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A study of Hamiltonian structures associated with supersymmetric Lax operators is
presented. Following a constructive approach, the Hamiltonian structures of Tnami—
Kanno super-KdV hicrarchy and constrained modified super-KP hierarchy are in-
vestigated from the reduced supersymmetric Gelfand~Dickey brackets, By apply-
ing a gauge transformatton on the Hamiltonian structures associated with these two
nonstandard super-Lax hierarchies, we obtain the Hariltonian structures of gener-
alized Manin—Radul super-KdV and constrained super-KP hierarchies. We also
work out a fow cxamples and compare them with the known results, © 7999
American Institute of Physics. [S0022-2488(99)02206-9]

Y

{. INTRODUCTION

In the past decade and more, the supersymmetric integrable systems have received much
attention in the literamere (for recent reviews, see Refs, 1-3 and references therein), especiaily in
the explorations of the relationship to the supersymmetric conformal field theones and string
theories. On the one hand. in superconformal/superstring theories, correlation functions are gov-
ermed by supersymmetric extensions of the Korteweg—de Vries (KdV) [or Kadomtsev—
Petviashvili (KP)] systems. On the other hand, the knowledge of super-KdV/KP systems have
motivated people to sudy nonperturbative properties of superstrings. These superintegrable sys-
tems share many features in common: they have supersymmetnic Lax representations, infinitely
many conserved quantitics and solilon solutions, ete. Furthermore, it is a common belief that they
also possess bi-Hamiltonian structures that define the dynamical flows on the corresponding Pois-
son supermanifolds. In particular. for the super-KdV-type systemns. the Poisson brackets relative to
their associated second Hamillonian structures provide exlended superconformal algebras (W su-
peralgebras) whose quantum versions serve as the highest weight representations of some infinite-
dimensional symmetries in string theories,

The main purpose of this paper is 1o construct the Hamiltonian structures of the generalized
Manin—Radul super-KdV (MR sKdV) and constrained super-KP (¢sKP) hierarchies (for the defi-
nitions of these hierarchies, see Sec. IV) using the method of gauge transformation. Although the
Hamiltonian structures for the simplest cases have been obtained in Refs. 4 and 5. however, to our
knowledge. those for the general cases are still unexplored. Our motivation comes from the fact
that, for two gauge-cquivalent intcgrable systems, the gauge transformation between them trans-
forms nol only the Lax formulations but also the Hamiltonian suructures of the corresponding
hierarchics. Hence, the preparation of suilable superintegrable systems that are gauge equivalent o
the generalized MR sKdV and csKP hierarchies is the key in this approach. Our strategy is the

following: First. for an odd-order super-Lax operator L, we consider its associated supersymmet-
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ric Gelfand-Dickey (GD) bracket® defined by the Hamiltonian map J. We then consider a usual
reduction that modifics the Hamiltonian map f to /.. Second, we construct out two nonstandard
superhicrarchies from (£,/.) that have super-Lax operators defined by K,=LD and K,
=D 'L, respectively. The former is referred to the Inami—Kanno sKdV (IK sKdV) hierarchy,’
whereas the latter to the constrained modified sKP (cmsKP) hierarchy.®~'° The Hamiltonian struc-
tures associated with K, can also be constructed from J. and are denoted by Q7 (i=4A.8).
Finally, we perform a gauge transformation on the systems (X, .('") and denote the resulting
systems by (Z;.©), which describe the Lax operators and the Hamiltonian structures of the
generalized MR sKdV and ¢sKP hierarchics.
In summary, we shall follow the followmng steps to achieve the goal:

(£,7.){K; Q) (L, 00, (1.1)

It will be shown below that each step described above automatically guarantees the requirement
that the associated Hamilionian structures should obey the super-Jacobi identity.

We organize this paper as [ollows: In Sec. [I. we recall some basic facts concerning superp-
sendodifferential operators (SPD(Os). We then introduce the second supersymmetric GD bracket
and its reduction from a Miura transformation viewpaoint. [ Sec, I, the TK sKdV and the comsKP
hierarchies arc defined. We give a detailed construction of their associated Hamiltonian structures
from the reduced supersymmetric GD bracket. We find that, up o a sign. the Poisson brackets
defined by their cerresponding Lax operators have the same form, In Sec. IV, we define the
generalized MR sKdV and csKP hierarchies by applying a gauge transformation to the IK sKdV
and cmsKP hicrarchies, respectively, We also show that this gange transformation enabies us to
ohtain the Hamilloman structures asseciated with the generalized MR sKd¥ and csKP hierarchies.
In Sec. V, we give scveral examples to compare them with the known results. We present our
concluding remarks in Sec., V1L

Il. SUPERSYMMETRIC GELFAND-DICKEY BRACKETS
To begin with, we consider the supersymmetric Lax operator of the form
L=D"+1, D" i+ Uy, (2.1)

where the supercovariant derivative D=d,+ 8d(d=a/3x} satisfies D*=4, @ is the Grassmann
variable ( #=0), which together with the even variable x=1, defines the (1]1) superspace with
coordinate (x,8). The coefficients /; are superfields that depend on the variables £, r, and can be
represented by U=, {1+ v ,(11. The parity of a superfield [/ is denoted by ||, which is zero for
{7 being even and one for I/ being odd. Since £ is assumed to be homogeneous under Z, grading,
thus |/} =n—i(mod 23, We will introduce the Poisson bracket associated with £ on functionals
of the form

F{U)=J'Bf(U). (2.2)

where f{{/) is a homogencous differential polynomial of /; and [g=[dx d@ is the Berezin
integral, such that if f{(/)=alu,v)+ #b(u.v), then [of (L) =[b. The supercovariant derivative
D satisfies the supersymmelric version of the Leibniz rule;

D‘U=§O (- 1)'”'“"‘-‘“]. vitlpi-t, (2.3)

[

where ("“=(D*{/) and the superbinomial coefficients [}] are defined by
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[i/2] , _
0 ([m]) for O<ksi and (ik)%(0,))mod2,
LJ: (—1)“’2?[_‘?_1}, for i<, (2.4)
0. otherwise,

For a given $PDQO p= Zp:D', itis convenient 16 separate P into a direct sun of two linear spaces:
F‘=P;.,kE!9P<,t with Poi=Z 000 and Pey=3,p.D' In particular, we denote P
=200 D, P =ZcopD', and (PYo=py. We also define its super-residye asstes P=p | and
its supertrace as SuP=fpsrespP. 1t can be shown that, for any two SPDOs P and 2. Sul P, 0]
=0for [P.Q]l=Po~ (- D208 and hence SUPQ=(~1"2S1r 5P Given a functional
F(U)zfgf(U}, we define its gradieny ag

LA

af
F= -1 tD*k—l , 2_5
dF=2 (~1) i (2.5)
and its vanation ag
SF=(=1)Fl+L|+1 St(SLd, F), (2.6)

where the variatinal derivarive is defined by

V[

;{f—f% (~ z)nﬂ’m“ff*”lﬂ‘fﬂ?zf; J . 2.7)
The supersymmetric second GD bracket assaciated wih 7 is given by®!1213
{F.GHL) =(~ 1yrioimiLie SulJ(d,F)d,G), (2.8)
where the Hamiltonian map / is defined by
J(XJ=(LX)+L—L(XL)+ . (2.9)

where X=5,%.D% [{ hag been shown®!2 hay (2.8) indeed defines g Hamiltonian structure,
namely, it is anusymmetric and salisfies the super-Jacobi identity.

If we factorize L={D—tb,,}(D-—¢,,_i}---(D—ibl}, which defines a supersymmetric Miyra
transformation between the coefficient functions U; and the Miura fields ;. then the secong GD
bracket (2.8) becomes
Sy _‘SLJ_J&

{F,G}(L) L;l{ 1)(95% 5 (2.10)

which implies that the fundamental brackets of the Miura fields P, are given by®12

{¢f(X},¢j{Y}}=(—l)"é'.-,-D«?{X- ¥), (2.11)

where X =(x. ), Y={(y,w) and &X—Y}Eﬁtx‘y){é'—w}. This result is what we called the
supersymmetric Kupershmidt—Wilson theorem, Equation (2.11) enables ug 10 write down the
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Poisson brackets can not be well defined. Therefore, for the odd-order operator £=p*!
+ Uy DY+ 4 1, we shall consider the factorization L=(D—®,,_ WD — G (D
—b,). Then the modified Poisson bracket defined by £ becomes

{F.Gh=(=1)FI-IG Str(s (2F) G, (2.12)

where dF=dF=32 (- 1)'D~ " Y(8f/8U,) and

Jf(ar)=1{ap)+[£,fxo sre,s[i,&F]}. (2.13)

We remark that the second term is called the third GD structure, which is compatible with the
second structure, Equation (2,12} yiclds that the modified Poisson brackets for the Miura Gelds &,
are given by

[®,(X),0,(1)} =[1+(~1)'6;]PSX~T), (2.14)

which provide the free-field realizations of classical W superalgebras associated with the odd-order
Lax operator £.'2115 Begides the usual reduction described above, there are other reductions that
have been discussed in Refs. 13 and 16. Since the first Hamiltonian structure can be obtained from
the second Hamiltonian structure by replacing L by L+A, where A is called the spectral param-
eter, we shall focus only on the second structure.

lll. TWO NONSTANDARE SUPER-LAX HIERARCHIES

There are several superintegrable hierarchies whose Lax operators are related to the modifi-
cations or reductions of the supersymmetric Lax operator (2.1) in the Iterature. Here, for our
purpose, we consider the following two Lax systems:

dK,

— kin .
'E-[(Ka‘f Y=,k (i=A.B), (3.1)

with the Lax operators K; defined by
Koa=D¥+V,, ,D* *+.-+V D, (3.2)
K8=Dzn+ Vzn_zDzn_2+"'+V0+D‘LV_1. (3-3)

The Lax cquation for &, is referred to the TK sKdV hierarchy.” The simplest example in this case
is just the Laberge—Mathicu super KdV (LM sKdV) hierarchy (n=21, which was constructed
from a & =2sKdV hicrarchy.”” On the other hand. the Lax equation for X is the gencralizauon of
the super two-boson hicrarchy (STB) {a=1)."* which we call the cmsKP hierarchy. In particular.
from {3.1) it is easy 1o show that the coefficient funcuon V_, obeys the evolution equation

dV_
_E’Tl =—{(K¥ME,V_)), (3.4)
£

which implies that V., is an adjoint eigenfunction associated with the Lax operator Kg.
In general, the second Poisson brackets associated with the Lax operators X; can be writlen as

{£.GYIK)=(— )F 7191 51 QN &, F)d B), (3.5)

where d;F=dy F, and the Hamillonian maps 01 are defined by
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QUG FY= (Kad F) K y—Ka{daFKa) o +[Ka ldsFK o]

" +(— 1)K, D" sres{d,F.K,], (3.6)

x
J’ D sres[d, F.K,].K

QUBNdgF)=(KudgF)  Kg— Kal(dpgFKg) s +[Kg.(KadgFlo]

+(—1)|F{XB.J‘ Dsres[dgF. K]l +(— DD " sres[dpF KglKy. (3.7)

a

Notice that the map 2, in operator form. is similar to but different from Q3 Instead of giving
O by other methods.* '™? we will foliow a constructive approach, analogous to that of the
supersymmetric GD structure,” to verify the Hamiltonian maps £* from a supersymmetric Miura
transformation point af view. To show Lhat the maps (2'” are indeed Hamiltonian, we have to
check that the Poisson brackets defined in (3.5) are antisymmetric and obey the super-Tacobi
identity. For antisymmelry, by direct computation, it can be casily shown that
{F.G}==(~1)IF GG, F}", (3.8)
For the super-Tacobi identity, instead of direct computation, we rewnrite the Lax operator X as
- Ky=L,D. Kz=D"'Ly, (3.9)

where £, and £, are superdifferential operators with order 2n—1 and 2n+ 1, respectively. Fur-
thermore, from the relation

8F =(— 1) FI* ' Sur( 8K diF)=(— DT Su( sL&iF), (3.10)
where 3,75d;jr, we have
. 3 F=—DdF. daF=(—1)fdgFD™". (3.11)
Substituting (3.9) and (3.11) into (3.6) and (3.7), we find
QAN FY=—J(d,F)D, QB (dgFy=(—1)FD'1 (dgF), (3.12)

which imply that the Poisson brackets defined by X can be transformed to those defined by £; as
follows:

(F,GYH(K)=n{F.G}.(L), {3.13)

where n,=—1 and 753=+ 1. Hence, the super-Jacobi identity associated with the maps 09 i
automatically satisfied due Lo the fact that the reduced supersymmetric GD brackets defined by i
admit Miura representations (2.14),

Therefore the maps 02" provide the Hamiltonian formulation for the Lax equations {3.1):

4K; ‘ . . .
< ={HY K= 001, 3.14)
k

where the Hamiltonian functionals H§’ are given by

Hi=— %Su{fé’f’"}. (3.15)
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Notice that the relative signs in the Hamiltonian maps Q" are crucial. Tt is this choice so that
Q@4 111"y are differential operators of arder Iess than 2n—2, and Eq. (3.14) makes sense.

Before ending this section, two remarks are in order. First, we note that both Piosson brackets
defined by K;, up to a sign, are mapped to the same reduced supersymmetric GD bracket defined
by £,, which is different from the sitation in the bosonic case, where type A is mapped to the
difference of the second and the third GD structures,”® whereas type 8 is the sum of the second and
the third ones.”®?! Second, both Lax operators X, and K can be factorized into multiplicative
forms, i.e.,

KA=(D“¢1n-l}{9_‘bzn-z)"‘(D_q’l)D-

(3.16)
KBzD_l{D_¢2n—l)(D*¢2n)'"(D—(bl:l'
where the Miura fields &; obey the Poisson brackets,
(@), P V)= {1+~ 1Y 5, )D X~ ¥). (3.17)

IV. GENERALIZED MR SKDV AND CONSTRAINED SKP HIERARCHIES

Having constructed the Hamiltontan structures of two nonstandard super-Lax hierarchies in
the previous section, we arc now ready to discuss gauge equivalences related to these two non-
standard hierarchies. Based on the fact that gauge transformations are canonical transformations.
we can use them to obtain new integrable Hanultonian systems [rom the known ones, In the
following, we will show that the second Hamiltonian structures of the generalized MR sKdV and
csKP hierarchies are just the oncs that can be obtaned in this way.

Let us perform the foilowing gauge transformation to the Lax operaiors £;:

Li=T"'K,T (i=A,B), (4.1)

where the gange operator 7 is defined by T'=exp({—f* ¥,,_o/r), and hence the next leading term
of K, can be gauged away. The resulting differential operators [; are thus given by

La=D+ U, DY P+ 4 Uy,
4.2)
Lg=D4+ Uy, 3D 34+ Up+ D 1ef,

where ¢=T""! and =V _|T, It can be proved that 7~ ' is an even eigenfunction associated with
the operator L, ie., o7 Yar,=((L¥™ . T ")y, and the nonstandard Lax equations in (3.1) are
then transformed to the standard ones,

dL'E Fhin F
d—rk=[(f-.- ) Li). (4.3)

Thercfore the gauge transformation (4.1) provides a connection between K, and ; in the Lax
formulation. For L, ., the Lax equation (4.3) gives the gencralization of the MR sKdV hierarchy
(n=2}. which was originalty consiructed from the MR sKP hicrarchy by reduction. On the

other hand. the Lai equation {4.3) for £, describes the csKP hierarchy that contains the SAKNS
hierarchy (n=1)"%* as the simplest example. It can be easily shown that the Lax equation {(4.3)

for £ is consistent with the following equations:

dd . ot bin
;;;=(r.L;’}+¢)D, E=—([L§’ Yo, (4.4)
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and thus ¢ and ¢ arc an even ecigenfunction and an odd adjoint eigenfunction of the csKP
hierarchy, respectively,

Moreover, since Lhe hierarchy flows associated with & i have Hamiltonian descriptions. it is
quite natural to ask whether we can use such gauge equivalence to obtain the second Hamillonian
structures of the generalized MR sKdV and ¢sKP hierarchies. The answer is yes. To see this,
consider an infinitesimal gauge wansformation K i—K;+Q, where 0 is a homogeneous superdif-
ferential operator of order, at most, 2n— 2. Then, in view of {4.1). we can read off the linearized
map 7" and its transposed map 7'' as

1] [~ -
Tg-T g+ ;[J. qh_z‘L,»J], (4.5)
(= 1)+ e
T’T:P—+TPT“+——H-——j sres( P, L.]. (4.6)

where £ is an arbitrary SPDO. g,, _,Ssres( @D ™21y, and the adjoint of an operator R is defined
by St PRQY=(~ 1»*'" S(R*PQ). Using 7" and T'". a straightforward but edius calculation

(see Appendix A) shows that

. - . 1f (= o ] [ f= ~ b
T'@(']T'T(P}='(L,-P)*L,-—L,-{PLI}+-'r- ;[J‘ reS[PsLi]sLil]-l_; [\f Sres[P,L,-]:!D.L,-

_%Uzlf ( J’X’ Sres[P,f,-]‘:] UQ,_3;),Z,-}=®UJ(P). (4.7)

That means the Hamiltonian maps & and ©®, in terms of their own Lax operators, have
the same form. Since @ are canonical equivalent to the Hamiltonian map Q4 the Poisson
brackets defined by ©'“ are aiso antisymmeétric and obey the super-Tacobi identity. As a result,
OB can be defined as the Hamiltonian map of the generalized MR sKdV (csKP) hierarchy.

A further consistent check shows that ©" map the Hamiltonian one-forms 45" to (pseudo-)
superdiffercntial operators of order, at most, 2n—3. Now we can write down the Hamiltonian

flows associated with the Lax operators L, as

dL; 73] i F FRli
7, ~1A0 Lp=e0a@ap), (4.8)
where the Hamiltonian functionals, in view of {3.15) and (4.1), are defined by
F3i) N Fiin
Ht = EStrL: f (‘4.9)

From the Hamiltonian flows {(4.8) we can read off the Poisson brackets for the coefficient func-
tions of L, . '

In fact, for £5, we can express the associated Poisson brackets for Ui, &, and ¥ more
precisely. Let us rewrite Ly=!+ 60~ Ly and denote H= [gh as one of the Hamiltonian function-
als A{®’ . Then the Hamiltonian one-form can be expressed as

dgH=dH+X, (4.10)
where X is a superdifferential operator and

2n—-3 Sh

dH= —1p TR — 4,11
' ;O (—1) 30, (4.11)
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Then, from the relation

' Sh Sh
OH==Sw(( 8l + 5¢D ™ s+ $D ' SY) dH + X)) = — Str( S1d H) + U MEE + 54;:5' ,
' (4.12)
we have the following identifications:
S5h Sh
T3 =X e, == (X¢. (4.13)

&g i

Inserting (4.10) with X satisfying (4.13) into the Hamiltonjan map 8@ gives

d? " Sk l
3= () A= U} + (1) D)~ (8D~ sl d,tt) )+ 1 D1 |

_( ¢D‘lﬂl-f} . + nl( J‘I rcs{EEH,EB].Ij]— ;tz—qbeﬁrfx sres[dgH, L 5]

1 X - - 2 xf Ey - )
+E“- sres[dBH.LB],!}-I-FU’ |.| Uz.»—}f SmS[EBH-LB]J}J)-

%ﬂ(!d;ﬁh@wf:%) +¢[[J’I|fu¢?;s—$) —jx{D¢%)J+%¢fxms{EBH_Es]
- o . ! \ D,

1 x - 2 fxd x’ - o]
- ;(D.;f;)j- sres{d g H, 5]+ ;ﬂbf | Uz,,_jf sres[dgH.ng'!,

d¢ . ! *Jh‘l [ s o jr;‘ A fx IHE
a = amnn-{eg] ol [oogi- [Tovdl Ly ez,
1 r' x - - ) 2 Ifl x —~ k
+;|D¢rj srcs[d,,H,Ls]J-—Fq&f 'i Uz,,lg,f sres[EBH,LBJJ, (4.14)
where
SO _ dh | 8m)
oAt Lo]=tesLdH 1]+ (DY) 52— 6 D~ seestd H ) - H(D(d H)* ),
. . . !
- Sh Sk
sres[dBH,Lg]———sres[d,H,I]—¢é—¢7+¢3—¢. (4.15)

Equation (4.14} can be regarded as the supersymmetric generalization of the second Hamiltonian
structures of constrained KP hierarchy derived by Oevel and Strampp.”

Y. EXAMPLES

In this section we work out a number of examples (o illustrate the previous resulis explicitly,
We write down the Poisson brackets for these sysiems according to the formulas given above and
compare them with the known results, :
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A. Laberge—Mathleu super-Kdv hierarchy

For Ky=3*+v,0+v D, the first equations in (3.1) are given by

i(vl)__(vlz}
dig V3] (ba]”

(5.1)
d {ul‘ _1{ (01230 (Dv))— %UIU§—3ULUZJ:J:)

dij vyl 3 , (v2ee= 203+ 30, (Dvy)),
which represents the first equations of the LM sKdV hierarchy, The Hamiltonian formulation for

these equations is given by (3.14), where the second Poisson structure can be obtained by substi-
tuting doH'=~D "8k 80 )+ D (Y 8u,) into (3.6). We find

St
d vy | =2vd-v, — 3 —uyd+v, D—(Dp,}} Sv | -
E‘auzj _|._ F—vsd+v D-v,, —2D°+(Duy)-20, || SR [ 5.2
502
where the first Hamiltonian functionals are given by
HM= -2 Suw k= -j v,
8
(5.3)
w2 s 301, ]
Hl Z_ES[IKH =""§- BEU1U2+ULU21—U[(DUL:]J‘
To compare with the known result, we consider the change of variables as follows:
(UIFUZ}_’(_(D;‘}_T,-EH.‘L {5'4)
then the Poisson structure in (5.2) becomes
13 Do+ 2ud—(Du)D+2u, s
Elg 2ud—(Du)D+u, -D#+313+(DPID+21)" 63
which is just the form presented in Ref. 24.
B. Super-two-bosan hlerarchy
For Kg=d+vy+D " 'v_| the first Lax equations in (3.1) are given by
df Vg !_r Yoz |
dfi '.U—j_,'l B Vo]
{5.6)

d ( Uu} (onx"‘z{D”—l)z“"(Ué)r)
dty U_, —Vo et 2{upr o ), ’

which represents the first equations of the sTB hicrarchy. The Hamiltonian description for these
equalions are given by (3.14), where the second Poisson structure can be obtained by substituting
dgH™ =D\ 6n 5y ) +(8R{% 80 ) into (3.7). It tums out that
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h{®
d i uo) [ 2D+ (Dug)+2v_, F+vgd+u_ D+ug, dvg 57
dig vy “,.—Jz+uorﬁ+u_lD—(Du_l} ZU_10+Ufu / 5}!(.&3) { 7
5041
where the first Hamilionian functionals are @iven by
HEB]= "SU'KB= - J‘ U114
8
(5] ! 1
ffz ="“§S[I'XB= BUQU_l. (58)
Equation (5.7) provides the second Hamiltonian formulation of the sTB hierarchy,
If we make the following identification:
(vo,u - )= (=~ (D). J)), (5.9)
then the second Poisson structure in (5.7) becomes
(20+2D" Y D' ~D" D! —D3+D(DJ0)—D‘1J’ID"\ 510
D*+(DI)D+DJ D! J\D*+ DY I (5.10)
which 1s the form of the second Poisson structure discussed in Ref. 18,
C. Manin—Radul super-KdV hierarchy
For Ly=3"—@D+a. the first Lax equations in (4.3) are given by
. d (a) _(a,
dity ..‘P} A O’
. . {5.11)
d 'a} 1 '¢::x_3(¢(0@))x+6(am}z)
di\ g, 4{ ex— 3(@(Da))+3(a?), |

which represents the first equations of the MP sKdV hierarchy. The Hamiltonian formulation of
these equalions are given by (4.8), in which the first Hamiltonian functionals are given by

M =2 Szr5;’2=fcp.
&
(5.1
(A} 2 Fin !
HV'==28u0l"=— < | (¢(De)—2pa],
3 4 {p

and the second Poisson structure can be obtained by substituting d B =D Y 6RM) da)
+D 7 8hM 5@ into (4.7). It wurns out that

SR
d al i Paa Pa \ Sa
—( 1= "I e |- (5.13)
dcel P, P ootV ShY

\ de |
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where the second Poisson matrix is given by

Paq=HD3 =37 +4aDo+(2{Da) =3 ¢)0+2a,D+30(De) +(D’a)~dao— ¢y
+¢D7(Da)—(Da)D"'o—eD oD lo— oD g+ 9,07 p),

Po,= & =2¢Dd+4ad— ¢, D+2a,+¢D ' (De)],
{5.14)
Po.=+2¢Do+(4a—2De))a+ o, D+2a,— (D) +(De}D L],

ep=140d+2¢.].

Equation (5.13) provides the second Hamiltonian formulation of the MR sKdV hierarchy reported
in Ref. 4.

Starting from the Lax operator K, =4*+u,4+0v, D associated with the LM sKdV hierarchy,
one can perform the gauge transformation T=exp( — [* v2/237 on the Lax operator X4 as follows;

Ky—L,=elv?k, e Porta g2y p-| 24 -2+ {5.15)

(0] vy v (D7ley))

V42 2 J '
Then the Lax opegator L, = #°— ¢D + a associated with the MR sKdV hierarchy is related to the
Lax operator K4 as

2 -1
Uy vy Uy (DT wa)
Pp=—0;, a=— —Fmmmp— 7| (5.16)
: TS

)
b

which provides the gauge equivalence between the LM sKdV hierarchy (5.1) and the MR sKdV
hierarchy (5.11). Moreover, il has been shown® that the second Hamiltonian structure (5.5) of the
LM sKdV hierarchy can be transformed to the second Hamiltonian structure (5.14) of the MR
sKdV hierarchy via this gauge transformation.

D. Super-AKNS hlerarchy

For Lg=4+¢D 14, the first equations in (4.3) are given by

d’x
!ﬁx .

di | { &J

d ¢‘ ‘ ¢u+2¢{3¢'¢)|

a5 ~20(D b)) (5:17)

which are the first equations in the SAKNS hierarchy. Hamiltonian formulations for these equa-
tions are given by (4.14), wherc the first Hamiltonian functions are given by

=—sez,= a0
{5.18)

- 1
Af=—ssul3= [ s

From (4.14), the Hamiltonian flow can be expressed as
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Sh1®
o=l el ) 81
\ 5 |
where the Poisson brackets are given by
Puy=—¢D ' ¢— D D — (DD 6—26D YD g,
Pyy=D+¢D i+ ¢D HDY) +(DS)D 2y +20D 2yD 2y,
{5.20)

PLe=D"+ WD D+ (DD 2P+ 2¢D royD 2,
Puu=—(DOD — D U D) =290 2 pyD i,

which is just the second Poisson structure obtained in Ref. 5. Equation (5.19) provides the second
Hamiltonian formulation of the sAKNS hierarchy.

Starting from the Lax operator Kg=d+uvy+ D7 lp _, associated with the sTB hierarchy, one
can perform the gauge transformation T=exp(—[*ve)™* to the Lax operalor Ky as follows:

- K’Bmpfs=e*"'”°KBe_fx"°=c?+efr”°D_le“‘”"". (5.21)

Then the Lax operator Lg= 7+ ¢D ~ ! o associated with the SAKNS hierarchy is related to the Lax
operator Kg as

g=el ¥, a=v_1e_-rr"°, (5.22)

which provides the gauge equivalence between the sTB hierarchy (3.6) and the SAKNS hierarchy
(5.17), Moreover, it can be prove:dq"'j that the second Hamiltonian structure (5.10) of the sTB
hierarchy can be transformed 10 the second Hamiltonian structure (5.20) of the sAKNS hierarchy
via this gauge transformation.

VI. CONCLUDING REMARKS

Tn this paper, we investigale the Hamiltonian structures associated with several supersymmet-
ric extensions of the KAV hicrarchy. Starting with the reduced super-GD bracket, the Hamiltonan
structures of two nonstandard super-KdV hierarchies can be construcled via supersymmetric
Miura transformations. We then perform a gauge transformation on these two nonstandard Lax
hierarchies 1o obtain the Hamiltonian structures of the generatized MR sKdV hierarchy and con-
strained sKP hierarchy in a unified fashion. To compare the obtained Hamiltonian structures with
the known results, we work out a few examples, including the LM sKdV, sTB, MR sKdV, and
sAKNS hierarchies.

Our approach on the gauge Lransformation relies on the algebra of superpseudodifferentiat
operators, which provides an effective method to achieve the goal. In fact, the gauge transforma-
tion (4.1) that maps 2% 10 ©@ is by no means unique. There is another gauge transformation
triggered by §=D'T% that also brings ('? to ©. Since the parity of § is odd, the gauge
equivalence of the Hamiltonian maps given by (4.7) should be replaced by § g =—0W,
where the minus sign will be compensated by that induced from the transformation of the Hamil-
tonians such that the hicrarchy flows (3.14) are transformed to {4.8).

Finally, we would like 10 comment bricfly on the algebeaic structures associated with the
Poisson brackets defined by the Hamiltonian maps 0 and ©'°. As we shows in Eq. (3.13), the
Poisson brackets defincd by (2 are encoded by the Poisson bracket defined by /.. However, it
has been shown 2> that in the space ol the supersymmetric Lax operator of odd order, the reduced
supersymmetric GD bracket {2.12) defines an infinite series of classical ¥ =2W superalgebras,
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which conlain N=2 super-Virasoro algebra as a subalgebra. Therefore, through the Miura trans-
formation, the differential polynomials of the cocfficient functions V; of X, can be identified as the
N=2 supcrmultiplets, and Eq. (3.17) provides the free-field realizations of the corresponding W
supcralgebras. On the other hand, for the MR sKdV and ¢sKP hicrarchies, the Poisson algebras
defined by © are not yuite clear so far, even for the simplest cases. It seems not so obvious to

construct the super-Virasoro generator by covartantizing the supersymmetric Lax operator Z; due
10 the fact that &5, | ={/,, _.=0. Therclore, to explore the algebraic stractures associated with
6 the decompositions of coefficient functions £/; intg pamary fields remain to be worked oul.
Work in this direction is still in progress.
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APPENDIX: PROOF FOR (4.7)
To prove (4.7, let P be an arbitrary superpseudodifferential operator; then

T QN tP=TQ, (A1)
where
QT T P= (K, TPV _K, KT "PK) . +[K, (T PKs)
+(- 1)“’1[ f‘n srcs[T'TP,K,._],KA‘
(=KD Lsres[T'TP K, ]. (A2)
Using (4.6}, each term in  can be calculated as follows:

)

_ f_I;P|+l { oz \
[_1}=(TLPT")‘KA+'TD{J‘ sres{P,L]| K, ,

(="

i x | )
(2)=—KJ(TPLT ) _+ xde[ sres[P.L])—;{j sres[P.L1| D,

(_1)|P|+1{ i x ]
(3)=[K.,,,fTPLr-f)D]Jr——n—,LK,,JDf sres[P,L]J],

{4)=(5)=0,

which imply that

1[f = i
Q={TLPT‘1)_KA—KA(TPLT'1)-+[K,,,(TPLT“)D]+;“f sres(P,L])D,KA
' (A3)

and
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1 7= 1 /»
—f cm—f;;f sres( @D ")

n

_(TPLT“ Jr res(T[P.LIT™")
+%Jx[.:jx'sm{FL]\ : 1)] %f” sres[PL]]vzﬂ 3]

(Ad)
Substituting {A3) and (A4) into (4.5), we obtain the desired result (4.7).
Since the proof for X4 15 parallel to the above one, we hence omit it here.
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