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Abstract

Let f be a permutation of V (G). Define �f (x, y)=|dG(x, y)−dG(f (x), f (y))| and �f (G)=∑
�f (x, y) over all the unordered

pairs {x, y} of distinct vertices of G. Let �(G) denote the smallest positive value of �f (G) among all the permutations f of V (G).
The permutation f with �f (G)=�(G) is called a near automorphism of G. In this paper, we study the near automorphisms of cycles
Cn and we prove that �(Cn) = 4�n/2� − 4, moreover, we obtain the set of near automorphisms of Cn.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let f denote a permutation of the n vertices of a connected graph G and the distance between two distinct vertices
x and y in G be denoted by dG(x, y) (or d(x, y) in short). Let �f (x, y) = |d(x, y) − d(f (x), f (y))| and �f (x) =∑

y�f (x, y). Then, it is easy to see that
∑

x�f (x)=2
∑

x �=y�f (x, y) [1]. Now, let �f (G) be the sum of �f (x, y) over all
the (

n
2 ) unordered pairs {x, y} of distinct vertices of G. Clearly, a permutation f (of the vertices of G) is an automorphism

of G if and only if �f (G) = 0. Let �(G) denote the smallest positive value of �f (G) among the n! permutations f
of the vertices of G. A permutation f for which �f (G) = �(G) > 0 is called a near automorphism and �(G) is the
value of near automorphism. Chartrand et al. [2] observed that �(G) is even and conjectured that �(G) = 2n − 4
when G is a path with n vertices. Later, Aitken [1] verified this conjecture and, among other things, characterized those
permutations f for which �(G) = �f (G) = 2n − 4 when G is a path with n vertices. Hence, the following result is
established.

Theorem 1.1 (Aitken [1]). �(Pn) = 2n − 4.

On the study of near automorphism, Reid [5] provided the near automorphism values of complete multipartite
graphs.
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Theorem 1.2. For positive integers, n1 �n2 � · · · �nt , where t �2 and nt �2,

�(Kn1,n2,...,nt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2nh+1 − 2 if 1 = n1 = · · · = nh < nh+1 � · · · �nt ,

and t �(h + 1), for some h�2,

2nk0 if 1 = n1 < n2 or n1 �2,

nk+1 = nk + 1 for some k, 1�k� t − 1,

and 2 + nk0 �n1 + n2,

2(n1 + n2 − 2) otherwise,

where k0 is the smallest index for which nk0+1 = nk0 + 1.

It is worth of mentioning that we can also study the largest value �∗(G) of �f (G) [3]. The permutations f with
�f (G) = �∗(G) are called the chaotic mappings of G. Not much is known so far, see [4] for reference.

In this paper, we shall focus on the study of the near automorphisms of a cycle of length n, Cn. First, we show that
�(Cn) = 4�n/2� − 4 and then obtain the set of near automorphisms of Cn. Finally, we explain how to derive Theorem
1.1 from �(Cn) = 4�n/2� − 4.

2. The main results

We start with several basic lemmas. For convenience, the n-cycle Cn we consider throughout this paper is denoted
by (v−�n/2�, . . . , v−1, v0, v1, . . . , v�n/2�) (for n even we let v−�n/2� = v�n/2�) and the vertices are distributed on the
cycle evenly. Now, clearly the permutations g(vi) = v−i and h(vi) = vi+j for some j and for all i are automorphisms
of Cn. The permutations g and h are the mirror reflection and rotation, respectively.

Lemma 2.1. Let G be a connected graph which is not complete. Then 2��(G)�2|V (G)| − 4.

Proof. Since G is not a complete graph, there exist three vertices x, y and z such that xy, xz ∈ E(G) and yz /∈ E(G).
Then, let f be the transposition (x, y). Clearly, f is not an automorphism and �f (G) = ∑{�f (u, v) : |{u, v} ∩ {x, y}| =
1}�2|V (G)| − 4. Therefore, the proof follows by the fact that �(G) is even and �(G) �= 0. �

Lemma 2.2. Let f be a permutation of V (G) and f (v0) = v0. Then �f (v0) is even.

Proof. Since �f (v0)=∑
vi �=v0

�f (vi, v0)=∑
vi �=v0

|d(vi, v0)−d(f (vi), v0)|, and �f (v0)≡∑
vi �=v0

{d(vi, v0)−d(f (vi),

v0)} ≡ ∑
vi �=v0

d(vi, v0)−∑
vi �=v0

d(f (vi), v0) (mod 2). By the fact that
∑

vi �=v0
d(vi, v0)=∑

vi �=v0
d(f (vi), v0). Hence,

�f (v0) ≡ 0 (mod 2). �

Lemma 2.3. Let f be a permutation of V (G) where G is a vertex-transitive graph. Then �f (x) is even for each
x ∈ V (G).

Proof. Since G is vertex-transitive, for each vertex x there exists an automorphism g such that g(y)=x where y=f (x).
Therefore, (g ◦ f )(x) = g(f (x)) = g(y) = x. By Lemma 2.2, �g◦f (x) is even. But, �g◦f (x) = ∑

y∈V (G)\{x}|d(x, y) −
d((g ◦ f )(x), (g ◦ f )(y))| = ∑

y∈V (G)\{x}|d(x, y) − d(f (x), f (y))| = �f (x). Hence �f (x) is even. �

Lemma 2.4. Let f be a permutation of V (G) and x ∈ V (G) be a vertex satisfying f (x) = x with �f (x) �= 0. Then
there exist at least two distinct vertices u and v such that �f (x, u) �= 0 and �f (x, v) �= 0.

Proof. Suppose not. There exists a unique u ∈ V (G) such that �f (x) = �f (x, u) �= 0. Then
∑

y∈V (G)\{x,u}|d(x, y) −
d(f (x), f (y))| = 0. This implies that for each y ∈ V (G)\{x, u}, d(x, y) = d(f (x), f (y)) = d(x, f (y)). Now, since
f (u) �= x and f (u) �= u, d(x, f (u)) = d(x, f 2(u)) = d(x, f 3(u)) = · · · . By the fact that f is a permutation of finite
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order, there exists a t � |V (G)| such that f t is an identity and thus d(x, f (u))=d(x, f t (u))=d(x, u). This contradicts
to �f (x, u) �= 0 and we have the proof. �

Lemma 2.5. If f is a permutation and g is an automorphism of a graph G, then �g◦f (G) = �f (G) = �f ◦g(G).

Proof. Since g is an automorphism, G is isomorphic to g(G) and each vertex pair of V (G) preserve their distance by g.
Thus G andg(G)have the same number of vertex pair of distance i and distance j by the same f andd(g(f (x)), g(f (y))=
d(f (x), f (y)). Then the equality follows:

�gof (G) =
∑

x,y∈V (G)

|d(x, y) − d(g(f (x)), g(f (y)))|

=
∑

x,y∈V (G)

|d(x, y) − d(f (x), f (y))| = �f (G)

=
∑
j=1

∑
i=1

|{x, y} : x, y ∈ V (G), d(x, y) = i, d(f (x), f (y)) = j}| · |i − j |

=
∑
j=1

∑
i=1

|{g(x), g(y)} : g(x), g(y) ∈ V (G), d(g(x), g(y)) = i,

d(f (g(x)), f (g(y))) = j}| · |i − j |
= �f og(G). �

Now, we are ready for the proof of our main results.

Theorem 2.6. �(Cn) = 4�n/2� − 4.

Proof. Let the permutation be the transposition (v0v1). Then it is easy to check that �(Cn)�4�n/2�− 4. For n�3, all
permutations of Cn are automorphisms. Therefore, we start our proof by showing that for each positive integer n�4,
�f (Cn)�4�n/2� − 4 for any non-automorphism f.

Since Cn is a vertex-transitive graph, by Lemma 2.5, we may assume that f is a non-automorphism of Cn such that
f (v0) = v0 and �f (v0) = min{�f (v) : v ∈ V (Cn)}.

Clearly, if �f (v0)�4, then �f (Cn)�2n and the proof follows. So, we assume that min{�f (v) : v ∈ V (Cn)} is equal
to 0 or 2. Note that, by Lemma 2.3, �f (v0) is even.

Case 1: �f (v0) = 0.
This implies that for each vi ∈ V (Cn), i �= 0, f (vi) ∈ {vi, v−i}. Let A = {k : f (vk) = vk, k = 1, 2, . . . , 
n/2� − 1}

and B = {h : f (vh) = v−h, h = 1, 2, . . . , 
n/2� − 1}. Since f is not an automorphism, then |A| �= 0 and |B| �= 0.
Thus in this case, n�5. Then, for each k ∈ A and h ∈ B, |dCn(vk, vh) − dCn(f (vk), f (vh))|�1 whenever n is odd
and |dCn(vk, vh) − dCn(f (vk), f (vh))|�2 whenever n is even. Now, let A− = {−k : k ∈ A} and B− = {−h : h ∈ B}.
The above inequalities also hold for k ∈ A− and h ∈ B or k ∈ A and h ∈ B− or k ∈ A− and h ∈ B− depending on
n is odd and even, respectively. Thus, we conclude that �f (Cn)�4|A||B|or 8|A||B| depending on n is odd or even.
Nevertheless, by the fact that |A| + |B| = 
n/2� − 1, we have �f (Cn)�4 · 1 · (
n/2� − 2) or 8 · 1 · (
n/2� − 2) with
respect to n odd or even, respectively, and the equality holds only if |h| = 
n/2� − 1 for all odd n and special for n = 6
since 8 · (
n/2� − 2) = 4�n/2� − 4.

Case 2: �f (v0) = 2.
By Lemma 2.4, there exist two distinct vertices vh and vk such that �f (v0) = �f (v0, vh) + �f (v0, vk), where h, k ∈

{−�n/2�, . . . , 0, . . . , �n/2�} (again, for n even we let v−�n/2� =v�n/2�) and |h|=|k|+1. Hence, the near automorphism
f satisfies one of the following four conditions: (a) f (vh) = vk and f (vk) = vh, (b) f (vh) = vk and f (vk) = v−h, (c)
f (vh) = v−k and f (vk) = vh, (d) f (vh) = v−k and f (vk) = v−h. Since �f (v0) = 2, for each vi, i �= h, k, f (vi) = vi

or f (vi) = v−i . Obviously, if we compose an automorphism g to all the possible permutations in (a), then we can get
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all the possible permutations in (d), where g is a mirror reflection such that g(v0) = v0 and g(vi) = v−i for all i, and
so do (b) and (c). Thus, it suffices to find �f (Cn) for the f’s satisfying (a) and (b) respectively. By considering the
displacement of vh and vk , we have

�f (Cn)�
∑

i �=h,k

{�f (vh, vi) + �f (vk, vi)}

=
∑

i �=h,k

{|d(vh, vi) − d(f (vh), f (vi))| + |d(vk, vi) − d(f (vk), f (vi))|}

Let C ={i : f (vi)= vi, i �= h, k} and D ={j : f (vj )= v−j , j �= h, k}. Since v0 ∈ C, |C| �= 0, and |C|+ |D|=n− 2.
Then, for the f satisfying (a), we have

�f (Cn)�
∑

i �=h,k
i∈C

{|d(vh, vi) − d(vk, vi)| + |d(vk, vi) − d(vh, vi)|}

+
∑

i �=h,k
i∈D

{|d(vh, vi) − d(vk, v−i )| + |d(vk, vi) − d(vh, v−i )|}.

By the fact that |d(vh, vi)− d(vk, vi)|�1 and |d(vh, vi)− d(vk, v−i )|�1 for each i �= h, k in the case n is even, we
have �f (Cn)�2(|C| + |D|) = 2(n − 2), as desired. On the other hand, if n is odd, exactly one vertex vj , j �= h, k in
V (Cn) satisfying d(vh, vj )=d(vk, vj ). Thus, �f (Cn)�2(n−3)=4�n/2�−4 in the case when n is odd. Since |C| �= 0,
�f (Cn)=4�n/2�−4 if |d(vh, vi)−d(vk, vi)|=1. In fact, d(vh, vk)=1 for all i and for all n but i=�n/2� or −�n/2�, we
have |d(vh, vi)−d(vk, vi)|=1; if d(vh, vk) �= 1, then there are four and two vertices such that |d(vh, vi)−d(vk, vi)|=1
and the other vertices |d(vh, vi) − d(vk, vi)|�3 and 2 in all n even and odd case, respectively.

Next, for the f satisfying (b), we have

�f (Cn)�
∑
i �=h,k
i∈C

{|d(vh, vi) − d(vk, vi)| + |d(vk, vi) − d(v−h, vi)|}

+
∑
i �=h,k
i∈D

{|d(vh, vi) − d(vk, v−i )| + |d(vk, vi) − d(v−h, v−i )|}.

By observation, we are able to see that at least one of the summands is larger than 2. Therefore, we conclude that
�f (Cn) > 4�n/2� − 4 in this case. In conclusion that we have the lower bound �f (Cn)�4�n/2� − 4 and the near
automorphisms of Cn are f ◦ g and g ◦ f where f = (v0v1) and g is an automorphism of Cn, (since Cn is a vertex-
transitive graph, we prefer (v0v1) to any transposition of two adjacent vertices) and special for n = 5, f = (v0v1) or
(v0v2) and for n = 6, f = (v0v1), (v0v2) or (v0v3). This concludes the proof of the theorem. �

Finally, we would like to point out that the study of near automorphisms of paths and cycles does have some similarity.
With the following proposition, we provide a short proof of �(Pn) = 2n − 4.

Proposition 2.7. �(Pn)��(Cn), the equality holds only when n is even.

Proof. Let Pn = 〈v1, v2, . . . , vn〉 and Cn = (v1, v2, . . . , vn). Now, it is easy to see that dPn(vi, vj ) = |j − i| and
dCn(vi, vj ) = min{|j − i|, n − |j − i|}. In order to prove the proposition, we will first show that for each permuta-
tion f of V (Pn) = V (Cn) and for each pair of distinct vertices {x, y}, |dPn(x, y) − dPn(f (x), f (y))|� |dCn(x, y) −
dCn(f (x), f (y))|. Clearly, if both dPn(x, y) and dPn(f (x), f (y)) are not larger than �n/2�, so are dCn(x, y) and
dCn(f (x), f (y)), the proof follows. On the other hand if both dPn(x, y) and dPn(f (x), f (y)) are larger than �n/2�,
then |dCn(x, y) − dCn(f (x), f (y))| = |n − dPn(x, y) − n + dPn(f (x), f (y))| = |dPn(x, y) − dPn(f (x), f (y))|.
Therefore, it is left to consider the case that one of them is larger than �n/2� and the other one is not larger
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than�n/2� or equivalently dPn(x, y) > �n/2� and dPn(f (x), f (y))��n/2� (by symmetry). Now, we have two subcases
to consider.

(i) dPn(x, y) + dPn(f (x), f (y))�n.

|dCn(x, y) − dCn(f (x), f (y))| = |n − dPn(x, y) − dPn(f (x), f (y))| = dPn(x, y)

+ dPn(f (x), f (y)) − n�dPn(x, y) − dPn(f (x), f (y)) = |dPn(x, y) − dPn(f (x), f (y))|.
(ii) dPn(x, y) + dPn(f (x), f (y)) < n.

|dCn(x, y) − dCn(f (x), f (y))| = |n − dPn(x, y) − dPn(f (x), f (y))| = n − dPn(x, y)

− dPn(f (x), f (y))�dPn(x, y) − dPn(f (x), f (y)) = |dPn(x, y) − dPn(f (x), f (y))|.

Note that the equalities in (i) and (ii) hold when n = 2dPn(x, y) and n = 2dPn(f (x), f (y)), respectively. Therefore, n
must be even. Thus, for each non-automorphism f, we have �f (Pn)��f (Cn). Hence, we left the case that when f is
an automorphism of Cn but not an automorphism of Pn, �f (Pn)�2n − 4.

Clearly, g(vi) = vn−i+1 and h(vi) = vi+j (mod n) are mirror reflection and rotation of Cn here, they can create
all the automorphisms of Cn. Obviously, if {f (v1), f (vn)} = {v1, vn} for some automorphism f of Cn, then f is also
an automorphism of Pn. Otherwise, if {f (v1), f (vn)} = {vj , vj+1} for 1�j < n, then {f (vj ), f (vj+1)} = {v1, vn}
or {f (vn−j ), f (vn−j+1)} = {v1, vn}, and �f (Pn)��f (v1, vn)+ �f (vj , vj+1)+ �f (vn−j , vn−j+1) = (n − 2) + (n −
2) = 2n − 4. Thus this concludes the proof. �

Corollary 2.8. (Aitken [1]) �(Pn) = 2n − 4.

Proof. By Theorem 2.6 and Proposition 2.7, we can see that �(Pn)�2n − 4. Then, Theorem 1.1 can be obtained by
the fact that �(Pn)�2n − 4 (Lemma 2.1). �
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