
 1

��������	
��
��������

�������� 	
�
 �
��������������

An Implementation of Java Personality and Communication Facility

on a Real-time Kernel(I)

��������	

���
�����������	

�����
��
�
��

� �� �
�	

���� !"				#$%&'()*+((,�

�

1. Chinese Abstract
�

��������	
��
���

������������	 Java ���

�� !"#$%&'(�)*���+

,-Java)*��./01�234�5

6-2789:;<-=>)*����

�#��?@-AB�AB�
��
�

��CD Java� personality7EFGH�

'(IJKL-@'(IJKL7MN

TCP/IP IJOP$Q-?$ TCP/IP R'

S'(�TQU�IJOP�ABCDM

N JavaVW�9:(Java Platform)-#$

�XY�Z[FG�@ Java 9:\]^_

Java Virtual Machine-`a#$AB��

Java � �9:-b^c��de
�)

*�fg�XY�hi�

 ��jkl-ABmno@ Java

Virtual Machine E TCP/IP '(IJKL

�p������

�

���qJava; Java Virtual Machine; TCP/IP;�

�r�fg�XYr�FG�

�

Abstract

The goal of this project is to research

and implement the associated environments

on top of our real-time kernel. Because Java’s

open technology is becoming the de facto

standard for building networked applications.

Java applications have the advantage of high

portability that can be executed on

cross-platforms. This promotes application

sharing and saves application development

costs. Our goal is to provide the Java

personality and componentized

communication facility on the real-time kernel.

We use TCP/IP Stacks as our communication

protocol since TCP/IP is widely used as

internet communication standard. We will

provide a Java platform which will serve as a

testbed for our research of Java technology.

We plan to develop real-time embedded Java

based on our real-time kernel and explore the

research issues and applications of Java

Network Computers.

In this report we will discuss the design

and implementation of the Java Virtual

Machine and the TCP/IP communication

module.

Keywords: Java; Java Virtual Machine;

TCP/IP; Real Time; Embedded Systems;

Component
�

2. Motivation and Goal
�

This project is part of an integrated

project: design and implementation of a

real-time kernel and its environment. The goal

of the integrated project is to design a

real-time kernel architecture so that each

module in it is a component which can easily

 2

be added, deleted or modified. There are two

goals in this project. One is to develop a Java

environment[1][2] on top of our real-time

kernel and adjust it according to the real-time

and embedded requirements. The other is to

develop a communication component to

support TCP/IP since it is the most common

internet protocol, and most operating

systems such as Linux, BSD support it. We

also try to optimize the TCP/IP component

base on the requirements of the real-time and

embedded systems.

3. Results and Discussions�

3.1 Results and Discussions of JStar

JStar is the name of our Java Virtual

Machine[3][4][5][6]. An overview of JStar is

shown in Figure1. There are four components

in JStar which are class loader, execution

engine (interpreter), native methods, and the

garbage collector. Class loader reads in the

binary unzipped class files from disk or other

input/output device on system. The

execution engine performs the methods

invocation, including general methods,

abstract methods, and the native methods

invocation. During the methods dispatching

and invocation, garbage collector will do the

implicit garbage collection works to free the

object that allocated but now is not

referenced any more. Once we invoke the

native methods, the native routine package

that we implemented will be called through

JStar native interface to perform the low-level

works.

��� ��� �� ��� �	
��
� ������ �

�� 	�
�� �

�� ��
� �
���� �� �� �� ���� � ���	�� �

�� ��
�

���������� 	
� �� �
��	���� 	

��� ��� �	�	
��

� ���
�
�����

� ��� �� ���

� �� �� !
"
�� �#

� ��� �� ���

� ��$

��� ��� ��� !
"
 �%��& ��
 ���
� �
 ��	'
��

!()�*� +�,

� &
���-� �	
	�

��� ��� ��� !
"

%�� &� �
�� �

����������	�

��������	
�	��	�

.
	� /
	� �(� "�� ��

�����	�
	�
���

�
�
 �� ���	����
��

� &
��� %	�

������ ��
	

0�

Figure. 1 The Overview of JStar

To link JStar library, the conventional C

programs can invoke kickJava(args) with

including the “JStar.h” header file. The

example in Figure 2 shows the Java source

that we want to execute. This Java

application contains only the main method

and print a string, which is “Hello Java !!”,

on the standard output device. Figure 3

shows how JStar can be linked with the

header file named JStar.h. Once the JStar is

linked in C program, we can make a call to

perform the Java application execution at

run-time.

Figure. 2 The Java Example to Print “Hello

Java” onto Screen

Figure. 3 The Example of a Conventional C

Program Calling Java Application Though

JStar API

public class HelloJava {

public static void main(String argv[]) {

System.out.println("Hello Java !!"); }}

#include “JStar.h”

void main(void)

{

 kickJava(“HelloJava”);

}

 3

3.2 Results and Discussions of the

TCP/IP Component

Implementing a TCP/IP component

from scratch on our real-time kernel cost a lot

of design and debug efforts. Therefore, we

instead reuse the Linux[8] TCP/IP[9][10]

code and integrate the code into our kernel.

To integrate the Linux TCP/IP code into

our kernel, we make the following efforts.

First, we trace and analyze the Linux TCP/IP

code. We modify part of the code to adapt it

to our kernel. And then, a kernel support

module is implemented to integrate the kernel

and the TCP/IP code. At last, we provide a

socket-like interface to applications. Figure 4

shows an example of our implementation to

create a socket.

Figure. 4 Implementation of Socket()

The routine NO_PREEMPT() ensures

that there is at most one thread in the

execution of the system call sys_socket().
�

4. Evaluations

There are three experiments used to

evaluate JStar. We measure both start-up

time and total running time for Kaffe[7] and

JStar for every test case. The first is to print

the Hello Java string onto standard output

device. And the second one is to invoke a

method within the same class. Finally, the

string insertion is performed.

The experimental environment for the

JStar is illustrated in table 1. We use the same

hardware configurations, but evaluate Kaffe

and JStar separately.

JVM Kaffe JStar

CPU Pentium

300 MHz

Pentium 300

MHz

MEMORY

64 MB 64 MB

Operating

System

Linux 2.0.30 Windows NT

4.0

Table 1. The Experiment Environment

Within each experiment, the Java test

case is executed for twenty times. The iX86

CPUs support the functionality to record

how many CPU cycles were used by an

application used. We insert the inline

assembly into the source code to obtain the

actual numbers of the CPU cycle, which are

spent by every application that runs on

Kaffe and JStar. We count the CPU cycles

for both the start-up time and total running

time. To evaluate the start-up time of Kaffe,

we disable the garbage collector and skip the

initialization of exception handler since these

two functions are still under testing. Figure

5,6,7 show the results of the three

experiments.

From these figures, we can see that JStar

outperforms Kaffe. For example, in Figure 5,

both the start-up time and the execution time

of JStar spends only 25% of Kaffe’s.

Figure. 5 The Comparison of Kaffe and JStar

in printing Hello Java.

�

��������

��������

��������

�����������	�������������������
���

�����������	
����
�

�������������
����
�

�����������	
����
�

�������������
����
�

intsocket(intfamily, int type, int protocol)
{

int err;

NO_PREEMPT();

err = sys_socket(family, type, protocol);

PREEMPT_OK();

return err;
}

 4

Figure. 6 The Method Invocation for Kaffe

and JStar

Figure. 7 The String Insertion for Kaffe and

JStar

For the TCP/IP component, we have

completely integreted the whole Linux

TCP/IP code into our kernel. This component

will be suitable for future researches.

5. References
�

�����F.G. Chen and Ting-Wei Hou, “Design, and

Implementation of a Java Execution Environment”,

Proceedings IEEE Parallel and Distributed

Conference 1998.

�����David Flanagan, “Java In a Nutshell”, O’Reilly

Associates, 1996.

�����J. Gosling, B. Joy, G. Steele, “The Java

Language Specification”, Addison Wesley, 1996.

�����Magnus Hjersing and Anders Ive, “JAVAX, An

Implementation of the Java Virtual Machine”,

Master Thesis in Lund Institute of Technology,

December 1996.

�����ChaiVM, Hewlett-Packard Company, an

embedded real-time JVM, information available at

http://www.chai.hp.com

�	���Java World JVM Series, Java World web site,

information available at

http://www.javaworld.com/javaworld

�
���Tim Wilkinson, “Kaffe” an open source Java

Virtual Machine, available at http://www.kaffe.org

�����Michael Beck, Harald Bohme, Mirko Dziadzka,

Ulrich Kunitz, Robert Magnus and Dirk

Verworner, Linux Kernel Internals,

Addison-Wesley Publishing Company Inc.,

September 1996.

�����Comer D. E. Internetworking with TCP/IP,

Volume I – Principles, Protocols and Architecture

2
nd
 edn. London: Prentice-Hall International, Inc.

��
��Comer D. E. and Stevens D. L. Internetworking

with TCP/IP, Volume II – Design,

Implementation, and Internals 1
st
 edn. London:

Prentice-Hall International, Inc.

�

��������

��������

��������

��������

����������		
��������������������
��

��		
��
��
����
��

��		
�
�
�������
��

��
����
��
����
��

��
���
�
�������
��

�

��������

��������

��������

���������	����������������
���

����	����
��������	

����	�������
������	

���
����
��������	

���
�������
������	

