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Abstract

A k-container C(u, v) of G between u and v is a set of k internally disjoint paths between u and v. A k-container C(u, v) of G is
a k∗-container if the set of the vertices of all the paths in C(u, v) contains all the vertices of G. A graph G is k∗-connected if there
exists a k∗-container between any two distinct vertices. Therefore, a graph is 1∗-connected (respectively, 2∗-connected) if and only
if it is hamiltonian connected (respectively, hamiltonian). In this paper, a classical theorem of Ore, providing sufficient conditional
for a graph to be hamiltonian (respectively, hamiltonian connected), is generalized to k∗-connected graphs.
© 2007 Published by Elsevier B.V.
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1. Introduction and definitions

For the graph definition and notation we follow [3]. G = (V , E) is a graph if V is a finite set and E is a subset of
{(u, v) | (u, v) is an unordered pair of V }. We say that V is the vertex set and E is the edge set. We use n(G) to denote
|V |. A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). The induced subgraph G[H ] is a
subgraph of G where V (G[H ]) = V (H) and E(G[H ]) = {(u, v) | (u, v) ∈ E(G) and u, v ∈ V (H)}. Two vertices
u and v are adjacent if (u, v) is an edge of G. Let v be a vertex of G and H be a subgraph of G. The neighborhood
of u respective to H, denoted by NH (u), is {v ∈ V (H) | (u, v) ∈ E(G)}. The degree dH (u) of a vertex u respective
to H is the number of edges between u and V (H). The minimum degree of G, written �(G), is min{dG(x) | x ∈ V }.
A path is a sequence of vertices represented by 〈v0, v1, . . . , vk〉 with no repeated vertex, and (vi, vi+1) is an edge of G
for all 0� i�k − 1. We also write the path 〈v0, v1, . . . , vk〉 as 〈v0, . . . , vi, Q, vj , . . . , vk〉, where Q is a path form vi

to vj . A path is a hamiltonian path if it contains all the vertices of G. A graph G is hamiltonian connected if, for any
two distinct vertices of G, there exists a hamiltonian path joining those two vertices. A cycle is a path with at least three
vertices such that the first vertex is the same as the last one. A hamiltonian cycle of G is a cycle that traverses every
vertex of G. A graph is hamiltonian if it has a hamiltonian cycle. We use G ∪ H to denote the disjoint union of graph
G and graph H. Moreover, we use G ∨ H to denote the graph obtained from G ∪ H by joining all the edges with one
vertex in G and the other vertex in H. Let u and v be two nonadjacent vertices of G, we use G+uv to denote the graph
obtained from G by adding the edge (u, v).
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A k-container C(u, v) of G between u and v is a set of k internally disjoint paths between u and v. In other words,
C(u, v) consists of paths P1, P2, . . . , Pk such that E(Pi) ∩ E(Pj ) = ∅ and V (Pi) ∩ V (Pj ) = {u, v} for 1� i �= j �k.
The concept of container is proposed by Hsu [5] to evaluate the performance of communication of an interconnection
network. The connectivity of G, �(G), is the minimum number of vertices whose removal leaves the remaining graph
disconnected or trivial. It follows from Menger’s Theorem [7] that there is a k-container between any two distinct
vertices of G if and only if G is k-connected.

In this paper, we are interested in a special type of container. A k-container C(u, v) of G is a k∗-container if the set
of the vertices of all the paths in C(u, v) contains all the vertices of G. A graph G is k∗-connected if there exists a k∗-
container between any two distinct vertices. A 1∗-connected graph except K1 and K2 is 2∗-connected. A 1∗-connected
graph is actually a hamiltonian connected graph. Moreover, a 2∗-connected graph is a hamiltonian graph. Thus, the
concept of k∗-connected graph is a hybrid concept of connectivity and hamiltonicity. The study of k∗-connected graph
is motivated by the globally 3∗-connected graphs proposed by Albert et al. [1]. A globally 3∗-connected graph is a cubic
graph that is w∗-connected for all 1�w�3. Recently, Lin et al. [6] proved that the pancake graph Pn is w∗-connected
for any w with 1�w�n− 1 if and only if n �= 3. Thus, we defined the spanning connectivity �∗(G) of a graph G to be
the largest integer k such that G is w∗-connected for all 1�w�k if G is 1∗-connected graph and undefined otherwise.
A graph G is super spanning connected if �∗(G) = �(G). The complete graph Kn is super spanning connected, and
the pancake graph Pn is super spanning connected if and only if n �= 3.

Let k be a positive integer. In this paper, we have the following results. If there exist two nonadjacent vertices u and
v with dG(u)+ dG(v)�n(G)+ k then G is (k + 2)∗-connected if and only if G+uv is (k + 2)∗-connected. Moreover,
if there exist two nonadjacent vertices u and v with dG(u) + dG(v)�n(G) + k, then G is i∗-connected if and only if
G+uv is i∗-connected for 1� i�k + 2. Assume that dG(u)+ dG(v)�n+ k for all nonadjacent vertices u and v, then
G is r∗-connected for every r ∈ {1, 2, . . . , k + 2}.

2. Sufficient condition for spanning connected graphs

Ore [8,9], and Bondy and Chvátal [2] proved the following theorem:

Theorem 1 (Bondy and Chvátal [2], Ore [8,9]). Assume that there exist two nonadjacent vertices u and v with
dG(u)+dG(v)�n(G) then G is 2∗-connected if and only if G+uv is 2∗-connected. Moreover, dG(u)+dG(v)�n(G)+1
then G is 1∗-connected if and only if G + uv is 1∗-connected.

Lemma 1. Let k be a positive integer. Suppose that there exist two nonadjacent vertices u and v with dG(u) +
dG(v)�n(G) + k. Then, for any two distinct vertices x and y, G has a (k + 2)∗-container between x and y if and only
if G + uv has a (k + 2)∗-container between x and y.

Proof. If G has a (k+2)∗-container between x and y, then clearly G+uv has a (k+2)∗-container between x and y. For
the other direction, let C(x, y) = {P1, P2, . . . , Pk+2} be a (k + 2)∗-container of G + uv between x and y. Suppose that
the edge (u, v) /∈ C(x, y). Then C(x, y) forms a desired (k+2)∗-container of G. Thus, we suppose that (u, v) ∈ P1. We
write P1 as 〈x, H1, u, v, H2, y〉and write Pi as 〈x, P ′

i , y〉 for 2� i�k + 2. (Note that l(H1)= 0 if x =u, and l(H2)= 0
if y = v.) We set Ci = 〈x, P ′

i , y, H−1
2 , v, u, H−1

1 , x〉 for 2� i�k + 2.
Case 1: dG[Ci ](u) + dG[Ci ](v)�n(Ci) for some 2� i�k + 2. Without loss of generality, we may assume that

dG[C2](u) + dG[C2](v)�n(C2). By Theorem 1, there is a hamiltonian cycle C of the induced subgraph G[C2]. Let
C=〈x, R1, y, R2, x〉. We set Q1=〈x, R1, y〉, Q2=〈x, R−1

2 , y〉, and Qi=Pi for 3� i�k+2. Then {Q1, Q2, . . . , Qk+2}
forms a (k + 2)∗-container of G between x and y.

Case 2: dG[Ci ](u) + dG[Ci ](v)�n(Ci) − 1 for all 2� i�k + 2. Since

k+2∑

i=2

(dG[Ci ](u) + dG[Ci ](v)) =
k+2∑

i=2

(dG[P ′
i ](u) + dG[P1](u) + dG[P ′

i ](v) + dG[P1](v))

=
k+2∑

i=2

(dG[P ′
i ](u) + dG[P ′

i ](v)) + (k + 1)(dG[P1](u) + dG[P1](v))
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Fig. 1. Illustration for case 2 of Lemma 1.

= dG(u) + dG(v) + k(dG[P1](u) + dG[P1](v))

�n(G) + k + k(dG[P1](u) + dG[P1](v))

and

k+2∑

i=2

(n(Ci) − 1) =
k+2∑

i=2

(n(P ′
i ) + n(P1)) − (k + 1)

=
k+2∑

i=2

n(P ′
i ) + (k + 1)(n(P1)) − (k + 1)

= n(G) + k(n(P1)) − (k + 1),

n(G) + k + k(dG[P1](u) + dG[P1](v))�n(G) + k(n(P1)) − (k + 1). Therefore, dG[P1](u) + dG[P1](v)�n(P1) − 2.
We claim that dG[P ′

i ](u)+dG[P ′
i ](v)�n(P ′

i )+2 for some 2� i�k+2. Suppose that dG[P ′
i ](u)+dG[P ′

i ](v)�n(P ′
i )+1

for all 2� i�k + 2. Then

dG(u) + dG(v) =
k+2∑

i=2

(dG[P ′
i ](u) + dG[P ′

i ](v)) + (dG[P1](u) + dG[P1](v))

�
k+2∑

i=2

(n(P ′
i ) + 1) + n(P1) − 2

= n(G) + k − 1.

This contradicts the fact that dG(u) + dG(v)�n + k.
Without loss of generality, we may assume that dG[P ′

2](u) + dG[P ′
2](v)�n(P ′

2) + 2. Obviously, n(P ′
2)�2. We write

P2 = 〈x, z1, z2, . . . , zr , y〉. Then, there exists j ∈ {1, 2, . . . , r − 1} such that (zj , v) ∈ E(G) and (zj+1, u) ∈
E(G). For otherwise, dG[P ′

2](u) + dG[P ′
2](v)�r + r − (r − 1) = r + 1 = n(P ′

2) + 1, giving a contradiction. We
set Q1 = 〈x, z1, z2, . . . , zj , v, H2, y〉, Q2 = 〈x, H1, u, zj+1, zj+2, . . . , zr , y〉, and Qi = Pi for 3� i�k + 2. Then
{Q1, Q2, . . . , Qk+2} forms a k∗-container of G between x and y. See Fig. 1 for an illustration. �

With Lemma 1, we have the following theorem:

Theorem 2. Assume that k is any positive integer and there exist two nonadjacent vertices u and v with dG(u) +
dG(v)�n(G) + k. Then G is (k + 2)∗-connected if and only if G + uv is (k + 2)∗-connected. Moreover, G is i∗-
connected if and only if G + uv is i∗-connected for 1� i�k + 2.
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Theorem 3 (Ore [9]). Assume that dG(u) + dG(v)�n(G) + 1 for all nonadjacent vertices u and v of G. Then G is
1∗-connected.

Theorem 4. Let k be a positive integer. Assume that dG(u) + dG(v)�n(G) + k for all nonadjacent vertices u and v

of G, then G is r∗-connected for every 1�r �k + 2.

Proof. By Theorem 3, G is 1∗-connected and 2∗-connected. Let x and y be two distinct vertices in G. Suppose there
exists an r∗-container {P1, P2, . . . , Pr} of G between x and y for some 2�r �k + 1. We only need to construct an
(r+1)∗-container of G between x and y. We have dG(y)�k+2, for otherwise let w /∈ NG(y)then dG(y)+dG(w)�(k+
1)+ (n−2)=n+k−1, which is a contradiction. We can choose a vertex u in NG(y)−{x} such that (u, y) /∈ E(Pi) for
all 1� i�r . Without loss of generality, assume that u ∈ Pr and we write Pr as 〈x, H1, u, v, H2, y〉. We set Qi =Pi for
1� i�r − 1, Qr = 〈x, H1, u, y〉, and Qr+1 = 〈x, v, H2, y〉. Suppose that (x, v) ∈ E(G). Then {Q1, Q2, . . . , Qr+1}
forms an (r + 1)∗-container of G between x and y. Suppose that (x, v) /∈ E(G). Then, {Q1, Q2, . . . , Qr+1} forms
an (r + 1)∗-container of G + xu between x and y. By Lemma 1, there exists an (r + 1)∗-container of G between x
and y. �

We give an example to show that the above result may not hold for r = k + 3. Therefore, our result is optimal. Let
Kn be a complete graph with n vertices. We set G = (K1 ∪ Kb) ∨ Ka where a�3 and b�2. Obviously, �(G) = a and
dG(u) + dG(v)�2a + b − 1 for any two distinct vertices u and v. Thus, G is not r∗-connected for any r > a.

Dirac [4] proved that any graph G with at least three vertices and �(G)�n(G)/2 is 2∗-connected. Any graph G
with at last four vertices and �(G)�n(G)/2 + 1 is 1∗-connected. Obviously, if G is a complete graph then it is super
spanning connected. Thus, we consider incomplete graphs.

Theorem 5. Assume that G is a graph with n(G)/2+1��(G)�n(G)−2. Then G is r∗-connected for 1�r �2�(G)−
n(G) + 2.

Proof. Since n(G)/2 + 1��(G)�n(G)− 2, n(G)�6. Let k be a positive integer and m�3. Suppose that n(G)= 2m

and �(G) = m + k for some m�3 and 1�k�m − 2. Then dG(u) + dG(v)�2�(G) = 2m + 2k. By Theorem 4, G is
r∗-connected for 1�r �2k + 2. Suppose that n(G)= 2m+ 1 and �(G)=m+ 1 + k for some m�3 and 1�k�m− 2.
We have dG(u) + dG(v)�2�(G) = 2m + 2 + 2k. By Theorem 4, G is r∗-connected for 1�r �2k + 3. �
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