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Abstract
This study presents an approach to analyze 

dynamics of spur gear systems using a dynamic 
stiffness method. Calculated and measured tip 
displacements and fillet strains of gear pairs are 
compared. Besides, a fillet strain of a two-stage 
gear reducer is also measured. Additionally,
influence of gear design parameters is examined.
the effect of gross motion on gear dynamics is
also investigated. Finally, fillet strains of a gear 
pair are calculated using a multiple tooth-pair 
model to directly account for the condition of 
multiple tooth pairs in contact.

Keywords: Gear; Dynamic stiffness method; 
Correction factor, Gross motion, dynamics

1. Introduction
Prediction of vibration and dynamic loading 

become a major consideration in gear design.
Kahraman and Blankenship [1] investigated the 
effect of contact ratio on spur gear dynamics by 
measuring the dynamic transmission error.
Vedmar and Henriksson [2] took into account off 
line-of-action and nonlinear wheel stiffness using 
the finite element method. Discrete mass-spring 
models were commonly utilized for dynamic 
analysis of the gear systems. Continuous models 
can incorporate the time varying stiffness of gear 
systems intrinsically. However, few works on 
gear dynamics using continuous models have 
been reported [3, 4]. A dynamic stiffness method 
has been used in vibration analysis of beam 
structures [5, 6]. The present work uses the 
dynamic stiffness method to analyze dynamics of 
spur gear systems taking into account 
time-varying stiffness and mass matrices. Tip 
displacements and fillet strains of the gear 
systems are calculated. Experimental results 
serve to verify the proposed model. Furthermore, 

this study also examines gear dynamic response 
due to changes of design parameters. Influences 
of gross motion effect on gear dynamics are also 
investigated. Finally, fillet strains of a gear pair 
are calculated using a multiple tooth-pair model 
to directly account for the condition of multiple 
tooth pairs in contact.

2. Dynamic stiffness of gears
Fig. 1 depicts a spur gear pair. Gears are 

modeled with nonuniform Timoshenko 
beams. Polynomials are used to fit tooth profiles 
to facilitate solving dynamic equations for beams. 
Each beam element profile is fitted by a 
quadratic polynomial. Since this study takes into 
account time-varying stiffness and mass matrices 
due to moving meshing points, the instantaneous 
meshing point has to be updated at calculation 
steps during a meshing cycle. Nine points 
including the instantaneous meshing point on a 
tooth are used to fit the profile of four 
nonuniform cross-section beam elements.

Fig. 1 a spur gear pair.

Terms of a dynamic stiffness matrix )(ωD
for a gear pair are assembled by dynamic 
stiffness matrices of Timoshenko beam elements 
for the gears and a nonlinear stiffness [7] to 
account for local deformation at meshing points
Firstly, using governing equations for a 
Timoshenko beam element with u, w, and φ
are the longitudinal, transverse displacements, 
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and the bending slope, respectively., terms in 
dynamic stiffness matrix for Timoshenko beam 
vibration are given as [7]:
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where i,ju , ijw , , and ij,φ  denote the j th 

terms in the i th shape functions, and i =1 to 6.
E  is Young’s modulus, G  the shear modulus, 
and k the shape correction factor.

3. Excitations and responses
The dynamic stiffness matrix )(ωD  of the 

gear pair consists of the terms for the gears in Eq. 
(1) and nonlinear contact stiffness [8]. For 
vibration systems undergoing forced harmonic 
oscillation, the dynamic stiffness matrix 

MKD 2)( ωω −= where K  and M  are stiffness 
and mass matrices, respectively. Natural 
frequencies ω  of the gear pair are calculated 
by performing a bisection procedure on the 
dynamic stiffness matrix. From Leung’s theorem 
[9], the mass and stiffness matrices are derived 
as
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A response component vector iq  is defined as 
a component of q  due to the i th mode with a 

natural frequency iω . Therefore, ∑
=

=
N

i
i

1
qq

where N  is the number of modes taken into 
account for a desired accuracy of the response. 
Using iM  and iK  with respect to the natural 
frequency iω  obtained by Eq. (2), excitation 
force 

iF , and initial conditions, the displacement 

iq  can be solved from 

iiiii FqKqM =+&& (3)

According to the method [10, 11], the excitation 
force becomes

oiei uMFF &&−= (4)

In this study, the external force 
eF  applied on 

the gear pair is the driving torque. Also, for a 
gear pair with constant rotation speed, 

oiuM &&  is 

the centrifugal force and the centripetal 
acceleration. 

Ru 2θ&&& −=o
(5)

where θ& is the gear rotation speed and R is a 
position vector consisting of rotation radii from 
the gear center to the element nodes. 

The modal response is obtained by performing 
the Runge-Kutta method for Eq. (3). Further, the 
forced responses q  at nodes are obtained by 
superimposing all the displacement responses

iq . Finally, based on these nodal displacements

q , strains and stresses at an arbitrary point in the 
tooth can be calculated.

4. Numer ical and exper imental results 
Example 1: This example compares numerical 

and experimental tip displacements for an 
MC-Nylon gear pair of two mating identical 
gears with module m =3 and number of teeth z= 
28. The gear pair has a contact ratio 1.64. Hence, 
during a meshing period, the number of contact 
tooth pairs of the gear pair is either one or two. 
The tip displacements at three different torque 
levels of 2, 3, and 4 N-m at a speed of 300 rpm
are depicted in Fig. 2. The responses show 
oscillation patterns. The maximum peak occurs 
at the instant of 8.9º, which is the first peak seen 
after the number of meshing tooth pairs changes 
from two to one. Several optical measurement
methods [12, 13] have been used in measuring 
gear dynamic responses. An image processing 
method of less cost is developed to measure the 
tip displacements. Table 1 compares the 
experimental and numerical maximum tip
deformations and shows they are very close.

Fig. 2. Calculated tip displacements of gear pair.
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Table 1 Experimental and numerical results of 
maximum tooth tip deformation at 300 rpm.

Torque
(N-m)

Tip deformation (mm)
Experimental Numerical

2.0 0.022        0.024
3.0 0.031        0.034
4.0 0.047       0.046

Example 2: This example deals with 
aluminum gear pair also with two mating 
identical gears but with nonstandard tooth 
profiles. A strain gauge is also used to measure 
fillet strains. Gear data are same as those in the 
above example except that correction factors 
æ1=æ2=－0.25. The numerical and experimental 
fillet strains subject to 3 N-m at 2000 rpm are 
shown in Fig. 7, which show that all their 
oscillation period conform well, but the 
maximum of the numerical results is a little 
smaller.

Fig. 3. Numerical and experimental results of fillet 
strains by torque 3 N- m at 2000 rpm.

Example 3: The measured fillet strain of a 
two-stage plastic gear reducer in Fig. 4 at 300 
rpm under 3 N-m is given in Fig. 5. The result 
shows that the response does not appear regular
vibration oscillation as obtained in the single 
gear pair. Gear precision, assembling error, and 
many components in the gear train complicate 
the system cause the vibration noise. The 
theoretic results can be further.

     

Fig. 4. A two-stage gear reducer.

Fig. 5. Experimental results of two-stage gear reducer.

5. Parametr ic analysis 
Dynamic performance of gear pairs can be 

improved by suitably adjusting correction factors, 
center distance, and backlash between meshing 
teeth. Influence of these gear parameters on the 
gear dynamic responses is further investigated 
for an aluminum gear pair consisting of two 
identical gears with identical correction factors, 
i.e. æ1=æ2=æ. Firstly, the center distance of the 
gear pair remains standard while both 
correction factors for gears are varied. The 
maximum microstrains of the responses for 
the gear pairs are depicted in Table 2 which 
shows the gear pair with æ=－0.25 at 2000 rpm 
has the largest microstrain while the smallest 
value occurs for æ=0.0 at the 4000 rpm. The 
correction factor æ=－0.25 causes a largest strain.
Next, depending on gear correction factors, the 
center distance of the gear pair will be adjusted 
to zero backlash. Their maximum microstrains of 
the responses are depicted in Table 3. The result 
shows that the negative sum of correction factors 
has a smallest fillet strain since the gear pair has 
a largest contact ratio.

Design parameters greatly influence the 
dynamic response of a gear pair. Suitable 
correction factors can improve the gear dynamic 
performance but other relevant parameters like 
the center distance and the meshing backlash 
also have to be simultaneously taken into 
account.

Table 2. Maximum fillet microstrains of different
correction factors of gear pair with standard center 
distance.

Speed
(rpm)

Correction factor
 æ=－0.25  æ=－0.10   æ=0.0

2000 300       208      162
3000 295       163      157
4000 292       159      131

Table 3. Maximum fillet microstrains of different 
correction factors of gear pair with zero backlash.

Speed
(rpm)

Correction factor
 æ=－0.25  æ=0.0   æ=+0.25

2000 143       162     219
3000 132       157     161
4000 127       131     152

6. Gross motion effect
Influences of the gross motion effect on gear 
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dynamics at high speeds are further examined. 
Firstly, the aluminum gear pair in the Example 2
is investigated The oscillate fillet strains subject 
to the driving torque of 3 N-m with and without 
the gross motion effect at 6000 rpm are depicted 
in Fig. 6. Further, the maxima and changes of the 
fillet strains at those operation conditions are 
depicted in Table 4. The maximum fillet strains 
due to including the gross motion effect increase 
1.4 percent from 291 to 295 for 3000 rpm, 4.2 
percent for 4000 rpm, and 7.5 percent for 6000 
rpm, respectively. The effect of gross motion on 
gear dynamics becomes more significant as the 
rotation speed increases. In this example, when 
the speed is higher than 6000 rpm the gross 
motion effect becomes significant and should not 
be ignored. Table 4 also depicts that the strain 
maxima solely caused by the driving torque 
become smaller when the speed goes up. During 
a teeth meshing period, response times for the 
fillet strains to achieve the maxima at high or low 
speeds are same. When the gear pair rotates at 
higher speed, the meshing point, which the fillet 
strain achieves its maximum, is closer to the 
tooth root than it at lower speed. 

Fig. 6. Fillet strains of an gear pair including the gross 
motion effect or not at speeds of 6000 rpm.

Table 4. Calculated maximum fillet strains of an 
aluminum gear pair with, without, and only the gross 
motion effect and strain increase percentage due to 
gross motion.

Speed  (rpm)
2000  3000  4000  6000

Without gross motion 288  291   289  264
With gross motion 286  295   301   294

Only gross motion 7    16    26    49

Increasing percentage ％ -0.7   1.4   4.2    7.5

7. Multiple tooth-pair  model
Finally, a model of the multiple tooth-pair as 

shown in Fig. 8 is used to directly account for 
the condition of the multi tooth pairs in contact. 
Using the multi tooth-pair model, the fillet strain 
of the aluminum gear pair in the Example 2 is

calculated. In contrast to the single tooth pair 
model by equally sharing the driving torque 
when the number of tooth-pairs in contact is 
multiple, the multiple incorporates the contact
tooth pair number by directly assembling all to 
the system dynamic stiffness matrix )(ωD  of 
the gear pairs. Fig. 8 compares the fillet strains 
respectively by using the multiple tooth-pair
model, single tooth pair model, and experiment 
under 3 N-m at 2000 rpm. All the measured and 
calculated results conform well. The amplitude
of fillet oscillation using the multiple tooth-pair 
model is a little larger than the result using the 
single model. During the period of the single 
tooth pair in contact between 3.4º and 12.8º, the 
strains of the gear pairs using both models are 
very close. However, the oscillation period for 
the multiple model is short than that of the single
model since the multiple model has higher 
natural frequency for its higher stiffness due to 
multi meshing tooth pairs. Besides, the 
amplitude using the multiple tooth-pair model is 
closer to that using the experimental result, 
while the oscillation periods using the single 
gear pair model and the experiment conform
better than the multiple’s. However, both models 
are suitable for gear dynamic analysis.

Fig. 7. A gear pair of multi tooth-pair model.
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Fig. 8. Fillet strains of an aluminum gear pair of multi
tooth-pair model, single tooth-pair model, and 
experiment at 2000 rpm.

8. Conclusions
A dynamic stiffness method based on 

equations of motion for a Timoshenko beam 
model has been developed to simulate spur 
gearing dynamics during meshing. The 
maximum tip displacements and fillet strains 
occur at instants either the number of tooth pairs 
in contact is the least or contact nearest tooth 
tips of driven gears. Experimental results 
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verified the numerical results. Besides, a fillet 
strain of a two-stage gear reducer is also 
measured. This work has further investigated the 
influence of design parameters on gear dynamic 
response. It is observed that design parameters 
greatly influence the dynamic response of a gear 
pair. Besides, the gross motion effect on gear 
dynamics has also been investigated. With 
increasing gear rotation speed, the strain caused 
by the gross motion effect becomes more 
significant and should not be ignored. Finally, 
the model of the multi tooth-pair to directly 
simulate the multi tooth-pair meshing condition 
is developed. Fillet strains of using the models of 
the single tooth-pair and the multiple tooth-pair 
are close.
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中文摘要
本研究以連體模式、應用動態勁性法分析

正齒輪系在運轉下之動態變形與應變。用非
均勻截面的提末辛科樑動態勁性矩陣模擬齒
輪、以赫茲變形模擬輪齒接觸，建立齒輪系
統動態勁性矩陣，計算齒頂變形和齒根應
變。以 CCD 照相機和應變計、分別獲得齒部
的變形與齒根部應變。實驗結果驗證理論的
正確性。並量測二階齒輪減速系之齒根部應
變。此外探討齒輪設計參數對齒輪動態之影
響。由於齒輪轉速日漸增高、本計畫亦探討
齒輪旋轉之離心力對動態之影響。最後以多
齒囓合之模式研究齒輪對、在囓合齒數變化
情況下齒輪之動態
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