

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 1330 – 1333

www.elsevier.com/locate/disc

Note

On spanning connected graphs

Cheng-Kuan Lin^{a,∗}, Hua-Min Huang^b, Jimmy J.M. Tan^a, Lih-Hsing Hsu^c

^a*Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC*

^b*Department of Mathematics, National Central University, Chungli, Taiwan 32001, ROC*

^c*Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan 43301, ROC*

Received 24 November 2004; received in revised form 23 March 2007; accepted 26 March 2007 Available online 7 April 2007

Abstract

A *k*-*container* $C(u, v)$ of *G* between *u* and *v* is a set of *k* internally disjoint paths between *u* and *v*. A *k*-container $C(u, v)$ of *G* is a *k*∗-*container* if the set of the vertices of all the paths in *C(u, v)* contains all the vertices of *G*. A graph *G* is *k*∗-*connected* if there exists a *k*∗-container between any two distinct vertices. Therefore, a graph is 1∗-connected (respectively, 2∗-connected) if and only if it is hamiltonian connected (respectively, hamiltonian). In this paper, a classical theorem of Ore, providing sufficient conditional for a graph to be hamiltonian (respectively, hamiltonian connected), is generalized to *k*∗-connected graphs. © 2007 Published by Elsevier B.V.

Keywords: Hamiltonian connected; Hamiltonian; Ore Theorem; Menger Theorem

1. Introduction and definitions

For the graph definition and notation we follow [\[3\].](#page-3-0) $G = (V, E)$ is a *graph* if V is a finite set and E is a subset of ${(u, v) | (u, v)}$ is an unordered pair of *V* $}$. We say that *V* is the *vertex set* and *E* is the *edge set*. We use *n*(*G*) to denote $|V|$. A graph *H* is called a *subgraph* of *G* if $V(H) ⊆ V(G)$ and $E(H) ⊆ E(G)$. The *induced subgraph G*[*H*] is a subgraph of *G* where $V(G[H]) = V(H)$ and $E(G[H]) = \{(u, v) \mid (u, v) \in E(G) \text{ and } u, v \in V(H)\}$. Two vertices *u* and *v* are *adjacent* if *(u, v)* is an edge of *G*. Let *v* be a vertex of *G* and *H* be a subgraph of *G*. The *neighborhood* of *u* respective to *H*, denoted by $N_H(u)$, is $\{v \in V(H) \mid (u, v) \in E(G)\}$. The *degree* $d_H(u)$ of a vertex *u* respective to *H* is the number of edges between *u* and *V(H)*. The *minimum degree* of *G*, written $\delta(G)$, is $\min\{d_G(x) \mid x \in V\}$. A *path* is a sequence of vertices represented by $\langle v_0, v_1, \ldots, v_k \rangle$ with no repeated vertex, and (v_i, v_{i+1}) is an edge of *G* for all $0 \le i \le k - 1$. We also write the path $\langle v_0, v_1, \ldots, v_k \rangle$ as $\langle v_0, \ldots, v_i, Q, v_j, \ldots, v_k \rangle$, where Q is a path form v_i to *vj* . A path is a *hamiltonian path* if it contains all the vertices of *G*. A graph *G* is *hamiltonian connected* if, for any two distinct vertices of *G*, there exists a hamiltonian path joining those two vertices. A *cycle* is a path with at least three vertices such that the first vertex is the same as the last one. A *hamiltonian cycle* of *G* is a cycle that traverses every vertex of *G*. A graph is *hamiltonian* if it has a hamiltonian cycle. We use $G \cup H$ to denote the disjoint union of graph *G* and graph *H*. Moreover, we use $G \vee H$ to denote the graph obtained from $G \cup H$ by joining all the edges with one vertex in *G* and the other vertex in *H*. Let *u* and *v* be two nonadjacent vertices of *G*, we use $G + uv$ to denote the graph obtained from *G* by adding the edge *(u, v)*.

[∗] Corresponding author.

E-mail address: cklin@cs.nctu.edu.tw (C.-K. Lin).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2007 Published by Elsevier B.V. doi:10.1016/j.disc.2007.03.072

A *k*-*container C(u, v)* of *G* between *u* and *v* is a set of *k* internally disjoint paths between *u* and *v*. In other words, *C*(*u*, *v*) consists of paths $P_1, P_2, ..., P_k$ such that $E(P_i) ∩ E(P_j) = ∅$ and $V(P_i) ∩ V(P_j) = {u, v}$ for $1 ≤ i ≠ j ≤ k$. The concept of container is proposed by Hsu [\[5\]](#page-3-0) to evaluate the performance of communication of an interconnection network. The *connectivity* of G , $\kappa(G)$, is the minimum number of vertices whose removal leaves the remaining graph disconnected or trivial. It follows from Menger's Theorem [\[7\]](#page-3-0) that there is a *k*-container between any two distinct vertices of *G* if and only if *G* is *k*-connected.

In this paper, we are interested in a special type of container. A *k*-container $C(u, v)$ of G is a k^* -container if the set of the vertices of all the paths in $C(u, v)$ contains all the vertices of *G*. A graph *G* is k^* -*connected* if there exists a k^* container between any two distinct vertices. A 1∗-connected graph except *K*¹ and *K*² is 2∗-connected. A 1∗-connected graph is actually a hamiltonian connected graph. Moreover, a 2∗-connected graph is a hamiltonian graph. Thus, the concept of *k*∗-connected graph is a hybrid concept of connectivity and hamiltonicity. The study of *k*∗-connected graph is motivated by the globally 3∗-connected graphs proposed by Albert et al. [\[1\].](#page-3-0) A globally 3∗-connected graph is a cubic graph that is w^* -connected for all $1 \le w \le 3$. Recently, Lin et al. [\[6\]](#page-3-0) proved that the pancake graph P_n is w^* -connected for any *w* with $1 \leq w \leq n-1$ if and only if $n \neq 3$. Thus, we defined the *spanning connectivity* $\kappa^*(G)$ of a graph *G* to be the largest integer *k* such that *G* is w^* -connected for all $1 \le w \le k$ if *G* is 1^{*}-connected graph and undefined otherwise. A graph *G* is *super spanning connected* if $\kappa^*(G) = \kappa(G)$. The complete graph K_n is super spanning connected, and the pancake graph P_n is super spanning connected if and only if $n \neq 3$.

Let *k* be a positive integer. In this paper, we have the following results. If there exist two nonadjacent vertices *u* and *v* with $d_G(u) + d_G(v) \ge n(G) + k$ then *G* is $(k+2)^*$ -connected if and only if $G + uv$ is $(k+2)^*$ -connected. Moreover, if there exist two nonadjacent vertices *u* and *v* with $d_G(u) + d_G(v) \ge n(G) + k$, then *G* is *i*^{*}-connected if and only if $G + uv$ is *i*^{*}-connected for $1 \le i \le k + 2$. Assume that $d_G(u) + d_G(v) \ge n + k$ for all nonadjacent vertices *u* and *v*, then *G* is r^* -connected for every $r \in \{1, 2, \ldots, k + 2\}$.

2. Sufficient condition for spanning connected graphs

Ore [8,9], and Bondy and Chvátal [\[2\]](#page-3-0) proved the following theorem:

Theorem 1 (*Bondy and Chvátal [\[2\],](#page-3-0) Ore [8,9]*)*. Assume that there exist two nonadjacent vertices u and v with* $d_G(u) + d_G(v) \geq n(G)$ then G is 2^{*}-connected if and only if $G + uv$ is 2^{*}-connected. Moreover, $d_G(u) + d_G(v) \geq n(G) + 1$ *then G is* 1^{*}-*connected if and only if* $G + uv$ *is* 1^{*}-*connected*.

Lemma 1. Let k be a positive integer. Suppose that there exist two nonadjacent vertices u and v with $d_G(u)$ + $d_G(v) \geqslant n(G) + k$. Then, for any two distinct vertices x and y, G has a $(k + 2)^*$ -container between x and y if and only *if G* + *uv has a (k* + 2*)* [∗]-*container between x and y*.

Proof. If *G* has a $(k+2)^*$ -container between *x* and *y*, then clearly $G + uv$ has a $(k+2)^*$ -container between *x* and *y*. For the other direction, let $C(x, y) = \{P_1, P_2, \ldots, P_{k+2}\}$ be a $(k+2)^*$ -container of $G + uv$ between *x* and *y*. Suppose that the edge $(u, v) \notin C(x, y)$. Then $C(x, y)$ forms a desired $(k+2)^*$ -container of *G*. Thus, we suppose that $(u, v) \in P_1$. We write P_1 as $\langle x, H_1, u, v, H_2, y \rangle$ and write P_i as $\langle x, P'_i, y \rangle$ for $2 \le i \le k+2$. (Note that $l(H_1) = 0$ if $x = u$, and $l(H_2) = 0$ if *y* = *v*.) We set $C_i = \langle x, P'_i, y, H_2^{-1}, v, u, H_1^{-1}, x \rangle$ for 2 ≤ *i* ≤ *k* + 2.

Case 1: $d_{G[C_i]}(u) + d_{G[C_i]}(v) \ge n(C_i)$ for some $2 \le i \le k + 2$. Without loss of generality, we may assume that $d_{G[C_2]}(u) + d_{G[C_2]}(v) \ge n(C_2)$. By Theorem 1, there is a hamiltonian cycle *C* of the induced subgraph $G[C_2]$. Let $C = \langle x, R_1, y, R_2, x \rangle$. We set $Q_1 = \langle x, R_1, y \rangle$, $Q_2 = \langle x, R_2^{-1}, y \rangle$, and $Q_i = P_i$ for $3 \le i \le k+2$. Then $\{Q_1, Q_2, \ldots, Q_{k+2}\}$ forms a $(k + 2)^*$ -container of *G* between *x* and *y*.

Case 2: $d_{G[C_i]}(u) + d_{G[C_i]}(v) \le n(C_i) - 1$ for all 2 ≤ *i* ≤ *k* + 2. Since

$$
\sum_{i=2}^{k+2} (d_{G[C_i]}(u) + d_{G[C_i]}(v)) = \sum_{i=2}^{k+2} (d_{G[P'_i]}(u) + d_{G[P_1]}(u) + d_{G[P'_i]}(v) + d_{G[P_1]}(v))
$$

=
$$
\sum_{i=2}^{k+2} (d_{G[P'_i]}(u) + d_{G[P'_i]}(v)) + (k+1)(d_{G[P_1]}(u) + d_{G[P_1]}(v))
$$

Fig. 1. Illustration for case 2 of Lemma 1.

 $= d_G(u) + d_G(v) + k(d_{G[P_1]}(u) + d_{G[P_1]}(v))$ $\geq n(G) + k + k(d_{G[P_1]}(u) + d_{G[P_1]}(v))$

and

$$
\sum_{i=2}^{k+2} (n(C_i) - 1) = \sum_{i=2}^{k+2} (n(P'_i) + n(P_1)) - (k+1)
$$

=
$$
\sum_{i=2}^{k+2} n(P'_i) + (k+1)(n(P_1)) - (k+1)
$$

=
$$
n(G) + k(n(P_1)) - (k+1),
$$

 $n(G) + k + k(d_{G[P_1]}(u) + d_{G[P_1]}(v)) \leq n(G) + k(n(P_1)) - (k+1)$. Therefore, $d_{G[P_1]}(u) + d_{G[P_1]}(v) \leq n(P_1) - 2$.

We claim that $d_{G[P'_i]}(u) + d_{G[P'_i]}(v) \ge n(P'_i) + 2$ for some $2 \le i \le k+2$. Suppose that $d_{G[P'_i]}(u) + d_{G[P'_i]}(v) \le n(P'_i) + 1$ for all $2 \le i \le k + 2$. Then

$$
d_G(u) + d_G(v) = \sum_{i=2}^{k+2} (d_{G[P'_i]}(u) + d_{G[P'_i]}(v)) + (d_{G[P_1]}(u) + d_{G[P_1]}(v))
$$

$$
\leq \sum_{i=2}^{k+2} (n(P'_i) + 1) + n(P_1) - 2
$$

$$
= n(G) + k - 1.
$$

This contradicts the fact that $d_G(u) + d_G(v) \ge n + k$.

Without loss of generality, we may assume that $d_{G[P'_2]}(u) + d_{G[P'_2]}(v) \ge n(P'_2) + 2$. Obviously, $n(P'_2) \ge 2$. We write *P*₂ = $\langle x, z_1, z_2, \ldots, z_r, y \rangle$. Then, there exists *j* ∈ {1, 2, ..., *r* − 1} such that $(z_j, v) \in E(G)$ and $(z_{j+1}, u) \in E(G)$ *E*(*G*). For otherwise, $d_{G[P'_2]}(u) + d_{G[P'_2]}(v) \le r + r - (r - 1) = r + 1 = n(P'_2) + 1$, giving a contradiction. We set $Q_1 = \langle x, z_1, z_2, \ldots, z_j, v, H_2, y \rangle$, $\overline{Q_2} = \langle x, H_1, u, z_{j+1}, z_{j+2}, \ldots, z_r, y \rangle$, and $Q_i = P_i$ for $3 \le i \le k + 2$. Then { $Q_1, Q_2, \ldots, Q_{k+2}$ } forms a *k*[∗]-container of *G* between *x* and *y*. See Fig. 1 for an illustration. □

With Lemma 1, we have the following theorem:

Theorem 2. Assume that k is any positive integer and there exist two nonadjacent vertices *u* and *v* with $d_G(u)$ + $d_G(v) \geq n(G) + k$. Then G is $(k + 2)$ ^{*}-connected if and only if $G + uv$ is $(k + 2)$ ^{*}-connected. Moreover, G is i^{*}*connected if and only if* $G + uv$ *is i*^{*}-*connected for* $1 \leq i \leq k + 2$.

Theorem 3 (*Ore* [9]). Assume that $d_G(u) + d_G(v) \ge n(G) + 1$ for all nonadjacent vertices *u* and *v* of *G*. Then *G* is 1∗-*connected*.

Theorem 4. Let k be a positive integer. Assume that $d_G(u) + d_G(v) \geq n(G) + k$ for all nonadjacent vertices *u* and *v of G*, *then G is* r^* -*connected for every* $1 \le r \le k + 2$.

Proof. By Theorem 3, *G* is 1[∗]-connected and 2[∗]-connected. Let *x* and *y* be two distinct vertices in *G*. Suppose there exists an r^* -container $\{P_1, P_2, \ldots, P_r\}$ of *G* between *x* and *y* for some $2 \le r \le k + 1$. We only need to construct an $(r+1)^*$ -container of *G* between *x* and *y*. We have $d_G(y) \ge k+2$, for otherwise let $w \notin N_G(y)$ then $d_G(y) + d_G(w) \le (k+1)^*$ 1⁾ + $(n-2) = n+k-1$, which is a contradiction. We can choose a vertex *u* in $N_G(y) - {x}$ such that $(u, y) \notin E(P_i)$ for all $1 \le i \le r$. Without loss of generality, assume that $u \in P_r$ and we write P_r as $\langle x, H_1, u, v, H_2, y \rangle$. We set $Q_i = P_i$ for $1 \le i \le r - 1$, $Q_r = \langle x, H_1, u, y \rangle$, and $Q_{r+1} = \langle x, v, H_2, y \rangle$. Suppose that $(x, v) \in E(G)$. Then {*Q*₁*, Q*₂*,..., Q_{r+1}*} forms an $(r + 1)^*$ -container of *G* between *x* and *y*. Suppose that $(x, v) \notin E(G)$. Then, $\{Q_1, Q_2, \ldots, Q_{r+1}\}$ forms an $(r + 1)^*$ -container of $G + xu$ between *x* and *y*. By Lemma 1, there exists an $(r + 1)^*$ -container of *G* between *x* and *y*. \square

We give an example to show that the above result may not hold for $r = k + 3$. Therefore, our result is optimal. Let *K_n* be a complete graph with *n* vertices. We set $G = (K_1 \cup K_b) \vee K_a$ where $a \ge 3$ and $b \ge 2$. Obviously, $\delta(G) = a$ and $d_G(u) + d_G(v) \geq 2a + b - 1$ for any two distinct vertices *u* and *v*. Thus, *G* is not *r*^{*}-connected for any $r > a$.

Dirac [4] proved that any graph *G* with at least three vertices and $\delta(G) \ge n(G)/2$ is 2[∗]-connected. Any graph *G* with at last four vertices and $\delta(G) \ge n(G)/2 + 1$ is 1^{*}-connected. Obviously, if *G* is a complete graph then it is super spanning connected. Thus, we consider incomplete graphs.

Theorem 5. Assume that G is a graph with $n(G)/2+1 \le \delta(G) \le n(G)-2$. Then G is r^* -connected for $1 \le r \le 2\delta(G) - 2$ $n(G) + 2$.

Proof. Since $n(G)/2 + 1 \le \delta(G) \le n(G) - 2$, $n(G) \ge 6$. Let *k* be a positive integer and $m \ge 3$. Suppose that $n(G) = 2m$ and $\delta(G) = m + k$ for some $m \ge 3$ and $1 \le k \le m - 2$. Then $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2k$. By Theorem 4, *G* is *r*[∗]-connected for $1 \le r \le 2k + 2$. Suppose that $n(G) = 2m + 1$ and $\delta(G) = m + 1 + k$ for some $m \ge 3$ and $1 \le k \le m - 2$. We have $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2 + 2k$. By Theorem 4, *G* is r^* -connected for $1 \le r \le 2k + 3$. \Box

Acknowledgements

The authors are grateful to the referees for their thorough reviews of the paper and many helpful suggestions.

References

- [1] M. Albert, R.E.L. Aldred, D. Holton, On 3∗-connected graphs, Australasian J. Combin. 24 (2001) 193–208.
- [2] J.A. Bondy, V. Chvátal, A Method in Graph Theory, Discrete Math. 15 (1976) 111–135.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1980.
- [4] G.A. Dirac, Some Theorem on Abstract Graphs, Proc. London Math. Soc. (2) (1952) 69–81.
- [5] D.F. Hsu, On container width and length in graphs, groups, and networks, IEICE Trans. Fundamentals E77-A (1994) 668–680.
- [6] C.-K. Lin, H.-M. Huang, L.-H. Hsu, The super connectivity of the pancake graphs and star graphs, Theoret. Comput. Sci. 339 (2005) 257–271.
- [7] K. Menger, Zur allgemeinen kurventheorie, Fund. Math. 10 (1927) 95–115.
- [8] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
- [9] O. Ore, Hamiltonian connected graphs, J. Math. Pures Appl. 42 (1963) 21–27.