THREZHEE B @ SRR ERRRSE

PPEfiz o2 X L&y Java 13815 F 4 %0y B 5% 91

LR AECD)

An Implementation of Java Personality and Communication Facility

on a Real-time Kernel(I)
Z 45 - NSC 88-2213-E-009-056
MATEATR 878 A1 BZE88F7AH 3l EI
EHFA R B 3 % 38 KB HAHE
1. Chinese Abstract portability that can be executed on

AT EQ BN R R L
BB R AR o By Java 8 B
M BT R AR R A M ek bR R A2 X ey AR
£ Java BAREKXEA S EGTHEEMEE
25 T B EHAT B A ERAZ R
BERA - Bk BRI B B CRE
K, _E 474 Java 4 personality A & st fH/b#y
4% A AR 4 0 b MR BE B A M A R 3R
TCP/P :&ipp e A% > B A TCPIP &4
MR iR E ol R o KRR X
3% Java zh 4t 84 F 4 (Java Platform) - g% 2 Bp
B A b 3B Utk o st Java 4 a4 — 18
Java Virtual Machine > H 3% & & &I %
Java By T4 o E— SRR APETIE
REBAXZBRE TR -

FERBEF > HIATFHERL T Java
Virtual Machine % TCP/P #g#& i@ A48 48

oy ket AR -

i 4 39 :Java; Java Virtual Machine; TCP/IP;
Breg; AR A%, T

Abstract

The goal of this project is to research
and mmplement the associated environments
on top of our real-time kernel. Because Java’s
open technology is becoming the de facto
standard for bulding networked applications.
Java applications have the advantage of high

cross-platforms. This promotes application
shaning and saves application development
costs. Our goal 15 to provide the Java
personality and componentized
communication facility on the real-time kernel.
We use TCP/IP Stacks as our communication
protocol since TCP/IP is widely used as
internet communication standard. We will
provide a Java platform which will serve as a
testbed for our research of Java technology.
We plan to develop real-time embedded Java
based on our real-time kernel and explore the
research issues and applications of Java
Network Computers.

In this report we will discuss the design
and implementation of the Java Virtual
Machine and the TCP/IP communication
module.

Keywords: Java; Java Virtual Machine;
TCP/IP; Real Time; Embedded Systems;
Component

2. Motivation and Goal

This project is part of an integrated
project: design and implementation of a
real-time kernel and its environment. The goal
of the integrated project is to design a
real-time kemel arclhitecture so that each
module in it is a component which can easily

be added, deleted or modified. There are two
goals In this project. One is to develop a Java
environment[1][2] on top of our real-time
kernel and adjust 1t according to the real-time
and embedded requirements. The other is to
develop a communication component to
support TCP/IP since it is the most common
intermet protocol, and most operating
systems such as Linux, BSD support 1it. We
also try to optimize the TCP/IP component
base on the requirements of the real-time and
embedded systems.

3. Results and Discussions

3.1 Results and Discussions of JStar

JStar is the name of owr Java Virtual
Machine[3][4][5][6]. An overview of JStar is
shown i Figurel. There are four components
i JStar which are class loader, execution
engine (interpreter), natve methods, and the
garbage collector. Class loader reads in the
binary unzipped class files from disk or other
mput/output device on system. The
execution engine performs the methods
invocation, including general methods,
abstract methods, and the native methods
mvocation. During the methods dispatching
and invocation, garbage collector will do the
mmplicit gartbage collection works to free the
object that allocated but now is not
referenced any more. Once we invoke the
natrve methods, the natrve routine package
that we mmplemented will be called through
JStar native interface to perform the low-level
works.

The C praram: | Embedded Java Application In terface | Embedded Java
Applicati on
main() {
| Clas Loader I
kick Java() Excutin Fagx
native mef DK 1.02
! JStarsydan_Archiledure Class Litrary
J&aFrame . Qo
Man Memnory Space|
Thread Man age e nt | | Basic /0 §ysten | | Memnary Man age e nt |
Errbedd ad Operating System
I Had ware Devices I

Figure. 1 The Overview of JStar

To link JStar ibrary, the conventional C
programs can mvoke KickJava(args) with
including the “JStar.h” header file. The
example in Figure 2 shows the Java source
that we want to execute. This Java
application contains only the main method
and print a string, which 1s “Hello Java 17,
on the standard output device. Figure 3
shows how JStar can be linked with the
header file named JStarh. Once the JStar is
linked m C program, we can make a call to
perform the Java application execution at
run-time.

public class HelloJava {
public static void mam(String argv[]) {

System. out. println("Hello Java "), }}

Figure. 2 The Java Example to Print “Hello
Java” onto Screen

Hinclude ““JStar h”

void mam(void)
{

kickJava(‘“‘HelloJava™);
}

Figure. 3 The Example of a Conventional C
Program Calling Java Application Though
JStar API

3.2 Results and Discussions of the
TCP/IP Component

Implementing a TCP/IP component
from scratch on our real-time kernel cost a lot
of design and debug efforts. Therefore, we
instead reuse the Linux[S8] TCP/P[9][10]
code and integrate the code into our kernel.

To mtegrate the Linux TCP/IP code mto
our kemel, we make the following efforts.
First, we trace and analyze the Linux TCP/IP
code. We modify part of the code to adapt it
to our kernel. And then, a kernel support
module is implemented to integrate the kernel
and the TCP/IP code. At last, we provide a
socket-like interface to applications. Figure 4
shows an example of our implementation to
create a socket.

JStar is illustrated in table 1. We use the same
hardware configurations, but evaluate Kaffe
and JStar separately.

JVM Kaffe JStar

CPU Pentivm Pentiim 300
300 MHz MHz

MEMORY 64 MB 64 MB

Operating Limux 2.0.30 Windows NT

System 4.0

int socket (int family, int type, int protocol)
mt err;
NO_PREEMP T();
ar = sys_socket(family , type , protocol);
PREEMPT_OKOQ;
retummn err;

Figure. 4 Implementation of Socket()
The routine NO_PREEMPT() ensures
that there i1s at most one thread in the
execution of the system call sys_socket().

4. Fvaluations

There are three experiments used to
evaluate JStar. We measure both start-up
tume and total runmng time for Kaffe[7] and
JStar for every test case. The first is to print
the Hello Java string onto standard output
device. And the second one 1s to mvoke a
method within the same class. Finally, the
string insertion is performed.

The experimental environment for the

Table 1. The Experiment Environment

Within each experiment, the Java test
case 1s executed for twenty times. The 1X86
CPUs support the functionahity to record
how many CPU cycles were used by an
application used. We insert the mline
assembly mto the source code to obtain the
actual numbers of the CPU cycle, which are
spent by every application that runs on
Kaffe and JStar. We count the CPU cycles
for both the start-up time and total running
time. To evaluate the start-up time of Kaffe,
we disable the garbage collector and skip the
initialization of exception handler since these
two functions are still under testing. Figure
5,6,7 show the results of the three
experiments.

From these figures, we can see that JStar
outperforms Kaffe. For example, in Figure 5,
both the start-up time and the execution time

O Kaffe gartup tire
Kaffe total un tng

O JSar gataup tire

0)Sartotel nn tire

Kafe ISta

of JStar spends only 25% of Kaffe’s.
Figure. 5 The Comparison of Kaffe and JStar
In prnting Hello Java.

0MOM O Kiffe stat uptime
@ Kiffetad nntime;
Q0mOm O JSta stat up time
40000 0 1S 2 1o oot
200!
0
Kaffe INT:
Figure. 6 The Method Invocation for Kaffe
and JStar

O Kaffe stat-uptime
Kaffe total untimg)
O7Sa gat-uptime
| m |

Kaffe IStar

Figure. 7 The String Insertion for Kaffe and
JStar

For the TCP/IP component, we have
completely integreted the whole Linux
TCP/IP code into our kernel. This component
will be suitable for future researches.

5. References

[1] F.G. Chen and Ting-Wei Hou, “Design, and
Implementation of a Java Execution Environment”’,
Proceedings IEEE Parallel and Distributed
Conference 1998.

[2] David Flanagan, “‘Java In a Nutshell”’, O’Reilly
Associates | 1996.

(3] J. Gosling, B. Joy, G. Steele, “The Java
Language Specification’’, Addison Wesley, 1996.

[4] Magnus Hjersing and Anders Ive, “JAVAX, An
Implementation of the Java Virtual Machine”,
Master Thesis in Lwnd stitute of Technology,
December 1996.

[5] ChaiVM, Hewlett-Packard Company, an
embedded real-time JVM, information available at
hitp :/Anvww .chai hp .com

(6] Java World JVM Series, Java World web site,
nformation available at
http :/Amrww . javaworld .com/javaworld

[7] Tim Wilkinson, “Kaffe’” an open source Java
Virtual Machine , available at http :/Avww kaffe .org

[8] Michael Beck, Harald Bohme, Miko Dziadzka,
Ukich Kunitz, Robert Magnms and Dok
Verwomner, Limix Kernel Internals,

Addison-Wesley Publishing Company Inc.,
September 1996.

(9] Comer D. E. Mhtermetworking with TCP/IP,
Volume I — Principles, Protocols and Architecture
2" edn. London: Prentice-Hall Intemational, Inc.

[10] Comer D. E. and Stevens D. L. hternetworking
with. TCP/IP, Volhme I - Design,
Inplementation, and Itemals 1% edn. London:
Prentice-Hall Intermmational) Inc.

