

Available online at www.sciencedirect.com

Discrete Mathematics 308 (2008) 1088-1092

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Near automorphisms of cycles

Chia-Fen Chang^a, Bor-Liang Chen^{b, 1}, Hung-Lin Fu^a

^aDepartment of Applied Mathematics, National Chiao Tung University, Hsienchu 300, Taiwan ^bDepartment of Business Administration, National Taichung Institute of Technology, Taichung 404, Taiwan

Received 20 October 2005; received in revised form 20 March 2007; accepted 28 March 2007 Available online 6 April 2007

Abstract

Let *f* be a permutation of *V*(*G*). Define $\delta_f(x, y) = |d_G(x, y) - d_G(f(x), f(y))|$ and $\delta_f(G) = \sum \delta_f(x, y)$ over all the unordered pairs $\{x, y\}$ of distinct vertices of *G*. Let $\pi(G)$ denote the smallest positive value of $\delta_f(G)$ among all the permutations *f* of *V*(*G*). The permutation *f* with $\delta_f(G) = \pi(G)$ is called a near automorphism of *G*. In this paper, we study the near automorphisms of cycles C_n and we prove that $\pi(C_n) = 4\lfloor n/2 \rfloor - 4$, moreover, we obtain the set of near automorphisms of C_n . © 2007 Elsevier B.V. All rights reserved.

Keywords: Near automorphism

1. Introduction

Let f denote a permutation of the n vertices of a connected graph G and the distance between two distinct vertices x and y in G be denoted by $d_G(x, y)$ (or d(x, y) in short). Let $\delta_f(x, y) = |d(x, y) - d(f(x), f(y))|$ and $\delta_f(x) = \sum_y \delta_f(x, y)$. Then, it is easy to see that $\sum_x \delta_f(x) = 2\sum_{x \neq y} \delta_f(x, y)$ [1]. Now, let $\delta_f(G)$ be the sum of $\delta_f(x, y)$ over all the $\binom{n}{2}$ unordered pairs $\{x, y\}$ of distinct vertices of G. Clearly, a permutation f (of the vertices of G) is an automorphism of G if and only if $\delta_f(G) = 0$. Let $\pi(G)$ denote the smallest positive value of $\delta_f(G)$ among the n! permutations f of the vertices of G. A permutation f for which $\delta_f(G) = \pi(G) > 0$ is called a *near automorphism* and $\pi(G)$ is the value of near automorphism. Chartrand et al. [2] observed that $\pi(G)$ is even and conjectured that $\pi(G) = 2n - 4$ when G is a path with n vertices. Later, Aitken [1] verified this conjecture and, among other things, characterized those permutations f for which $\pi(G) = \delta_f(G) = 2n - 4$ when G is a path with n vertices. Hence, the following result is established.

Theorem 1.1 (*Aitken* [1]). $\pi(P_n) = 2n - 4$.

On the study of near automorphism, Reid [5] provided the near automorphism values of complete multipartite graphs.

E-mail address: bbc.am89g@nctu.edu.tw (C.-F. Chang).

¹ Supported in part by the National Science Council under grant NSC90-2115-M-025-001.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter $\ensuremath{\mathbb{C}}$ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.03.062

Theorem 1.2. For positive integers, $n_1 \leq n_2 \leq \cdots \leq n_t$, where $t \geq 2$ and $n_t \geq 2$,

$$\pi(K_{n_1,n_2,\dots,n_t}) = \begin{cases} 2n_{h+1} - 2 & \text{if } 1 = n_1 = \dots = n_h < n_{h+1} \leqslant \dots \leqslant n_t, \\ & \text{and } t \geqslant (h+1), \text{ for some } h \geqslant 2, \\ 2n_{k_0} & \text{if } 1 = n_1 < n_2 \text{ or } n_1 \geqslant 2, \\ & n_{k+1} = n_k + 1 \text{ for some } k, 1 \leqslant k \leqslant t - 1, \\ & \text{and } 2 + n_{k_0} \leqslant n_1 + n_2, \\ 2(n_1 + n_2 - 2) & \text{otherwise}, \end{cases}$$

where k_0 is the smallest index for which $n_{k_0+1} = n_{k_0} + 1$.

It is worth of mentioning that we can also study the largest value $\pi^*(G)$ of $\delta_f(G)$ [3]. The permutations f with $\delta_f(G) = \pi^*(G)$ are called the chaotic mappings of G. Not much is known so far, see [4] for reference.

In this paper, we shall focus on the study of the near automorphisms of a cycle of length *n*, C_n . First, we show that $\pi(C_n) = 4\lfloor n/2 \rfloor - 4$ and then obtain the set of near automorphisms of C_n . Finally, we explain how to derive Theorem 1.1 from $\pi(C_n) = 4\lfloor n/2 \rfloor - 4$.

2. The main results

We start with several basic lemmas. For convenience, the *n*-cycle C_n we consider throughout this paper is denoted by $(v_{-\lfloor n/2 \rfloor}, \ldots, v_{-1}, v_0, v_1, \ldots, v_{\lfloor n/2 \rfloor})$ (for *n* even we let $v_{-\lfloor n/2 \rfloor} = v_{\lfloor n/2 \rfloor}$) and the vertices are distributed on the cycle evenly. Now, clearly the permutations $g(v_i) = v_{-i}$ and $h(v_i) = v_{i+j}$ for some *j* and for all *i* are automorphisms of C_n . The permutations *g* and *h* are the mirror reflection and rotation, respectively.

Lemma 2.1. Let G be a connected graph which is not complete. Then $2 \le \pi(G) \le 2|V(G)| - 4$.

Proof. Since *G* is not a complete graph, there exist three vertices *x*, *y* and *z* such that *xy*, $xz \in E(G)$ and $yz \notin E(G)$. Then, let *f* be the transposition (x, y). Clearly, *f* is not an automorphism and $\delta_f(G) = \sum \{\delta_f(u, v) : |\{u, v\} \cap \{x, y\}| = 1\} \leq 2|V(G)| - 4$. Therefore, the proof follows by the fact that $\pi(G)$ is even and $\pi(G) \neq 0$. \Box

Lemma 2.2. Let f be a permutation of V(G) and $f(v_0) = v_0$. Then $\delta_f(v_0)$ is even.

Proof. Since $\delta_f(v_0) = \sum_{v_i \neq v_0} \delta_f(v_i, v_0) = \sum_{v_i \neq v_0} |d(v_i, v_0) - d(f(v_i), v_0)|$, and $\delta_f(v_0) \equiv \sum_{v_i \neq v_0} \{d(v_i, v_0) - d(f(v_i), v_0)\} = \sum_{v_i \neq v_0} d(v_i, v_0) - \sum_{v_i \neq v_0} d(f(v_i), v_0) \pmod{2}$. By the fact that $\sum_{v_i \neq v_0} d(v_i, v_0) = \sum_{v_i \neq v_0} d(f(v_i), v_0)$. Hence, $\delta_f(v_0) \equiv 0 \pmod{2}$. \Box

Lemma 2.3. Let f be a permutation of V(G) where G is a vertex-transitive graph. Then $\delta_f(x)$ is even for each $x \in V(G)$.

Proof. Since *G* is vertex-transitive, for each vertex *x* there exists an automorphism *g* such that g(y) = x where y = f(x). Therefore, $(g \circ f)(x) = g(f(x)) = g(y) = x$. By Lemma 2.2, $\delta_{g \circ f}(x)$ is even. But, $\delta_{g \circ f}(x) = \sum_{y \in V(G) \setminus \{x\}} |d(x, y) - d((g \circ f)(x), (g \circ f)(y))| = \sum_{y \in V(G) \setminus \{x\}} |d(x, y) - d(f(x), f(y))| = \delta_f(x)$. Hence $\delta_f(x)$ is even. \Box

Lemma 2.4. Let f be a permutation of V(G) and $x \in V(G)$ be a vertex satisfying f(x) = x with $\delta_f(x) \neq 0$. Then there exist at least two distinct vertices u and v such that $\delta_f(x, u) \neq 0$ and $\delta_f(x, v) \neq 0$.

Proof. Suppose not. There exists a unique $u \in V(G)$ such that $\delta_f(x) = \delta_f(x, u) \neq 0$. Then $\sum_{y \in V(G) \setminus \{x, u\}} |d(x, y) - d(f(x), f(y))| = 0$. This implies that for each $y \in V(G) \setminus \{x, u\}, d(x, y) = d(f(x), f(y)) = d(x, f(y))$. Now, since $f(u) \neq x$ and $f(u) \neq u, d(x, f(u)) = d(x, f^2(u)) = d(x, f^3(u)) = \cdots$. By the fact that f is a permutation of finite

order, there exists a $t \leq |V(G)|$ such that f^t is an identity and thus $d(x, f(u)) = d(x, f^t(u)) = d(x, u)$. This contradicts to $\delta_f(x, u) \neq 0$ and we have the proof. \Box

Lemma 2.5. If f is a permutation and g is an automorphism of a graph G, then $\delta_{g \circ f}(G) = \delta_f(G) = \delta_{f \circ g}(G)$.

Proof. Since g is an automorphism, G is isomorphic to g(G) and each vertex pair of V(G) preserve their distance by g. Thus G and g(G) have the same number of vertex pair of distance i and distance j by the same f and d(g(f(x)), g(f(y)) = d(f(x), f(y)). Then the equality follows:

$$\begin{split} \delta_{gof}(G) &= \sum_{x,y \in V(G)} |d(x, y) - d(g(f(x)), g(f(y)))| \\ &= \sum_{x,y \in V(G)} |d(x, y) - d(f(x), f(y))| = \delta_f(G) \\ &= \sum_{j=1} \sum_{i=1} |\{x, y\} : x, y \in V(G), d(x, y) = i, d(f(x), f(y)) = j\}| \cdot |i - j| \\ &= \sum_{j=1} \sum_{i=1} |\{g(x), g(y)\} : g(x), g(y) \in V(G), d(g(x), g(y)) = i, \\ &\quad d(f(g(x)), f(g(y))) = j\}| \cdot |i - j| \\ &= \delta_{fog}(G). \quad \Box \end{split}$$

Now, we are ready for the proof of our main results.

Theorem 2.6. $\pi(C_n) = 4\lfloor n/2 \rfloor - 4$.

Proof. Let the permutation be the transposition (v_0v_1) . Then it is easy to check that $\pi(C_n) \leq 4\lfloor n/2 \rfloor - 4$. For $n \leq 3$, all permutations of C_n are automorphisms. Therefore, we start our proof by showing that for each positive integer $n \geq 4$, $\delta_f(C_n) \geq 4\lfloor n/2 \rfloor - 4$ for any non-automorphism *f*.

Since C_n is a vertex-transitive graph, by Lemma 2.5, we may assume that f is a non-automorphism of C_n such that $f(v_0) = v_0$ and $\delta_f(v_0) = \min{\{\delta_f(v) : v \in V(C_n)\}}$.

Clearly, if $\delta_f(v_0) \ge 4$, then $\delta_f(C_n) \ge 2n$ and the proof follows. So, we assume that $\min{\{\delta_f(v) : v \in V(C_n)\}}$ is equal to 0 or 2. Note that, by Lemma 2.3, $\delta_f(v_0)$ is even.

Case 1: $\delta_f(v_0) = 0$.

This implies that for each $v_i \in V(C_n)$, $i \neq 0$, $f(v_i) \in \{v_i, v_{-i}\}$. Let $A = \{k : f(v_k) = v_k, k = 1, 2, ..., \lceil n/2 \rceil - 1\}$ and $B = \{h : f(v_h) = v_{-h}, h = 1, 2, ..., \lceil n/2 \rceil - 1\}$. Since f is not an automorphism, then $|A| \neq 0$ and $|B| \neq 0$. Thus in this case, $n \ge 5$. Then, for each $k \in A$ and $h \in B$, $|d_{C_n}(v_k, v_h) - d_{C_n}(f(v_k), f(v_h))| \ge 1$ whenever n is odd and $|d_{C_n}(v_k, v_h) - d_{C_n}(f(v_k), f(v_h))| \ge 2$ whenever n is even. Now, let $A^- = \{-k : k \in A\}$ and $B^- = \{-h : h \in B\}$. The above inequalities also hold for $k \in A^-$ and $h \in B$ or $k \in A$ and $h \in B^-$ or $k \in A^-$ and $h \in B^-$ depending on n is odd and even, respectively. Thus, we conclude that $\delta_f(C_n) \ge 4|A||B|$ or 8|A||B| depending on n is odd or even. Nevertheless, by the fact that $|A| + |B| = \lceil n/2 \rceil - 1$, we have $\delta_f(C_n) \ge 4 \cdot 1 \cdot (\lceil n/2 \rceil - 2)$ or $8 \cdot 1 \cdot (\lceil n/2 \rceil - 2)$ with respect to n odd or even, respectively, and the equality holds only if $|h| = \lceil n/2 \rceil - 1$ for all odd n and special for n = 6since $8 \cdot (\lceil n/2 \rceil - 2) = 4\lfloor n/2 \rfloor - 4$.

Case 2: $\delta_f(v_0) = 2$.

By Lemma 2.4, there exist two distinct vertices v_h and v_k such that $\delta_f(v_0) = \delta_f(v_0, v_h) + \delta_f(v_0, v_k)$, where $h, k \in \{-\lfloor n/2 \rfloor, \ldots, 0, \ldots, \lfloor n/2 \rfloor\}$ (again, for *n* even we let $v_{-\lfloor n/2 \rfloor} = v_{\lfloor n/2 \rfloor}$) and |h| = |k| + 1. Hence, the near automorphism *f* satisfies one of the following four conditions: (a) $f(v_h) = v_k$ and $f(v_k) = v_h$, (b) $f(v_h) = v_k$ and $f(v_k) = v_{-h}$, (c) $f(v_h) = v_{-k}$ and $f(v_k) = v_h$, (d) $f(v_h) = v_{-k}$ and $f(v_k) = v_{-h}$. Since $\delta_f(v_0) = 2$, for each $v_i, i \neq h, k, f(v_i) = v_i$ or $f(v_i) = v_{-i}$. Obviously, if we compose an automorphism *g* to all the possible permutations in (a), then we can get

all the possible permutations in (d), where g is a mirror reflection such that $g(v_0) = v_0$ and $g(v_i) = v_{-i}$ for all i, and so do (b) and (c). Thus, it suffices to find $\delta_f(C_n)$ for the f's satisfying (a) and (b) respectively. By considering the displacement of v_h and v_k , we have

$$\begin{split} \delta_f(C_n) &\ge \sum_{i \neq h,k} \{ \delta_f(v_h, v_i) + \delta_f(v_k, v_i) \} \\ &= \sum_{i \neq h,k} \{ |d(v_h, v_i) - d(f(v_h), f(v_i))| + |d(v_k, v_i) - d(f(v_k), f(v_i))| \} \end{split}$$

Let $C = \{i : f(v_i) = v_i, i \neq h, k\}$ and $D = \{j : f(v_j) = v_{-j}, j \neq h, k\}$. Since $v_0 \in C$, $|C| \neq 0$, and |C| + |D| = n - 2. Then, for the *f* satisfying (a), we have

$$\begin{split} \delta_f(C_n) &\ge \sum_{\substack{i \neq h, k \\ i \in C}} \{ |d(v_h, v_i) - d(v_k, v_i)| + |d(v_k, v_i) - d(v_h, v_i)| \} \\ &+ \sum_{\substack{i \neq h, k \\ i \in D}} \{ |d(v_h, v_i) - d(v_k, v_{-i})| + |d(v_k, v_i) - d(v_h, v_{-i})| \} \end{split}$$

By the fact that $|d(v_h, v_i) - d(v_k, v_i)| \ge 1$ and $|d(v_h, v_i) - d(v_k, v_{-i})| \ge 1$ for each $i \ne h, k$ in the case *n* is even, we have $\delta_f(C_n) \ge 2(|C| + |D|) = 2(n-2)$, as desired. On the other hand, if *n* is odd, exactly one vertex $v_j, j \ne h, k$ in $V(C_n)$ satisfying $d(v_h, v_j) = d(v_k, v_j)$. Thus, $\delta_f(C_n) \ge 2(n-3) = 4\lfloor n/2 \rfloor - 4$ in the case when *n* is odd. Since $|C| \ne 0$, $\delta_f(C_n) = 4\lfloor n/2 \rfloor - 4$ if $|d(v_h, v_i) - d(v_k, v_i)| = 1$. In fact, $d(v_h, v_k) = 1$ for all *i* and for all *n* but $i = \lfloor n/2 \rfloor$ or $-\lfloor n/2 \rfloor$, we have $|d(v_h, v_i) - d(v_k, v_i)| = 1$; if $d(v_h, v_k) \ne 1$, then there are four and two vertices such that $|d(v_h, v_i) - d(v_k, v_i)| = 1$ and the other vertices $|d(v_h, v_i) - d(v_k, v_i)| \ge 3$ and 2 in all *n* even and odd case, respectively.

Next, for the *f* satisfying (b), we have

$$\begin{split} \delta_f(C_n) &\ge \sum_{\substack{i \neq h, k \\ i \in C}} \{ |d(v_h, v_i) - d(v_k, v_i)| + |d(v_k, v_i) - d(v_{-h}, v_i)| \} \\ &+ \sum_{\substack{i \neq h, k \\ i \in D}} \{ |d(v_h, v_i) - d(v_k, v_{-i})| + |d(v_k, v_i) - d(v_{-h}, v_{-i})| \} \end{split}$$

By observation, we are able to see that at least one of the summands is larger than 2. Therefore, we conclude that $\delta_f(C_n) > 4\lfloor n/2 \rfloor - 4$ in this case. In conclusion that we have the lower bound $\delta_f(C_n) \ge 4\lfloor n/2 \rfloor - 4$ and the near automorphisms of C_n are $f \circ g$ and $g \circ f$ where $f = (v_0v_1)$ and g is an automorphism of C_n , (since C_n is a vertex-transitive graph, we prefer (v_0v_1) to any transposition of two adjacent vertices) and special for n = 5, $f = (v_0v_1)$ or (v_0v_2) and for n = 6, $f = (v_0v_1)$, (v_0v_2) or (v_0v_3) . This concludes the proof of the theorem. \Box

Finally, we would like to point out that the study of near automorphisms of paths and cycles does have some similarity. With the following proposition, we provide a short proof of $\pi(P_n) = 2n - 4$.

Proposition 2.7. $\pi(P_n) \ge \pi(C_n)$, the equality holds only when *n* is even.

Proof. Let $P_n = \langle v_1, v_2, ..., v_n \rangle$ and $C_n = (v_1, v_2, ..., v_n)$. Now, it is easy to see that $d_{P_n}(v_i, v_j) = |j - i|$ and $d_{C_n}(v_i, v_j) = \min\{|j - i|, n - |j - i|\}$. In order to prove the proposition, we will first show that for each permutation f of $V(P_n) = V(C_n)$ and for each pair of distinct vertices $\{x, y\}$, $|d_{P_n}(x, y) - d_{P_n}(f(x), f(y))| \ge |d_{C_n}(x, y) - d_{C_n}(f(x), f(y))|$. Clearly, if both $d_{P_n}(x, y)$ and $d_{P_n}(f(x), f(y))$ are not larger than $\lfloor n/2 \rfloor$, so are $d_{C_n}(x, y)$ and $d_{C_n}(f(x), f(y))$, the proof follows. On the other hand if both $d_{P_n}(x, y)$ and $d_{P_n}(f(x), f(y))$ are larger than $\lfloor n/2 \rfloor$, then $|d_{C_n}(x, y) - d_{C_n}(f(x), f(y))| = |n - d_{P_n}(x, y) - n + d_{P_n}(f(x), f(y))| = |d_{P_n}(x, y) - d_{P_n}(f(x), f(y))|$. Therefore, it is left to consider the case that one of them is larger than $\lfloor n/2 \rfloor$ and the other one is not larger

than $\lfloor n/2 \rfloor$ or equivalently $d_{P_n}(x, y) > \lfloor n/2 \rfloor$ and $d_{P_n}(f(x), f(y)) \leq \lfloor n/2 \rfloor$ (by symmetry). Now, we have two subcases to consider.

(i)
$$d_{P_n}(x, y) + d_{P_n}(f(x), f(y)) \ge n.$$

 $|d_{C_n}(x, y) - d_{C_n}(f(x), f(y))| = |n - d_{P_n}(x, y) - d_{P_n}(f(x), f(y))| = d_{P_n}(x, y)$
 $+ d_{P_n}(f(x), f(y)) - n \le d_{P_n}(x, y) - d_{P_n}(f(x), f(y)) = |d_{P_n}(x, y) - d_{P_n}(f(x), f(y))|.$

(ii) $d_{P_n}(x, y) + d_{P_n}(f(x), f(y)) < n.$

$$|d_{C_n}(x, y) - d_{C_n}(f(x), f(y))| = |n - d_{P_n}(x, y) - d_{P_n}(f(x), f(y))| = n - d_{P_n}(x, y) - d_{P_n}(f(x), f(y)) \leq d_{P_n}(x, y) - d_{P_n}(f(x), f(y)) = |d_{P_n}(x, y) - d_{P_n}(f(x), f(y))|.$$

Note that the equalities in (i) and (ii) hold when $n = 2d_{P_n}(x, y)$ and $n = 2d_{P_n}(f(x), f(y))$, respectively. Therefore, n must be even. Thus, for each non-automorphism f, we have $\delta_f(P_n) \ge \delta_f(C_n)$. Hence, we left the case that when f is an automorphism of C_n but not an automorphism of P_n , $\delta_f(P_n) \ge 2n - 4$.

Clearly, $g(v_i) = v_{n-i+1}$ and $h(v_i) = v_{i+j} \pmod{n}$ are mirror reflection and rotation of C_n here, they can create all the automorphisms of C_n . Obviously, if $\{f(v_1), f(v_n)\} = \{v_1, v_n\}$ for some automorphism f of C_n , then f is also an automorphism of P_n . Otherwise, if $\{f(v_1), f(v_n)\} = \{v_j, v_{j+1}\}$ for $1 \le j < n$, then $\{f(v_j), f(v_{j+1})\} = \{v_1, v_n\}$ or $\{f(v_{n-j}), f(v_{n-j+1})\} = \{v_1, v_n\}$, and $\delta_f(P_n) \ge \delta_f(v_1, v_n) + \delta_f(v_j, v_{j+1}) + \delta_f(v_{n-j}, v_{n-j+1}) = (n-2) + (n-2) = 2n - 4$. Thus this concludes the proof. \Box

Corollary 2.8. (Aitken [1]) $\pi(P_n) = 2n - 4$.

Proof. By Theorem 2.6 and Proposition 2.7, we can see that $\pi(P_n) \ge 2n - 4$. Then, Theorem 1.1 can be obtained by the fact that $\pi(P_n) \le 2n - 4$ (Lemma 2.1). \Box

Acknowledgements

We are grateful to Prof. Sheng-Chyang Liaw and the referees for their helpful comments in revising this paper.

References

- [1] W. Aitken, Total relative displacement of permutations, J. Combin. Theory (A) (1999) 1-21.
- [2] G. Chartrand, H. Gavlas, D.W. VanderJagt, Near-automorphisms of graphs, Graph Theory, Combinatorics and Applications, in: Y. Alavi, D. Lick, A.J. Schwenk (Eds.), Proceedings of the 1996 Eighth Quadrennial International Conference on Graph Theory, Combinatorics, Algorithms and Applications, vol. 1, New Issues Press, Kalamazoo, 1999, pp. 181–192.
- [3] K.-C. Cheng, N.-P. Chiang, H.-L. Fu, C.-K. Tzeng, A study of total relative displacement of ermutations, in preprints.
- [4] X. Cheng, D.-Z. Du, H.-L. Fu, J.-M. Kim, C.-L. Shiue, Quadratic integer programming with application in chaotic mappings of complete multipartite graphs, J. Optim. Theory Appl. 110 (3) (2001) 545–556.
- [5] K.B. Reid, Total relative displacement of vertex permutations of K_{n_1,n_2,\dots,n_t} , J. Graph Theory 41 (2002) 85–100.