

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 1330-1333

www.elsevier.com/locate/disc

Note

On spanning connected graphs

Cheng-Kuan Lin^{a,*}, Hua-Min Huang^b, Jimmy J.M. Tan^a, Lih-Hsing Hsu^c

^aDepartment of Computer Science, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC

^bDepartment of Mathematics, National Central University, Chungli, Taiwan 32001, ROC

^cDepartment of Computer Science and Information Engineering, Providence University, Taichung, Taiwan 43301, ROC

Received 24 November 2004; received in revised form 23 March 2007; accepted 26 March 2007 Available online 7 April 2007

Abstract

A *k*-container C(u, v) of *G* between *u* and *v* is a set of *k* internally disjoint paths between *u* and *v*. A *k*-container C(u, v) of *G* is a *k**-container if the set of the vertices of all the paths in C(u, v) contains all the vertices of *G*. A graph *G* is *k**-connected if there exists a *k**-container between any two distinct vertices. Therefore, a graph is 1*-connected (respectively, 2*-connected) if and only if it is hamiltonian connected (respectively, hamiltonian). In this paper, a classical theorem of Ore, providing sufficient conditional for a graph to be hamiltonian (respectively, hamiltonian connected), is generalized to *k**-connected graphs. © 2007 Published by Elsevier B.V.

Keywords: Hamiltonian connected; Hamiltonian; Ore Theorem; Menger Theorem

1. Introduction and definitions

For the graph definition and notation we follow [3]. G = (V, E) is a graph if V is a finite set and E is a subset of $\{(u, v) \mid (u, v) \text{ is an unordered pair of } V\}$. We say that V is the vertex set and E is the edge set. We use n(G) to denote |V|. A graph H is called a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. The induced subgraph G[H] is a subgraph of G where V(G[H]) = V(H) and $E(G[H]) = \{(u, v) \mid (u, v) \in E(G) \text{ and } u, v \in V(H)\}$. Two vertices u and v are *adjacent* if (u, v) is an edge of G. Let v be a vertex of G and H be a subgraph of G. The *neighborhood* of u respective to H, denoted by $N_H(u)$, is $\{v \in V(H) \mid (u, v) \in E(G)\}$. The degree $d_H(u)$ of a vertex u respective to H is the number of edges between u and V(H). The minimum degree of G, written $\delta(G)$, is min $\{d_G(x) \mid x \in V\}$. A path is a sequence of vertices represented by (v_0, v_1, \ldots, v_k) with no repeated vertex, and (v_i, v_{i+1}) is an edge of G for all $0 \le i \le k - 1$. We also write the path $\langle v_0, v_1, \ldots, v_k \rangle$ as $\langle v_0, \ldots, v_i, Q, v_j, \ldots, v_k \rangle$, where Q is a path form v_i to v_i . A path is a hamiltonian path if it contains all the vertices of G. A graph G is hamiltonian connected if, for any two distinct vertices of G, there exists a hamiltonian path joining those two vertices. A cycle is a path with at least three vertices such that the first vertex is the same as the last one. A hamiltonian cycle of G is a cycle that traverses every vertex of G. A graph is *hamiltonian* if it has a hamiltonian cycle. We use $G \cup H$ to denote the disjoint union of graph G and graph H. Moreover, we use $G \vee H$ to denote the graph obtained from $G \cup H$ by joining all the edges with one vertex in G and the other vertex in H. Let u and v be two nonadjacent vertices of G, we use G + uv to denote the graph obtained from G by adding the edge (u, v).

* Corresponding author.

E-mail address: cklin@cs.nctu.edu.tw (C.-K. Lin).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2007 Published by Elsevier B.V. doi:10.1016/j.disc.2007.03.072

A *k*-container C(u, v) of *G* between *u* and *v* is a set of *k* internally disjoint paths between *u* and *v*. In other words, C(u, v) consists of paths $P_1, P_2, ..., P_k$ such that $E(P_i) \cap E(P_j) = \emptyset$ and $V(P_i) \cap V(P_j) = \{u, v\}$ for $1 \le i \ne j \le k$. The concept of container is proposed by Hsu [5] to evaluate the performance of communication of an interconnection network. The connectivity of *G*, $\kappa(G)$, is the minimum number of vertices whose removal leaves the remaining graph disconnected or trivial. It follows from Menger's Theorem [7] that there is a *k*-container between any two distinct vertices of *G* if and only if *G* is *k*-connected.

In this paper, we are interested in a special type of container. A *k*-container C(u, v) of *G* is a *k**-*container* if the set of the vertices of all the paths in C(u, v) contains all the vertices of *G*. A graph *G* is *k**-*connected* if there exists a *k**container between any two distinct vertices. A 1*-connected graph except K_1 and K_2 is 2*-connected. A 1*-connected graph is actually a hamiltonian connected graph. Moreover, a 2*-connected graph is a hamiltonian graph. Thus, the concept of *k**-connected graph is a hybrid concept of connectivity and hamiltonicity. The study of *k**-connected graph is motivated by the globally 3*-connected graphs proposed by Albert et al. [1]. A globally 3*-connected graph is a cubic graph that is *w**-connected for all $1 \le w \le 3$. Recently, Lin et al. [6] proved that the pancake graph *P_n* is *w**-connected for any *w* with $1 \le w \le n - 1$ if and only if $n \ne 3$. Thus, we defined the *spanning connectivity* $\kappa^*(G)$ of a graph *G* to be the largest integer *k* such that *G* is *w**-connected for all $1 \le w \le k$ if *G* is 1*-connected graph and undefined otherwise. A graph *G* is *super spanning connected* if $\kappa^*(G) = \kappa(G)$. The complete graph K_n is super spanning connected, and the pancake graph P_n is super spanning connected if and only if $n \ne 3$.

Let *k* be a positive integer. In this paper, we have the following results. If there exist two nonadjacent vertices *u* and *v* with $d_G(u) + d_G(v) \ge n(G) + k$ then *G* is $(k+2)^*$ -connected if and only if G + uv is $(k+2)^*$ -connected. Moreover, if there exist two nonadjacent vertices *u* and *v* with $d_G(u) + d_G(v) \ge n(G) + k$, then *G* is *i**-connected if and only if G + uv is *i**-connected for $1 \le i \le k+2$. Assume that $d_G(u) + d_G(v) \ge n + k$ for all nonadjacent vertices *u* and *v*, then *G* is *r**-connected for every $r \in \{1, 2, ..., k+2\}$.

2. Sufficient condition for spanning connected graphs

Ore [8,9], and Bondy and Chvátal [2] proved the following theorem:

Theorem 1 (Bondy and Chvátal [2], Ore [8,9]). Assume that there exist two nonadjacent vertices u and v with $d_G(u)+d_G(v) \ge n(G)$ then G is 2*-connected if and only if G+uv is 2*-connected. Moreover, $d_G(u)+d_G(v) \ge n(G)+1$ then G is 1*-connected if and only if G+uv is 1*-connected.

Lemma 1. Let k be a positive integer. Suppose that there exist two nonadjacent vertices u and v with $d_G(u) + d_G(v) \ge n(G) + k$. Then, for any two distinct vertices x and y, G has a $(k + 2)^*$ -container between x and y if and only if G + uv has a $(k + 2)^*$ -container between x and y.

Proof. If *G* has a $(k+2)^*$ -container between *x* and *y*, then clearly G + uv has a $(k+2)^*$ -container between *x* and *y*. For the other direction, let $C(x, y) = \{P_1, P_2, \ldots, P_{k+2}\}$ be a $(k+2)^*$ -container of G + uv between *x* and *y*. Suppose that the edge $(u, v) \notin C(x, y)$. Then C(x, y) forms a desired $(k+2)^*$ -container of *G*. Thus, we suppose that $(u, v) \in P_1$. We write P_1 as $\langle x, H_1, u, v, H_2, y \rangle$ and write P_i as $\langle x, P'_i, y \rangle$ for $2 \leq i \leq k+2$. (Note that $l(H_1) = 0$ if x = u, and $l(H_2) = 0$ if y = v.) We set $C_i = \langle x, P'_i, y, H_2^{-1}, v, u, H_1^{-1}, x \rangle$ for $2 \leq i \leq k+2$.

Case 1: $d_{G[C_i]}(u) + d_{G[C_i]}(v) \ge n(C_i)$ for some $2 \le i \le k + 2$. Without loss of generality, we may assume that $d_{G[C_2]}(u) + d_{G[C_2]}(v) \ge n(C_2)$. By Theorem 1, there is a hamiltonian cycle *C* of the induced subgraph $G[C_2]$. Let $C = \langle x, R_1, y, R_2, x \rangle$. We set $Q_1 = \langle x, R_1, y \rangle$, $Q_2 = \langle x, R_2^{-1}, y \rangle$, and $Q_i = P_i$ for $3 \le i \le k+2$. Then $\{Q_1, Q_2, \ldots, Q_{k+2}\}$ forms a $(k+2)^*$ -container of *G* between *x* and *y*.

Case 2: $d_{G[C_i]}(u) + d_{G[C_i]}(v) \leq n(C_i) - 1$ for all $2 \leq i \leq k + 2$. Since

$$\sum_{i=2}^{k+2} (d_{G[C_i]}(u) + d_{G[C_i]}(v)) = \sum_{i=2}^{k+2} (d_{G[P'_i]}(u) + d_{G[P_1]}(u) + d_{G[P'_i]}(v) + d_{G[P_1]}(v))$$
$$= \sum_{i=2}^{k+2} (d_{G[P'_i]}(u) + d_{G[P'_i]}(v)) + (k+1)(d_{G[P_1]}(u) + d_{G[P_1]}(v))$$

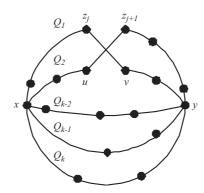


Fig. 1. Illustration for case 2 of Lemma 1.

 $= d_G(u) + d_G(v) + k(d_{G[P_1]}(u) + d_{G[P_1]}(v))$

$$\geq n(G) + k + k(d_{G[P_1]}(u) + d_{G[P_1]}(v))$$

and

$$\sum_{i=2}^{k+2} (n(C_i) - 1) = \sum_{i=2}^{k+2} (n(P'_i) + n(P_1)) - (k+1)$$
$$= \sum_{i=2}^{k+2} n(P'_i) + (k+1)(n(P_1)) - (k+1)$$
$$= n(G) + k(n(P_1)) - (k+1),$$

 $n(G) + k + k(d_{G[P_1]}(u) + d_{G[P_1]}(v)) \leq n(G) + k(n(P_1)) - (k+1)$. Therefore, $d_{G[P_1]}(u) + d_{G[P_1]}(v) \leq n(P_1) - 2$.

We claim that $d_{G[P'_i]}(u) + d_{G[P'_i]}(v) \ge n(P'_i) + 2$ for some $2 \le i \le k+2$. Suppose that $d_{G[P'_i]}(u) + d_{G[P'_i]}(v) \le n(P'_i) + 1$ for all $2 \le i \le k+2$. Then

$$d_G(u) + d_G(v) = \sum_{i=2}^{k+2} (d_{G[P'_i]}(u) + d_{G[P'_i]}(v)) + (d_{G[P_1]}(u) + d_{G[P_1]}(v))$$

$$\leqslant \sum_{i=2}^{k+2} (n(P'_i) + 1) + n(P_1) - 2$$

$$= n(G) + k - 1.$$

This contradicts the fact that $d_G(u) + d_G(v) \ge n + k$.

Without loss of generality, we may assume that $d_{G[P'_2]}(u) + d_{G[P'_2]}(v) \ge n(P'_2) + 2$. Obviously, $n(P'_2) \ge 2$. We write $P_2 = \langle x, z_1, z_2, \ldots, z_r, y \rangle$. Then, there exists $j \in \{1, 2, \ldots, r-1\}$ such that $(z_j, v) \in E(G)$ and $(z_{j+1}, u) \in E(G)$. For otherwise, $d_{G[P'_2]}(u) + d_{G[P'_2]}(v) \le r + r - (r-1) = r + 1 = n(P'_2) + 1$, giving a contradiction. We set $Q_1 = \langle x, z_1, z_2, \ldots, z_j, v, H_2, y \rangle$, $Q_2 = \langle x, H_1, u, z_{j+1}, z_{j+2}, \ldots, z_r, y \rangle$, and $Q_i = P_i$ for $3 \le i \le k + 2$. Then $\{Q_1, Q_2, \ldots, Q_{k+2}\}$ forms a k^* -container of G between x and y. See Fig. 1 for an illustration. \Box

With Lemma 1, we have the following theorem:

Theorem 2. Assume that k is any positive integer and there exist two nonadjacent vertices u and v with $d_G(u) + d_G(v) \ge n(G) + k$. Then G is $(k + 2)^*$ -connected if and only if G + uv is $(k + 2)^*$ -connected. Moreover, G is i^* -connected if and only if G + uv is i^* -connected for $1 \le i \le k + 2$.

Theorem 3 (*Ore* [9]). Assume that $d_G(u) + d_G(v) \ge n(G) + 1$ for all nonadjacent vertices u and v of G. Then G is 1^* -connected.

Theorem 4. Let k be a positive integer. Assume that $d_G(u) + d_G(v) \ge n(G) + k$ for all nonadjacent vertices u and v of G, then G is r^* -connected for every $1 \le r \le k + 2$.

Proof. By Theorem 3, *G* is 1*-connected and 2*-connected. Let *x* and *y* be two distinct vertices in *G*. Suppose there exists an *r**-container { $P_1, P_2, ..., P_r$ } of *G* between *x* and *y* for some $2 \le r \le k + 1$. We only need to construct an $(r+1)^*$ -container of *G* between *x* and *y*. We have $d_G(y) \ge k+2$, for otherwise let $w \notin N_G(y)$ then $d_G(y)+d_G(w) \le (k+1)+(n-2)=n+k-1$, which is a contradiction. We can choose a vertex *u* in $N_G(y) - \{x\}$ such that $(u, y) \notin E(P_i)$ for all $1 \le i \le r$. Without loss of generality, assume that $u \in P_r$ and we write P_r as $\langle x, H_1, u, v, H_2, y \rangle$. We set $Q_i = P_i$ for $1 \le i \le r-1$, $Q_r = \langle x, H_1, u, y \rangle$, and $Q_{r+1} = \langle x, v, H_2, y \rangle$. Suppose that $(x, v) \in E(G)$. Then $\{Q_1, Q_2, ..., Q_{r+1}\}$ forms an $(r + 1)^*$ -container of *G* between *x* and *y*. By Lemma 1, there exists an $(r + 1)^*$ -container of *G* between *x* and *y*. By Lemma 1, there exists an $(r + 1)^*$ -container of *G* between *x* and *y*.

We give an example to show that the above result may not hold for r = k + 3. Therefore, our result is optimal. Let K_n be a complete graph with *n* vertices. We set $G = (K_1 \cup K_b) \vee K_a$ where $a \ge 3$ and $b \ge 2$. Obviously, $\delta(G) = a$ and $d_G(u) + d_G(v) \ge 2a + b - 1$ for any two distinct vertices *u* and *v*. Thus, *G* is not *r**-connected for any r > a.

Dirac [4] proved that any graph G with at least three vertices and $\delta(G) \ge n(G)/2$ is 2*-connected. Any graph G with at last four vertices and $\delta(G) \ge n(G)/2 + 1$ is 1*-connected. Obviously, if G is a complete graph then it is super spanning connected. Thus, we consider incomplete graphs.

Theorem 5. Assume that G is a graph with $n(G)/2+1 \le \delta(G) \le n(G)-2$. Then G is r^* -connected for $1 \le r \le 2\delta(G) - n(G) + 2$.

Proof. Since $n(G)/2 + 1 \le \delta(G) \le n(G) - 2$, $n(G) \ge 6$. Let *k* be a positive integer and $m \ge 3$. Suppose that n(G) = 2m and $\delta(G) = m + k$ for some $m \ge 3$ and $1 \le k \le m - 2$. Then $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2k$. By Theorem 4, *G* is *r*^{*}-connected for $1 \le r \le 2k + 2$. Suppose that n(G) = 2m + 1 and $\delta(G) = m + 1 + k$ for some $m \ge 3$ and $1 \le k \le m - 2$. We have $d_G(u) + d_G(v) \ge 2\delta(G) = 2m + 2 + 2k$. By Theorem 4, *G* is *r*^{*}-connected for $1 \le r \le 2k + 3$. \Box

Acknowledgements

The authors are grateful to the referees for their thorough reviews of the paper and many helpful suggestions.

References

- [1] M. Albert, R.E.L. Aldred, D. Holton, On 3*-connected graphs, Australasian J. Combin. 24 (2001) 193-208.
- [2] J.A. Bondy, V. Chvátal, A Method in Graph Theory, Discrete Math. 15 (1976) 111-135.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1980.
- [4] G.A. Dirac, Some Theorem on Abstract Graphs, Proc. London Math. Soc. (2) (1952) 69-81.
- [5] D.F. Hsu, On container width and length in graphs, groups, and networks, IEICE Trans. Fundamentals E77-A (1994) 668-680.
- [6] C.-K. Lin, H.-M. Huang, L.-H. Hsu, The super connectivity of the pancake graphs and star graphs, Theoret. Comput. Sci. 339 (2005) 257–271.
- [7] K. Menger, Zur allgemeinen kurventheorie, Fund. Math. 10 (1927) 95–115.
- [8] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
- [9] O. Ore, Hamiltonian connected graphs, J. Math. Pures Appl. 42 (1963) 21-27.