an

outgoing information, if the information flows through an applet, we can say that this

 14

applet participates in the transformation process for the outgoing information.

Therefore, if we remove some applets that participate in the transformation process,

the execution will be stopped without help of the missing applets.

3.1.1 The Proposed Protection Model

 With the RMI (Remote Method Invocation) technology for Java language that

enables cooperating of computers on the network, we proposed a model that protects

the software with the help of a trusted, protected computational proxy servers instead

of tamper-resistant hardware devices installed in the user’s environment. In this

model, applets of the software is partitioned into general and privileged applets. The

users can get only general applets and the privileged applets will be forced to be

executed in a protected environment.

Trusted
Computational

Proxy

User Applet controlling process

Applet controlling process

common applet

pr ivileged applet

Global view of

the sof tware

 15

Figure 3.1 The proposed protection model

 The trusted computational proxy provides computation services for privileged

applets. Only a trusted proxy has the capability to get privileged applets and execute

them. The proxy executes the applets and returns the result to the user. Since some

of the applets are forced to be executed in the proxy server, an unauthorized user

cannot benefit from the software with only part of the applets. There can be more

than one proxy, and each proxy executes part of privileged applets. Then the

compromise of one proxy will not leak all privileged applets. In the proposed model,

applets to be downloaded are encrypted by applet keys, and the applet keys for each

applet are different. These keys are only available to trusted proxies or authorized

users.

System Components

 In this model, there are six major components:

Software Vendor: The company who develops the software.

Certificate Authority: The party who issues public and private keys.

Software Authentication Center: An accredited organization that authenticates the

software developed by software vendors, and signing legitimate parts of the software.

Applet Server: The server who stores applets provided by software vendors. When a

host wants to execute an applet, it first downloads the applet from an applet server.

 16

Trusted Computational Proxy: The server that provides computational services of

privileged applets for users.

User: The user who uses the software.

Sof tware
Authentication

Center

User

Trusted
Proxy

Sof tware
Vendor

Applet Server

Network

Certif icate
Authority

Figure 3.2 System components

3.1.2 Licenses for the Software

 In our model, there are two kinds of licenses, publication license and execution

license. The publication l icense gives the right for software vendor to distribute an

applet and the execution license gives the right for user or proxy to download and

execute an applet.

 17

Publication license

 For each applet, there is a publication license associated with it. The

publication license is issued and signed by software authentication center, and every

applet provided by software vendor, which must have a legal publication license.

 A publication license consists:

1. Serial number

2. Software vendor information

3. Software authentication center information

4. Applet information (ID, version)

5. Message digest of the applet (optional)

6. Issuing and expiration time

7. Other information

 The license is signed by the center’s private key. When a user or a proxy

downloads an applet from the applet server, it verifies the applet by the center’s public

key and also checks the message digest and expiration time of the applet.

 The message digest of an applet is optional. For some applets, we give the

message digest to an authorized user in another way instead of placing it in the

publication license. This helps to reduce unauthorized use for the applets. We will

discuss this later.

 When the software vendor releases a new applet, it first sends it and the related

information about the applet (for example, specification or source code) to the

 18

software authentication center. The software authentication center checks the applet,

and if there is no problem with it, the center issues a publication license of this applet

and sends back to software vendor.

 For some applets, sometimes it is not easy to verify them in the first time. In

this case, the center can set a shorter expiration time in the publication license for

such an applet. It issues new licenses periodically to the software vendor and will

stop the process if any problem of the corresponding applet found in the future.

Then the software vendor updates new publication licenses on all applet servers see

Figure 3.3. The expiration time for each publication license depends on the policy

for the software authentication center. Generally, longer expiration time can be

assigned if an applet from a software vendor is more trusted or easier to be verified.

Sof tware
Authentication

Center

Sof tware
Vendor

Software been
published

Publication
License

Applet Server
Applet Server

Applet Server

New PL
New PL

Figure 3.3 Publication license updating

 19

Execution license

 The user or proxy must get an execution license to execute the corresponding

applet. The execution license is issued and signed by software vendor.

 The execution license consists:

1. Serial number

2. Execution capabilities for applets of the software

3. Delegation capabilities for applets of the software (For user only)

4. User or proxy’s information

5. Software vendor information

6. Issuing and expiration time

7. Other information

 The execution capability of an applet determines whether a user or a proxy can

download the applet. The delegation capability determines whether a user cans

delegation the execution of an applet to the proxy. Delegation here means delegate

the execution to a trusted party if a user cannot execute it directly. If the user has the

execution capability of an applet, he can get some extra information of the applet from

software vendor, for example, applet key or message digest of the applet. To execute

the privileged applets that have to be executed in the proxies, a user must have the

delegation capability for these applets.

 20

 The execution and delegation capabilities for a user dependent on how many

applets the user has been authorized to use. If the user is interested in only some

features of the software, software vendors can issue the l icense with the capabilities

for only the applets providing these features.

3.1.3 Using the Software

 The user can purchase the execution l icense to the software he interested in from

the software vendor. Once the user received the execution l icensed offered by

software vendor, he can begin to use the software. In this section, we describe the

related issues when a user is using the software.

Applet Downloading

 In the mobile code system, the applets are dynamically downloaded from a

remote server and executed in local machine. Applet downloading is necessary

before execution if there are no previously cached applets in a proxy or user’s

computer. The applet server controls the access for those applets to be downloaded.

The client (proxy or user) sends the request of the applets needed to be execution

associated with his execution l icense. If the license consists of the execution

capability with respect to the applet and the license is valid, the request will be

accepted, and otherwise it will be denied.

 21

 When a user or a proxy received an applet from the applet server, he can decrypt

it with the corresponding applet key. The verification process verifies the validity of

an applet, which includes the correctness and the effectiveness of the downloaded

applet.

Applet Server

applet PLapplet PL

applet

Decrypt applet

Verif y PL

Verif y applet

Client

download applet

system resources

Virt ual Machine

reques t applet

Figure 3.4 Applet downloading and verification

Execution of the software

 After a user downloads the applets from an applet server, he can begin to execute

them. Since privileged applets are forced to be executed by the proxies, therefore

the user has to bind these applets first before execution. In the binding phase, the

user sends his execution l icense to the proxy server he wants the execution to be

delegated. Both user and proxy mutually authenticate the execution licenses with

 22

each other. The execution then proceeds by executing the applets corresponding to

the capabilities listed in user’s execution license.

 If there are more than one proxy participated in the execution, the user will be

required to explicitly make connections to each of them and authenticate with each

other.

 At the first time for using the software, the user asks to software vendor for a l ist

of available proxies. Then he chooses the proxy for computational service and

register himself at this proxy. Registration for execution l icenses will be discussed

in the next section.

3.1.4 License Registration and Revocation

 Once an execution license has been issued to a user, the user can use the software

with the capabilities listed in the license. However, sometimes the software vendor

may wish to revoke the license for a user if il legal behavior of the user has been found.

Moreover, with the registration and revocation, the license can be easily expired by

the number of executions. The proxy records the number of executions for the user,

and if it exceeds the limitation described in the user’s execution license, further

execution will be refused.

Registration

 23

 Registration is required for the first time when a user wants to use the service

provided by a proxy. The execution license will only be valid for the proxy if there

is a corresponding registry � � � �� � ��
� �

�

(�
�
 is software vendor’s private key) in

the proxy. When a user wants to delegate the execution to a proxy, the proxy checks

both the user’s execution license and the registry. The license without a

corresponding registry will be considered as invalid. The following is the steps for

registration:

Steps 1: User sends a request associated with his execution license to software

vendor for registration at a proxy.

Step 2: Software vendor checks the validity for user’s license. Go to Step 3 if

the user’s license is valid otherwise stop.

Step 3: Software vendor sends a message � � ��
�

� � (signed by software

vendor) to the new proxy for adding user’s record at the proxy, where

��
�
 is the serial number for the license.

Step 4: Software vendor updates its own registry for the user.

Revocation

 To revoke an execution license in a proxy, the software vendor simply tells the

proxy to remove the registry for the user and then removes the registry located in the

software vendor itself. Then the user’s execution license will be revoked because no

 24

registries can be found on the proxy.

3.2 Illicit Dissemination and Unauthorized Use of the Software

 A serious problem in software protection is the il licit dissemination of the

software. As we mentioned earlier, such problem is even more serious in mobile

code systems. Although the applets in the applet server are encrypted, an authorized

user who gets the applet may decrypt and illicitly disseminate it to another

unauthorized user. Moreover, a trusted computational proxy may also be

compromised. The more applets a user can get, the more information he will be able

to gain from the software. However, it is very difficult to control the software once

it has been il licitly distributed, since the software is just a binary sequence of data.

Common protection schemes with authentication processes embedded in the software

failed to stop the problem from smart crackers. Therefore something must be done

to reduce the problem that the applets of authorized users or proxies i llicitly

disseminated to unauthorized users.

3.2.1 Discouraging Illicit Dissemination

 Common methods preventing or reducing such problem use the technique of

digital watermarking. With this technique, software vendor can hide some

embedded data into the software for the purpose of identification and copyright, in

 25

order to discourage unauthorized copying and dissemination. Many papers have

been proposed for this area [Bender96] [Berghel96] [Brassil95] [Choudhury94]. It is

useful for tracing the software that has been illicitly distributed. When the uniquely

marked ownership for a consumer is embedded in the software, he tends to be

unwilling to distribute the software to the network because the copyright violation

may be found by software vendor.

3.2.2 Discouraging Unauthorized Use

 Here we propose a scheme to reduce the problem of software piracy in another

point of view by discouraging unauthorized users to use the i llicitly disseminated

software instead of discouraging illicit dissemination.

 The modified version of applet is be harmful to users executing it, since it may

contain malicious code such as a Trojan horse or a Virus. The malicious code

accessing user’s system resources such as the file system, the CPU, the network, and

the graphics display may cause unpredictable effects from stealing user’s privacy to

damaging resources in user’s environment. Therefore, users usually refuse to

execute unknown or untrusted code from the network. In JDK 1.1 (Java

Development Toolkit)[Sun96b][Gong97], the code signing feature is provide and the

user who downloads the applet can verify the code signed by the author. If the

applet is not trusted, execution will be restricted in a sandbox with only limited

system resource provided, as shown in Figure 3.5.

 26

sandbox

valuable resources

JVM

Internet

remote code

“trusted”
others

local code

Figure 3.5 JDK 1.1 Security Model

 Based on this nature, our proposed scheme discourages the unauthorized use in

mobile code systems by preventing unauthorized users to verify the applets

downloaded from the network. In Figure 3.5, the user tries to download the applets

from the applet server without an execution l icense will be refused. However, an

authorized user may disseminate the applets he has to the unauthorized user. We

apply the technology of undeniable signature [Chaum90] to make an authorized user

not been able to proof that his applet is valid to other users. The software vendor or

software authentication center cannot deny those applets signed by them and has to be

responsible for the applets if any problems due to the applets are found in the future.

 27

Unauthorized
user

User Applet Server

?
Access denied

Download and
verify the applet

applet will be
unverif ible

Sof tware
Company

get an
execution
license

Figure 3.6 discouraging the unauthorized use of software

Nontransferable Message Digest

 In our scheme, a user cannot convince to another user that the message digest he

has is valid. The unauthorized use of software is discouraged by the nontransferable

message digest, which applies the undeniable signature scheme proposed by

[Chaum90]. The protocol for requesting a nontransferable message digest is shown

in Figure 3.7. A large prime, p, and a primitive element, g, are made public, and

used by a group of signers. The signer has a private key, x, and a public key,

� ��
��� . For a message m, the signer first computes � 	 ��= ��� . A user has

to get the signature with his execution license. If he has the execution capability for

the applet, he can get the corresponding message digest from the signer.

 28

User Signer

� �� ������	
�� �
 � ��� �
�

� � �

�
� � �

�

�� = � � � �� �
� � � �

� � = � � �
�

� � � � � � �

conf irm that

choose random number
a and b (less than p)

� � ��

�= ���

compute

verify EL

� � �= −� ���� � �

compute

Figure 3.7 Nontransferable message digest

3.3 Security analysis

In this model, the software may be compromised if

1. The proxy server is compromised

 If a proxy is compromised, all privilege applets in this proxy will be also

compromised. So a proxy has to be trusted by the software vendor and has to be

secure from been cracked. A proxy can be software vendor itself or another trusted

party. There can be several proxies, and each proxy owns execution licenses for a

part of privileged applets. Such that the software can be secure if not all proxies are

compromised.

 29

2. User can reconstruct the protected part of applets successfully.

 Although some privileged applets are executed in the proxy and other applets

executed by user have to dependent on the other privileged applets, a user still can try

to crack the software by reconstructing the missing applets. In chapter 4, we

proposed a model for software partitioning, which offers a way of partitioning applets

into common and privileged parts by reducing the chance for a user to benefit from

the software with partial applets.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 30

Chapter 4

Software Partitioning

 Software partitioning means separating applets such that a user can not benefit

from the software holding only part of applets. Our goal is to partition the software

in such a way that if the user gets one applet, he will not be able to get an acceptable

result from the applet if it requires the help of the execution of other applets.

 In Figure 4.1, we compare two different ways of software partitioning. Assume

that the software is represented in the graph which each separated part means a code

fragment, and the execution of a code fragment depends on the execution of adjacent

code fragments, that is, there will be procedure calls or invocations in the execution

between the adjacent code fragments. If there are two main modules in the software,

and the light color in the graph means the code fragments a user can get, and the dark

color means the codes that have to be executed in a protected environment, that is, the

trusted computational proxy. It is straightforward that the right part of partitioning

provides better protection for the software than the left part. The method of

partitioning in the left graph merely gives all code fragments in the first module to the

user and all code fragments in another module to the proxy. An unauthorized user

who gets these code fragments can access the first module of the software and get

some partial results. In the right graph, an unauthorized user can still get as many

code fragments as in the left graph. However, he will not be able to benefit from any

one of the two main modules in the software, because many of the code fragments he

 31

got dependent on the execution of other code fragments in the proxy.

Poor partitioning Better partitioning

Figure 4.1 Example of partitioning

 The execution of one applet may give some information to the user. The more

applets the user can get, the more information may be gained from the user. If the

user gets all the applets, we can say that the whole software is compromised.

However, for two nonadjacent applets, since they are not directly dependent, the user

cannot gain more information directly from them unless he can also get the applets

that have dependencies between the two applets and obtain a larger subset of

dependent applets. For two applets, the user will get more information from them if

they are directly dependent.

 32

4.1 Proposed Model for Partitioning

 Software in the mobile code system can be represented as an undirected graph

� � �= � � � , where the vertices are the applets and the edges mean the dependency

between any two applets. If an applet may invoke another applet in the execution

session, we can say that they are dependent. For two dependent applets, there will

be messages passing between them in the execution of the software.

 In the software, we assume that user can get more acceptable result from it if he

can get a larger subset of the connected applets. Giving user two independent

applets will provide better protection than two dependent applets, because the user

cannot benefit from two independent applets directly if they dependents from other

applets executed in the proxy. Based on the assumption, we proposed a partitioning

model, which all any two applets executed by the user are independent, as shown in

Figure 4.2.

Proxy

User

Software

 33

Figure 4.2 the proposed partitioning model

 Each of them depends on the execution of other applets executed by the proxy to

gain the result of a larger subset of applets. Our proposed model considers the

security only to the applet level, that is, we do not look inside the applets and concern

how it is written. An applet is a basic element in our model. For small software

with only several applets, a heuristic partitioning may work better. For large

software composed of many applets, our model gives a good protection by

partitioning the software into minimal piece of independent code fragments.

 Based on this model for assigning independent applets to achieve security, we

consider the following two issues:

1) Performance

2) High Security

 In the first consideration, we wish to achieve good a performance considering the

computational load of the proxy. Since the proxy provides the computation services

for users, the load may become heavy. Therefore partitioning in such a way that

finds a better performance in this environment becomes very important. Under the

constraint that all applets executed by the user are independent, we want to assign as

more applets in client as possible. If each applet has a different computational cost,

we can find an assignment that minimizes the computation load for the proxy. Later,

 34

we will also take the communication load between any two applets into consideration,

and find the optimal assignment for both the considerations for computation cost and

communication load.

 In the second consideration, we want to assign applets in such a way to achieve

higher security. If we want to minimize the information the user can get, we can

assign as more applets in the proxy as possible. Since the user gets only the result of

the execution from proxies, higher security can be achieved. In this case, we also

consider that the proxies may be compromised.

4.1.1 Assignment for Applets

 In the software represented by a graph � � �= � � � , the applets executed by the

user is assigned as number 0, and number 1 or greater represents the applets executed

by the proxy.

 Not all applets of the software will be freely assigned. Some applets may have

special properties and have to be assigned in specific locations. Before partitioning,

we find this kind of applets and assigned them first. The steps for initial assignment

are described as follows, and an example is shown in Figure 4.3.

Step 1: Mark the nodes that have to be placed in specific locations.

 There may be some applets that have to be executed in specific locations.

For example, some applets may be designed for reading data from user’s

 35

keyboard, displaying something to the user’s monitor or reading/writing

something from user’s hard disk. This kind of applets has to be executed by

user, and assigned as number 0. Some applets have to open some network

connections from a proxy (in a firewall, for example) or reading/writing

something from proxy’s file system. These applets should be placed in the

proxy, and assigned as number 1. In this step, all special nodes are marked, as a

number depending on the location the applets has to be assigned.

Step 2: Assign 1 to the nodes adjacent to nodes assigned as 0.

 Since the applets executed by the user must be independent, all applets

adjacent to applets assigned, as number 0 cannot be assigned as number 0 again.

These applets have to be assigned as number 1.

user’ s input

user’ s
monitor

user’ s disk

file system
behind a
firewal l

0

0 1

0

0

0 1

0

1

1

1

1

Figure 4.3 An example for initial applet assignment

 36

 Here are some examples for this kind of applets that have to be initially assigned.

User: Reading from keyboard

Reading or writing from user’s hard disk

Display on the monitor

Communicate with network with user’s identity

Proxy: Reading or writing from proxies files systems

Execution from behind the firewall

Applets consists of critical codes

 In addition, the security concerns is also an important factor for the initial

assignment of applets. In the network environment, sometimes an applet may do

some operations to a specific principle, and the correct execution has to be assured.

For example, the software vendor may want to record the state of the execution of

software provided to users. Sometimes a trusted party can only access a database.

If the user performs the execution of the applet, he may modify the code to deviate

from prescribed execution and creates faulty results. Thus such applets have to be

assigned to the proxy to ensure correct results. The delegated computing ensures

that the critical part of code is correct been executed, as shown in Figure 4.4.

 37

Applet server

Applet server

User

Database

Trust Proxy

User

Database

Download

applet

Download

applet

User may uses a
modif ied version
of applet to access
the database

Delegate the critical
part of code to a
trusted proxy

critical or
privileged code

Figure 4.4 Delegated computing

4.1.2 Complexity of an applet

 The execution of software can be viewed as three parts, incoming flow

information, transformation process, and outgoing flow information. In the

transformation process, some applets cause little influences to the outgoing

information and some may just pass the information flowing to them without any

transformation. For these applets, assigning them to the proxy will be little use since

an elite user may reconstruct the missing part of applets easily. If an applet is not

written with enough complexity, it can be assigned to user. An applet executed by

the proxy should have enough complexities described as follows [White90].

 38

Semantic Complexity:

 Semantic complexity reflects the difficulty of reconstructing the protected part

by examining the environment of its interaction with the unprotected part. At one

end of a spectrum of partitioning methods, selected obscure parts of the application

are protected. For instance, an application may contain a proprietary algorithm, all

of which could be protected. If that part of the program was difficult to write

initially, it may be difficult for an attacker to reconstruct it. At the other end of this

spectrum, random parts of the application could execute in the protected environment.

This is semantically complex to the extent that it is difficult to understand a program

that has a large number of lines missing.

Combinatorial Complexity:

 Combinatorial complexity reflects the difficult of exhaustively characterizing the

behavior of the protected part by watching what it does. Consider an application in

which there are n access points in the unprotected part, at which accesses are made to

the protected part. At each access point, a k bit argument is passed to the protected

part, and the protected part performs some calculation. If this results in Ω(��)

independent states of the system, essentially all possible values of the argument must

be tried by an attacker to completely characterize the effects of the calculation. This

is the case, for instance, in a one-to-one function of the argument, whose value is

 39

returned by the calculation. The characterization can be made even more difficult if

some or all of the results are stored in the protected part instead.

4.2 Partitioning For Performance Considerations

 If the proxies are trusted and protected, adjacent applets in the proxy will not be

a problem. We just need to assign the nodes that all applets in the user are

independent, because the unauthorized users cannot access applets in the proxies.

 It is straightforward that placing all nodes in the proxy will achieve maximum

security, but in such a way the proxy will be very heavily loaded. The proxies

provide the computational services of the software for authorized users. Since one

proxy may serve many users who are requesting the delegated execution for

privileged applet at the same time, the computation load in the proxy should be an

important factor for the overall performance. In such distributed computing

environment, the main issue is to allocate as more applets as possible to be executed

by user to reduce the load of the proxy server.

 Since we also want to keep all applets in the user independent to provide

protection, the problem can be reduced to finding the maximum independent set in an

arbitrary graph. We define computation cost to be the cost spent in the running time

of an applet, including CPU cycles, memory allocated, and disk space used. Since

each applet has a different computation cost, the problem becomes finding the

maximum weighted independent set in an arbitrary graph.

 40

4.2.1 Finding Maximum Weighted Independent Set

 In a graph � � �= � � � , and each vertex has a positive weight w. Let � to be

the independent set for the graph G if for all � � �� �� ∈ , � � �� �� ∉ . The

maximum weighted independent set with the weight w for the graph G is to maximize

� � � �

� �

� � =
∈
∑ . A clique of graph � � �= � � � is the subset � �⊆ , where

� �� � is a complete graph. Finding the maximum weighted independent set in G

is equivalent to finding the maximum weighted clique in � , where a maximum

weighted clique is a clique that the sum of all of its weighted vertices is maximal.

 The problem of finding the maximum weighted or unweighted independent set in

an arbitrary undirected graph, has been proven to be NP-hard [Garey79]. The

problem is notoriously hard even if vertices of the graph are unweighted. For the

unweighted case, an efficient algorithm for finding maximum independent set has

been presented by [Tarjan77], which takes Ο � ��� �� time. Many heuristic

algorithms have been proposed for finding maximum weighted independent set or

maximum weighted clique in an arbitrary graph

[Balas96][Kopf87][Pardalos91][Xue94]. Polynomial time algorithms for many

other restricted classes of graphs have also been proposed. If the graph is a tree, the

maximum weighted independent set can be found in Ο � �	 [Chen88].

 With the algorithms for finding maximum weighted independent set, the optimal

partitioning for the software that the computation load of the proxy is minimum and

applets executed by user are independent can be found.

 41

4.2.2 Considering both Computation and Communication Load

 Now we consider that the network bandwidth between user and proxy may be

limited, and the computing power for the proxy may be also limited. We want to

partition the software that gives optimal assignment for load consideration under such

limitations. In the applet dependency graph, we define each edge to be the network

communication loads between two applets. The communication load is often

measured as the average number of messages in an execution session, and it is defined

to be zero between to applets if:

1) Two applets are nonadjacent.

2) Two adjacent applets are assigned in the same location.

 Then we define communication degree for an applet to be the total

communication load between the applet and all other adjacent applets. Here are the

steps for calculating the communicate degrees for all applets.

Step 1: Measure the communication loads between any two applets and define

as the weights of edges in the graph.

Step 2: Add the weights of all incident edges of a node to be its

communication degree, if the adjacent node has not been assigned as

the same number with the node.

 42

 An example of the steps for calculating the communication degrees for each

applet is given in Figure 4.5. In this example, the two darker nodes have been

initially assigned as the same number. Therefore the communication load of the

edge between them is not added to communication degree for them.

5

1
3

2

5

4
6

2

3

7

(2)

(5)

(3)

(7)

(9)

(6)
(4)

(7)

(8)

(3)

2

(2,5)

(3,2)

(7,3)

(9,14)

(6,9)
(4,7)

(8,8)

(3,14)

(7,5)

(5,7)

Figure 4.5 Calculating communication degree

 Consider that the computing power of proxy or the network bandwidth may be

limited. We can formulate our problem for partitioning. First we define some

variables that will be used in the problem.

m: computation cost for an applet

 ��� : sum of total computation cost for all applets

 43

n: communication degree for an applet

� ��� : sum of total communication degree for all applets

P: computing power of the proxy

B: the network bandwidth

 Our problem for partitioning under different limitations becomes:

1. Minimize the computation cost under limited network bandwidth between

proxy and user

Maximize �
 �

� �

=
∈
∑ subject to the constraint that 	 ��

� �

≤
∈
∑ , where S is

an independent set for graph G.

2. Minimize the communication load under limited computing power of the

proxy

Maximize � � 	��� �

� �

= −
∈
∑ subject to the constraint that

 �� ���

� �

≤ −
∈
∑ , where S is an independent set for graph G.

 The independent set S contains the applets that will be executed by the user.

The two problems are equivalent, and we formulate our problem as the follows.

Problem

 In a graph G=(V,E) where each node has two kinds of weights, defined as (m,n).

 44

Let � to be the independent set for the graph G if for all � � �� �� ∈ , � � �� �� ∉ .

The maximum weighted independent set with the weight w for the graph G is to

maximize � � � �

� �

� � =
∈
∑ . The problem is to find the subset S of vertices where

 �
�

� �

� � =
∈
∑ is maximum under the constraint that 	 ��

� �∈
∑ ≤ , where � ≥ � .

The upper bound of k is the maximum weighted independent set for graph G with

respect to weight n. Therefore, if k is assigned as a value greater than or equal to

MWIS with respect to weight n, the problem becomes finding MWIS with respect to

weight m.

 We have not yet found an efficient algorithm to find the optimal assignment

under such constraints. Here we present a simple heuristic method to solve this

problem recursively.

A Heuristic Algorithm

 Step 1: (1) Set �
 �= ∅ = =� �� � .

(2) Set �
 �
� � �

� �= ∅ = =� � .

(3) Set �
 �
� � �

� �= ∅ = =� � .

 Step 2: If � ≠ ∅ choose a vertex � in graph � , otherwise stop.

Step 4: For the chosen vertex � , if 	 �� > or vertex � has been initial ly

assigned to 1, go to Step 6.

Step 5: Set � � �
�

= − � � − � ��	
��
	������
	��� ���� and � � 	��
= − . Find

 45

 � �
� � �
� � by calling the algorithm for graph �

�
. If � has been

initially assigned to 0, go to Step 7.

Step 6: Set � � �
�

= − � � and � �
�

= . Find
 � �
� � �
� � by calling the

algorithm for graph �
�
.

 Step 7: If

� �

> then

 � � 	 � � �� �← + ← + ← ∪
� � �

� � .

Otherwise

 � � � �← ← ←� �
� �

.

 After the steps of the heuristic algorithm, the set S is the applets that will be

assigned to the user. Note that in the beginning if 	 ��

� �⊂
∑ > where I is the initial ly

assigned set of independent vertices in G, the process should be stopped because no

valid solution with the constraints in graph G can be found.

4.3 Partitioning Between Proxies

 In the partitioning model, all applets executed by the user are independent, and

the software a user gets consists of minimal independent pieces of applets. Now

consider that we want to achieve higher security by minimizing the applets of the

software a user can get. We can simply assign all applets to the proxy except the

applets that must be executed by user.

 We assume that there are many proxies available on the network and each proxy

may be compromised. In this case we assign the applets to the proxies by coloring

the graph to make each proxy gets independent applets.

 46

 The problem of assigning applets to the proxies to make the applets in each

proxy are independent can be formulated as the problem of vertex coloring. We

discuss the vertex coloring as the follows.

Vertex Coloring

 Let G be a graph. A vertex coloring of G assigns colors, usually denoted by

1,2,3,…, to the vertices of G, one color per vertex, so that adjacent vertices are

assigned different colors. The minimum number n for which there is an n coloring

of the graph G is called the chromatic number of G and is denoted by χ � �� . If

χ � �� =k we say that G is k-chromatic.

 The problem of coloring vertices in an undirected graph has been shown to be

NP complete, i.e., no algorithm has yet been proposed to find the optimal coloring in

polynomial time [Aho74]. However there are a number of coloring algorithms,

which give approximations to minimal coloring. These heuristic graph coloring

algorithms can be used to find good approximations to the chromatic number of those

graphs that are too large for the coloring [Clark91]. We will discuss both

approximate vertex coloring and exact vertex coloring in the following sections and

give the guidelines for partitioning with these algorithms.

4.3.1 Approximate Partitioning

 47

 If there are enough proxies available on the network, we can use the approximate

coloring algorithms for partitioning, which solve the problem in polynomial time.

 In this section, we discuss the coloring algorithms that give approximations to

minimal coloring. One of which is the simple sequential algorithm [Welsh67]. The

algorithm starts with any ordering of the vertices of the graph G say � � ��
����� . Now

assign color 1 to �
�
. Moving to vertex �

�
 color it 1 if it is not adjacent to �

�
;

otherwise, color it 2. Proceeding to �
�
, color it if it is not adjacent to �

�
; if it is

adjacent to �
�
, color it 2 if it is not adjacent to �

�
; otherwise color it 3. Proceed in

this manner, coloring each vertex with the first available color that has not been used

by any of its adjacent vertices.

 One of the modifications of the simple sequential algorithm is called

smallest-last sequential algorithm [Matula72], which performs better among the

similar algorithms by choosing vertices of minimum degree. The smallest-last

sequential algorithm uses at most ���� � ��
	

�
�

� �
∈

+� colors [Broos41], where � � �� �

is the degree for vertex � � . In our partitioning for security concerns, these

algorithms can not be applied directly because some applets may have been initial ly

assigned to specific proxies. Therefore we proposed a modified smallest-last

sequential coloring algorithm to solve the problem for coloring on the graph with

some vertices initially assigned for colors.

 48

The Modified Smallest-Last Sequential Coloring Algorithm

 Assume that the applets executed by user are assigned as color number 0, and

applets executed by proxies are assigned as color number greater than 0 which each

color number represents a proxy. In the initial assignment, some applets may have

been assigned to designated locations. For the initial ly assigned proxies, the color

numbers are chosen from 1, and increasingly. We first delete the vertices that

initially assigned as number 0 and solve the reduced subgraph. The modified

smallest-last sequential algorithm is described as follows.

Step 1: (1) Let U be the set of vertices initially assigned as color number 0.

(2) Let P be the set of vertices initially assigned as color numbers

greater than 0

(3) Let� � �= − , where H is the subgraph of G with all vertices in

U deleted

Step 2: (1) List the vertices of P as � � ��
����� .

(2) Choose � � to be a vertex of minimum degree in � �− .

(3) For � 	 	 �= − − +� � �� ����� , choose � � to be a vertex of

minimum degree in the subgraph � � � � �� � �− − − +� � ����� �
� �

.

(4) List the vertices of H as � � ��
������ .

(5) List the colors available as 1,2,…,n.

Step 3: For each i=1,…,n, if � � has not been assigned a color, let

 49

� 	� = � � ����� �� � , which is the list of colors that could color vertex � � ,

otherwise let � �� �= � � where � � is the initially assigned color for

� � .

Step 4: For each i=1,…,n, if � � is a vertex adjacent to � � , and � � has been

Initially assigned as the color � � , set � � �� � �= − � � .

Step 5: Set i=1.

Step 6: Let � � be the first color in � � and assign it to vertex � � .

Step 7: If � � has not been initially assigned a color, for each j with � �<

and

� � adjacent to � � in H set � � �� � �= − � � .

Step 8: Set � �← + � and go to Step 6 if � 	≤ .

Step 9: For i=1,…,n, � � is the color assigned for vertex � � .

 After the above steps, the applets can be partitioned such that

1) The user gets minimal information from the applets he has.

2) Applets in each proxy are independent.

3) At most ���� � ��
	

�
�

� �
∈

+� proxies are required, where � � �� � is the

degree for vertex � � .

4.3.2 Exact Partitioning

 50

 In this section, we discuss the exact vertex coloring, which gives partitioning

with minimal number of proxies. A graph can be colored optimally by coloring with

the first color a maximum independent set

�
 in � , and then coloring with the

second color with another maximum independent set

�
 in � �

� �
= − , and so

on until all vertices have been colored. Such kind of coloring algorithms are called

optimal independent colorings [Christofides71][Christofides75]. An algorithm

based on this kind of colorings which produce good suboptimal solutions with little

computational effort is also proposed [Lotfi86].

 With the algorithms for maximum independent set discussed earlier, we can

partition the software and assign them with minimal number of proxies.

4.3.3 Guidelines for Partitioning between Proxies

 Partitioning is easy if there are enough proxies available on the network. The

modified smallest-last sequential coloring algorithm proposed earlier can be applied.

If the number of color used by the approximate algorithm exceeds the number of

proxies, the exact coloring algorithms can be applied. Exact coloring algorithms

give the solution to partition with minimal number of proxies. If the number of

proxies available is fewer than the chromatic number (minimal number of coloring)

for the graph, a ideal partitioning cannot be achieved. In this case, we can use the

exact coloring algorithm by assigning an maximum independent

�
 in � to the

first proxy, and assign

�
 in � �

� �
= − to the second proxy, and so on, until

 51

	 −� proxies in 	 have been used. The remaindering applets (which may not be

independent) are assigned to the last proxy. Therefore, applets each proxy are

independent, except the last one. And we can concentrate on protecting the last

proxy.

 If the computational capability for a proxy is limited, more proxies may be

needed. Assume that each proxy has its different computational capability, and

establishing each proxy requires a different cost. Finding the minimal cost with such

constraints important is equivalent to the loading problem discussed in [Elion71].

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 52

�

Chapter 5

Conclusions

 The development of Java language created a new environment for software usage.

In this environment, dynamically downloaded codes allow users execute any

programs they are interested in from the network. To protect the copyright of the

software on the Internet, software piracy must be prevented. The growth of network

makes this problem more serious. Many approaches have been proposed to prevent

software piracy, such as key disks, parallel-port locks, and custom serial-number

validations. This scheme with authentication process embedded in the software has

been successful in stopping most unauthorized users. However, they cannot

effectively protect from been cracked by a smart cracker. Once the software is

cracked, it will be then distributed widely on the network.

 In this project, a model for software authorization and protection in mobile code

systems is proposed. To achieve flexible and global security for the rapid growing

network environment, the protection for both the software property and principles in

the network environment have been taken into consideration. The privileges to

access to these applets are separated and distributed to a number of trusted

computational proxies. The execution of software is conducted by cooperation of

the applets and the proxies contain them. The user holding part of applets of the

software will not be able to use the software without the help of these proxies.

 53

 A model for software partitioning in this environment is proposed. Independent

applets are assigned to the user, which provide little information without cooperation

with applets on the proxies. To increase the performance in this environment,

computation load of the proxies and communication load between proxies and users

should be minimized. An optimal assignment of applets for the software is also

proposed to minimize, under the security considerations, the computation load of

proxies and the communication load between proxies and users. To reduce the risk

of proxies been attacked, vertex coloring has been applied on the partitioning, which

reduces the risk of proxies may been attacked. In the case the intruder can acquire

that a proxy is compromised, little information.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 54

�

References

[Aho74] A. V. Aho, J. E. Hopcroft and J. D. Ullman, “The design and Analysis

of Computer Algorithms,” pp. 364-404, Addison-Wesley, Reading, MA

1974.

[Balas96] E. Balas and J. Xue, “Weighted and Unweighted Maximum Clique

Algorithms with Upper Bounds from Fractional Coloring,”

Algorithmica 15, pp. 397-412, 1996.

[Barker89] William C. Barker, “Use of Privacy-Enhanced Mail for Software

Distribution,” Fifth Annual Computer Security Applications

Conference, pp. 344-347, 1989.

[Bender96] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techiniques for Data

Hiding,” IBM System Journal, v. 35, no. 3-4, pp. 313-336, 1996.

[Berghel96] H. Berghel and L. O’Gorman, “Protecting Ownerhip Rights Through

Digital Watermarking,” IEEE Computer, pp. 101-103, July 1996.

[Best79] R. Best, “Microprossor for Executing Encrypted Programs,” US Patent

4, 168396, 1979.

[Bic96] Lubomir F. Bic, Munehiro Fukuda, and Michael B. Dillencourt,

“Distributed Computing Using Autonomous Objects,” IEEE Computer,

August 1996.

[Brooks41] Brooks, R. L. (1941). On Coloring the Nodes of a Network,

Proc.Cambridge Philosophical Soc., 37, p. 194.

[Brassil95] J. Brassil, S. Low, N. Maxemchuk, and L. O’Gorman, “Electronic

Marking and Identification Techniques to Discourage Document

 55

Copying,” IEEE J. Selected Areas in Comm., pp. 1495-1504, Oct.

1995.

[Carzaniga97] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna,

“Designing Distributed Applications with a Mobile Code Paradigm,”

In Proceedings of the 19th International Conference on Software

Engineering, Boston, Ma., May 1997.

[Ciancarini97] Paolo Ciancarini and Davide Rossi, “Jada -- Coordination and

Communication for Java Agents,” In Mobile Object Systems: Towards

the Programmable Internet, pages 213-228. Springer-Verlag, April

1997. Lecture Notes in Computer Science No. 1222.

[Chaum90] D. Chaum and H. van Antwerpen, “Undeniable Signatures,” Advances

in Cryptology-CRYPTO ’89 Proceedings, Springer-Verlag, pp.

212-216, 1990.

[Chen88] G. H. Chen, M. T. Kuo, and J. P. Sheu, “An Optimal Time Algorithm

for Finding a Maximum Weight Independent Set in a Tree,” BIT 28, pp.

353-356, 1988.

[Choudhury94]A. K. Choudhury, N. F. Maxemchuk, S. Paul, and H. G. Schulzrinne,

“Copyright Protection for Electronic Publishing Over Computer

Networks,” Technical Memo BL011382-940428-75TM, AT&T Bell

Laboratories, April 1994.

[Christofides71]N. Christofides, “An Algorithm for the Chromatic Number of a

Graph,” The Computer Journal, 14, p. 38, 1971.

[Christofides75]N. Christofides,” Graph Theory,” Academic Press, London, 1975.

[Clark91] John Clark and Derek Allan Holton,” A First Look at Graph Theory,”

World Scientific, 1991.

[Curtis94] D. Curtis, “Software Privacy and Copyright Protection,” WESCON/94,

 56

Idea/Microelectronics, Conference record, pp. 199-203.

[Dakin95] Karl J. Dakin, “Do You Know What Your License Allows?” IEEE

Software, pp. 82-83, May 1995.

[Dean96] D. Dean, E. Felten, and D. Wallach, “Java Security: From HotJava to

Netscape and Beyond,” Proc. IEEE Symp. Security and Privacy, pp.

190-200, May 1996.

[Donovan94] Stephen Donovan, “Patent, Copyright and Trade Secret Protection for

Software,” IEEE Potentials, pp. 20-24, August/September 1994.

[Elion71] S. Elion and N. Christofides, “The Loading Problem,” Manage. Sci. 17,

pp. 259-268, 1971.

[Garey79] M. R. Garey and D. S. Johnson, “Computers and Intractability: A guide

to the Theory of NP-Completeness,” Freeman, San Francisco, CA.,

1979.

[Ghezzi97] Carlo Ghezzi and Giovanni Vigna, “Mobile Code Paradigms and

Technologies: A Case Study,” In Proceedings of the First International

Workshop on Mobile Agents, Berlin, Germany, April 1997.

[Goldreich96] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation

on Oblivious RAMs,” Journal of the ACM , Vol. 43, No. 3, pp.

431-473, May 1996.

[Gong97] L. Gong, "New Security Architectural Directions for Java (Extended

Abstract)" . In Proceedings of IEEE COMPCON, San Jose, California,

pp. 97-102, Feb. 1997.

[Gosling96] J. Gosling and H. McGilton, “The Java Language Environment,” Sun

Microsystems, May 1996.

http://java.sun.com/doc/language_environment/.

[Gray95] Robert S. Gray, “Agent Tcl: A Transportable Agent System,” In

 57

Proceedings of the CIKM Workshop on Intelligent Information Agents,

Baltimore, Md., December 1995.

[Hall96] David Hall, Jean Bacon, and John Bates, ”Flexible Distributed

Programming Using Mobile Code,” In Proceedings of the Seventh

ACM SIGOPS European Workshop, Connemara, Ireland, September

1996.

[Harn92] L. Harn, H.Y. Lin and S. Yang, “A Software Authentication System for

Information Integrity,” computers and Security, Vol.11, No.4, pp.

747-752, 1992.

[Herzberg86] A. Herzberg and S. Pinter, “Public Protection of Software,” Advances

in Cryptology:Proc. Crypto 85, H. C. Williams, Ed., pp. 158-179,

1986.

[Jaeger96] Trent Jaeger, Aviel D. Rubin, and Atul Prakash, “Building Systems that

Flexibly Control Downloaded Executable Content,” In Proceedings

of the 6th Usenix Security Symposium, pages 131-148, San Jose, Ca.,

July 1996.

[Kahan95] J. Kahan, “A Distributed Authorization Model for WWW,” Proc.

INET’95 Conf., Honolulu, Hawaii,

http://www.isoc.org/HMP/PAPER/107, 1995.

[Kent80] S. T. Kent, “Protecting Externally Supplied Software in Small

Computers,” Ph.D. dissertation, MIT/LCS/TR-255. MIT, Cambridge,

Mass, 1980.

[Lotfi86] Vahid Lotfi and Sanjiv Sarin, “A Graph Coloring Algorithm for Large

Scale Scheduling Problems,” Comput. & Ops. Res. Vol. 13, No. 1, pp.

27-32, 1986.

[Kopf87] R. Kopf and G. Ruhe, “A Computational Study of the Weighted

 58

Independent Set Problem for General Graphs,” Foundations of Control

Engineering, pp. 167-180, 1987.

[Matula72] D.W.Matula, G.Marble, and J.D.Isaacson, “Graph coloring

algorithms,” In R.C. Read, editor, Graph Theory and Computing, pp.

109-122, 1972.

[Neff94] Richard E. Neff, “Software Piracy: International Copyright Overview,”

WESCON/94, Idea/Microelectronics, Conference record, pp. 190-195.

[Nog96] Saurab Nog, Sumit Chawla, and David Kotz, ”An RPC Mechanism for

Transportable Agents,” Technical Report TR96-280, Department of

Computer Science, Dartmouth College, Hanover, N.H., 1996.

[Pardalos91] P. M. Pardalos and N. Desai, “An Algorithm for Finding a Maximum

Weighted Independent Set in an Arbitrary Graph,” Int. J. Comput.

Math. 38, pp. 163-175, 1991.

[Perret96] Stephane Perret and Andrzej Duda, “MAP: Mobile Assistant

Programming for Large Scale Communication Networks,” In

Proceedings of the IEEE International Conference on Communications,

Dallas, Tex., June 1996.

[Rubin95] Aviel D. Rubin, “Trusted Distribution of Software Over the Internet,”

Proc. IEEE Symp. On Network and Distributed System Security , pp.

47-53, 1995.

[Samarati96] P. Smarati., E. Bertino, and S. Jajodia, “An Authorization Model for a

Distributed Hytertext System,” IEEE Transactions on Knowledge and

Data Engineering, Vol 8, No. 4, pp. 555-562, August 1996.

[Sun96a] “Remote Method Invocation Specification”, Sun Microsystems Inc.

http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTO

C.doc.html.

 59

[Sun96b] “Signed Applets and Digital Signatures,” Sun Microsystems Inc.

http://java.sun.com/products/JDK/1.1/docs/guide/signing.

[Tarjan77] R. E. Tarjan and A. E. Trojanowski, “Finding a maximum independent

set,” SIAM J. Comput., 6, no. 3, pp. 537-546, 1977.

[Voelker86] J. Voelker and P. Wallich, “ How Disks are ‘Padlocked’,” IEEE

Spectrum, p. 32, June 1986.

[Wallach97] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten.

Extensible security architectures for Java. Technical Report 546-97,

Department of Computer Science, Princeton University, April 1997.

[Welsh67] D.J.A. Welsh and M.B. Powell, “An Upper bound for the Chromatic

Number of a Graph and its Application to Timetabling Problems,”

Comput. J., 10:85-86, 1967.

[White90] S. R. White and L. Comerford, “ABYSS: Architecture for Software

Protection,” IEEE Transactions on Software Engineering, Vol. 16, No.

6, pp. 619-629, June 1990.

[Wilson97] A. Wilson, “Software Security and the DirectPlay API,” Dr. Dobb’s

Journal, p. 66, April 1997.

[Xue94] J. Xue, “Edge-Maximal Triangulated Subgraphs and Heuristics for

Maximum Clique Problem,” Networks, Vol. 24, pp. 109-120, 1994.

�

