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Abstract

Let f be a permutation of V(G). Define 0 ¢ (x, y) =|dg (x, y) —dg (f (x), f(y)|and 6 s (G) = > 0 r(x, y) over all the unordered
pairs {x, y} of distinct vertices of G. Let n(G) denote the smallest positive value of 5f(G) among all the permutations f of V (G).
The permutation fwith 6  (G) = (G) is called a near automorphism of G. In this paper, we study the near automorphisms of cycles
C,, and we prove that n(C,,) = 4|n/2] — 4, moreover, we obtain the set of near automorphisms of Cj,.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let f denote a permutation of the n vertices of a connected graph G and the distance between two distinct vertices
x and y in G be denoted by dg (x, y) (or d(x, y) in short). Let 6¢(x, y) =1|d(x,y) —d(f(x), f(y))| and é7(x) =
207 (x,y). Then, itiseasy tosee that 35,07 (x) =23, 07 (x, y) [1]. Now, let § s (G) be the sum of 6 7 (x, y) overall
the (g) unordered pairs {x, y} of distinct vertices of G. Clearly, a permutation f (of the vertices of G) is an automorphism
of G if and only if 6 £(G) = 0. Let ©(G) denote the smallest positive value of §(G) among the n! permutations f
of the vertices of G. A permutation f for which 6 ¢(G) = n(G) > 0 is called a near automorphism and n(G) is the
value of near automorphism. Chartrand et al. [2] observed that 7(G) is even and conjectured that n(G) = 2n — 4
when G is a path with n vertices. Later, Aitken [1] verified this conjecture and, among other things, characterized those
permutations f for which n(G) = 6 7(G) = 2n — 4 when G is a path with n vertices. Hence, the following result is
established.

Theorem 1.1 (Aitken [1]). n(P,) =2n — 4.

On the study of near automorphism, Reid [5] provided the near automorphism values of complete multipartite
graphs.
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Theorem 1.2. For positive integers, n1 <ny < --- <ny, where t 22 and n; >2,

2np4q —2 ifl=n=---=np<npp<--- <ny,
and t > (h + 1), for some h>2,

2ng, if l=n1<ngorn; 22,

T(Kny ny,...on;) =

ng+1 = ng + 1 for some k, 1<k<t — 1,

and 2 + ny, <ny + na,

2(ny +no —2) otherwise,

where ko is the smallest index for which ny 11 =ng, + 1.

It is worth of mentioning that we can also study the largest value 7*(G) of 6 (G) [3]. The permutations f with
07(G) = n*(G) are called the chaotic mappings of G. Not much is known so far, see [4] for reference.

In this paper, we shall focus on the study of the near automorphisms of a cycle of length n, C,,. First, we show that
n(Cy) =4|n/2] — 4 and then obtain the set of near automorphisms of C,,. Finally, we explain how to derive Theorem
1.1 from n(C,) = 4|n/2] — 4.

2. The main results

We start with several basic lemmas. For convenience, the n-cycle C,, we consider throughout this paper is denoted
by (V—{n/2fs > V=1, V0, V1, ..., V|n/2)) (for n even we let v_|,/2) = v|,/2)) and the vertices are distributed on the
cycle evenly. Now, clearly the permutations g(v;) = v—; and h(v;) = v;4; for some j and for all i are automorphisms
of C,,. The permutations g and & are the mirror reflection and rotation, respectively.

Lemma 2.1. Let G be a connected graph which is not complete. Then 2<n(G) <2|V(G)| — 4.

Proof. Since G is not a complete graph, there exist three vertices x, y and z such that xy, xz € E(G) and yz ¢ E(G).
Then, let f be the transposition (x, y). Clearly, fis not an automorphism and 6 s (G) =Y {0 (u, v) : [{u, v} N {x, y}| =
1} <2|V(G)| — 4. Therefore, the proof follows by the fact that n(G) is even and 7(G) # 0. [

Lemma 2.2. Let f be a permutation of V(G) and f(vo) = vo. Then J ¢ (vo) is even.

Proof. Since o (v0)=3_, ., 05 Vi, V0)=2_,, 2y, 1d (Wi, v0)—d (f (vi), vo)|,and 0 £ (VO)=)_,, 4, {d (vi, vo)—d (f (i),
vg)} = Zvi#vod(vi, Vo) — vi#vod(f(vi), vg) (mod 2).Bythefactthatzvi#vod(vi, vo)=Zvl_#v0d(f(v,~), vg). Hence,
0r(vo) =0(mod2). O

Lemma 2.3. Let f be a permutation of V(G) where G is a vertex-transitive graph. Then 6 7(x) is even for each
x € V(G).

Proof. Since G is vertex-transitive, for each vertex x there exists an automorphism g such that g(y) =x where y= f (x).
Therefore, (g o f)(x) =g(f(x)) =g(y) =x. By Lemma 2.2, 64, 7 (x) is even. But, dg r (x) = Zer(G)\{x}ld(x’ y) —
d((go /H(x), (g0 HONI =2 evonld(x, ¥) —d(f(x), f(y)| = J(x). Hence 5 (x) is even. [

Lemma 2.4. Let f be a permutation of V(G) and x € V(G) be a vertex satisfying f(x) = x with 6 y(x) # 0. Then
there exist at least two distinct vertices u and v such that 6 ¢ (x, u) # 0 and 6 y(x, v) # 0.

Proof. Suppose not. There exists a unique u € V(G) such that 6 ¢ (x) = ¢ (x, u) # 0. Then Zyev(G)\{x’u”d(x, y) —
d(f(x), f(y))| =0. This implies that for each y € V(G)\{x, u}, d(x, y) =d(f(x), f(y)) =d(x, f(y)). Now, since
f) #xand f(u) #u,dx, f(u)) =d(x, fz(u)) =d(x, f3(u)) = . ... By the fact that f is a permutation of finite
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order, there exists a7 < |V (G)| such that f' is an identity and thus d (x, f(u))=d(x, f'(u)) =d(x, u). This contradicts
to 6 ¢(x, u) # 0 and we have the proof. [

Lemma 2.5. Iffis a permutation and g is an automorphism of a graph G, then 401 (G) = 06 £(G) = 0 o4 (G).

Proof. Since g is an automorphism, G is isomorphic to g(G) and each vertex pair of V (G) preserve their distance by g.
Thus G and g (G) have the same number of vertex pair of distance i and distance j by the same fandd (g(f (x)), g(f(y))=
d(f(x), f(y)). Then the equality follows:

Seof (G) = Y ld(x,y) —d(g(f(x)), g(f ("))

x,yeV(G)

= > ldx.y) —d(f(x), fFONI=67(G)

x,yeV(G)

=Y D e yhix,y € V(G),d(x, y) =i, d(f(x), f(y) = j}| - li — jl

j=1i=1

=Y ) He@®). g} : g(x). g(y) € V(G), d(g(x), g(») =1,

j=1i=1
d(f(g(x)), f(g)) =j}-li —jl
=050g(G). O

Now, we are ready for the proof of our main results.
Theorem 2.6. n(C,) =4[n/2] —4.

Proof. Let the permutation be the transposition (vov). Then it is easy to check that n(C,) <4|n/2] — 4. For n <3, all
permutations of C,, are automorphisms. Therefore, we start our proof by showing that for each positive integer n >4,
07(Cy)>4|n/2] — 4 for any non-automorphism f.

Since C,, is a vertex-transitive graph, by Lemma 2.5, we may assume that f is a non-automorphism of C,, such that
S (vo) =vp and 6 ¢ (vo) =min{d s (v) : v € V(Cy)}.

Clearly, if 6 7 (vg) >4, then 6 £ (C,,) = 2n and the proof follows. So, we assume that min{o s (v) : v € V(C,)} is equal
to 0 or 2. Note that, by Lemma 2.3, d #(vo) is even.

Case 1: 0 ¢ (vp) = 0.

This implies that for each v; € V(Cp,),i # 0, f(v;) € {vi,v_;j}.Let A=1{k: f(n)=w,k=1,2,...,[n/2] — 1}
and B=1{h: f(vy) =v_p,h=1,2,...,[n/2] — 1}. Since fis not an automorphism, then |[A| # 0 and |B| # 0.
Thus in this case, n >5. Then, for each k € A and h € B, |dc, (vk, vi) — dc, (f (vr), f(vr))| =1 whenever n is odd
and |dc, (vk, vi) — dc, (f (vk), f(vr))| =2 whenever n is even. Now, let A~ ={—k : k € A}and B~ ={—h : h € B}.
The above inequalities also hold fork € A" andh € Bork € Aandh € B~ ork € A~ and h € B~ depending on
n is odd and even, respectively. Thus, we conclude that 6 ;(C,) >4|A||B|or 8|A||B| depending on n is odd or even.
Nevertheless, by the fact that [A| 4 |B| = [n/2] — 1, we have 6 s (C,) >4 -1 ([n/2] —2) or 8- 1 - ([n/2] — 2) with
respect to n odd or even, respectively, and the equality holds only if |#| = [rn/2] — 1 for all odd n and special forn =6
since 8 - ([n/2] —2) =4|n/2] — 4.

Case 2: 0 ¢ (vy) = 2.

By Lemma 2.4, there exist two distinct vertices vj, and vy such that 6 ¢ (vg) = d s (vo, vi) + 6 £ (v, vi), where h, k €
{=Iln/2],...,0,..., [n/2]} (again, for n even we let v_|, /2] =v|»/2)) and || =|k|+ 1. Hence, the near automorphism
[ satisfies one of the following four conditions: (a) f(vy) = vk and f(vk) = vy, (b) f(vy) = vk and f(vk) = v—_p, (C)
fup) =v_gand f(vr) =vp, (d) f(vp) =v_k and f(vg) = v_y. Since 6 7 (vo) =2, foreach v;, i # h, k, f(v;) =v;
or f(v;) = v_;. Obviously, if we compose an automorphism g to all the possible permutations in (a), then we can get
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all the possible permutations in (d), where g is a mirror reflection such that g(vg) = vo and g(v;) = v_; for all i, and
so do (b) and (c). Thus, it suffices to find 6 ¢(C,) for the f’s satisfying (a) and (b) respectively. By considering the
displacement of vy and v, we have

Sp(C)= Y (S5 (wn, vi) + 3 (vg, vi))
i#h.k

= Y {ldn. vi) = d(f n), f@)] + d (g, vi) — d(f o), £}

i#h.k

LetC={i: f(vi)=v;,i #h k}and D={j: f(vj)=v_j, j # h,k}.Sincevp € C, |C| # 0,and |C|+ |D|=n —2.
Then, for the fsatisfying (a), we have

0f(Cp) = Z {ld (vn, vi) — d (g, vi)| + |d (vk, vi) — d(vn, vi)}
i#h,k
ieC
+ Y {ldn vi) — d (i, v-)| + 1d ok, vi) — d (o, v}
i#h,k
ieD
By the fact that |d (vy,, v;) —d(vk, vi)| =1 and |d (vp,, v;) —d(vg, v—;)| > 1 for each i # h, k in the case n is even, we
have 6 ¢ (C,) 22(|C| 4 |D|) = 2(n — 2), as desired. On the other hand, if 7 is odd, exactly one vertex v;, j # h, k in
V(Cy) satistying d(vj, vj) =d (v, v;). Thus, 6 (Cp) >2(n —3)=4[n/2| —4in the case when n is odd. Since |C| # 0,
07(Cp)=4In/2]—4if|d(vy, v;) —d (v, vi)|=1.Infact, d(vy, vi)=1forall iand forallnbuti=|n/2| or —|n/2], we
have |d (v, vi) —d (v, vi)|=1;if d (v, vig) # 1, then there are four and two vertices such that |d (vy,, v;) —d (vk, v;)|=1
and the other vertices |d(vp, v;) — d(vk, v;)| =3 and 2 in all n even and odd case, respectively.
Next, for the f satisfying (b), we have

0f(Cp) 2 Z {ld(vn, vi) — d (i, vi)| + ld(vk, vi) — d(V—p, vi)[}
i#h.k
ieC
+ Z {ld(vp, vi) — d (i, v—)| + |d (vg, vi) — d(V—p, v-)}.
i#h.k
ieD
By observation, we are able to see that at least one of the summands is larger than 2. Therefore, we conclude that
07(Cp) >4[n/2] — 4 in this case. In conclusion that we have the lower bound 6 ¢(C,) >4|n/2] — 4 and the near
automorphisms of C,, are f o g and g o f where f = (vov1) and g is an automorphism of Cj, (since Cj, is a vertex-
transitive graph, we prefer (vov;) to any transposition of two adjacent vertices) and special for n =5, f = (vgv;) or
(vovz) and for n = 6, f = (vov1), (vov2) or (vov3). This concludes the proof of the theorem. [

Finally, we would like to point out that the study of near automorphisms of paths and cycles does have some similarity.
With the following proposition, we provide a short proof of n(P,) = 2n — 4.

Proposition 2.7. n(P,) >n(C,), the equality holds only when n is even.

Proof. Let P, = (v, v2,...,v,) and C,, = (v, v2, ..., v,). Now, it is easy to see that dp, (v;, vj) = |j — i| and
dc,(vi,v;) =min{|j —i|,n — |j — i|}. In order to prove the proposition, we will first show that for each permuta-
tion f of V(P,) = V(C,) and for each pair of distinct vertices {x, y}, |dp, (x,y) —dp,(f(x), f(Y)|=ldc,(x,y) —
dc,(f(x), f(y)|. Clearly, if both dp, (x, y) and dp,(f(x), f(y)) are not larger than |n/2], so are dc,(x, y) and
dc,(f(x), f(y)), the proof follows. On the other hand if both dp, (x, y) and dp, (f(x), f(y)) are larger than |n/2],
then |dc, (x, y) — de, (f (), FOD] = In — dp, (x, ) — n + dp, (fx), FON] = ldp, (x, ¥) — dp, (F (), FODI.
Therefore, it is left to consider the case that one of them is larger than |n/2] and the other one is not larger
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than|n/2] orequivalently dp, (x, y) > |n/2] anddp, (f(x), f(y)) < |n/2] (by symmetry). Now, we have two subcases
to consider.

(@) dp,(x.y) +dp,(f(x), f(y))=n.
ldc, (x,y) —dc,(f(x), f(y)I=In—dp,(x,y) —dp,(f(x), f(D)| =dp,(x, y)
+dp, (f(x), f(¥)) —n<dp,(x,y) —dp,(f(x), f(¥)) =|dp,(x, y) = dp,(f(x), F(¥)I.
(i) dp,(x,y) +dp,(f(x), f(y)) <n.

ldc, (x, y) —dc, (f(x), fOOD|=In—dp,(x,y) —dp,(f(x), f(Y)|=n—dp,(x,y)
—dp,(f (), f(V) <dp,(x,y) —dp,(f(x), f(y) =Ildp,(x,y) —dp,(f(x), f(V)I.

Note that the equalities in (i) and (ii) hold when n = 2dp, (x, y) and n =2dp, (f (x), f(y)), respectively. Therefore, n
must be even. Thus, for each non-automorphism f, we have 6 ¢ (P,) >0 r(C,). Hence, we left the case that when f is
an automorphism of C,, but not an automorphism of Py, s (P,) >2n — 4.

Clearly, g(v;) = v,—;41 and h(v;) = v;4; (mod n) are mirror reflection and rotation of C, here, they can create
all the automorphisms of C,. Obviously, if {f(v1), f(v,)} = {v1, v,} for some automorphism f of C,, then fis also
an automorphism of P,. Otherwise, if {f(v1), f(vy)} = {v;, vj41} for 1< j <n, then {f(v;), f(vj+1)} = {v1, va}
or {f(vn—j)s fWn—j+1)} ={v1, vp}, and 6 p(Py) =05 (v1, Vu)+ 6 f(Vj, Vjg )+ 0 (Vp—j, Vp—jy1) =(n — 2) + (n —
2) =2n — 4. Thus this concludes the proof. [

Corollary 2.8. (Aitken [1]) n(P,) =2n — 4.

Proof. By Theorem 2.6 and Proposition 2.7, we can see that 7(P,) >2n — 4. Then, Theorem 1.1 can be obtained by
the fact that n(P,) <2n — 4 (Lemma 2.1). [
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