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SUMMARY An important issue in designing a TCP congestion control 
algorithm is that it should allow the protocol to quickly adjust the end-to-
end communication rate to the bandwidth on the bottleneck link. However, 
the TCP congestion control may function poorly in high bandwidth-delay 
product networks because of its slow response with large congestion win-
dows. In this paper, we propose an enhanced version of TCP Vegas called 
Quick Vegas, in which we present an efficient congestion window con-
trol algorithm for a TCP source. Our algorithm improves the slow-start 
and congestion avoidance techniques of original Vegas. Simulation results 
show that Quick Vegas significantly improves the performance of connec-
tions as well as remaining fair when the bandwidth-delay product increases.
key words: congestion control, high bandwidth-delay product networks, 
TCP Vegas, transport protocol

1. Introduction

Most of the current Internet applications use the Transmis-
sion Control Protocol (TCP) as its transport protocol. Con-
sequently, the behavior of TCP is tightly coupled with the 
overall Internet performance. TCP performs an acceptable 
efficiency over today's Internet. However, theory and exper-
iments show when the per-flow product of bandwidth and 
latency increases, TCP becomes inefficient [1]. This will be 

problematic for TCP as the bandwidth-delay product (BDP) 
of Internet continues to grow.

TCP Reno is the most widely used TCP version in 
the current Internet. It takes packet loss as an indiction of 
congestion. In order to probe available bandwidth along 
the end-to-end path, TCP Reno periodically creates packet 
losses by itself. It is well-known that TCP Reno may fea-
ture poor utilization of bottleneck link under high BDP net-
works. Since TCP Reno uses additive increase - multiplica-
tive decrease (AIMD) algorithm to adjust its window size, 
when packet losses occur, it cuts the congestion window 
size to half and linearly increases the congestion window un-
til next congestion event is detected. The additive increase 

policy limits TCP's ability to acquire spare bandwidth at one 
packet per round-trip time (RTT). The BDP of a single con-
nection over very high bandwidth links may be thousands of 

packets, thus TCP Reno might waste thousands of RTTs to 
ramp up to full utilization.

Unlike TCP Reno which uses binary congestion sig-
nal, packet loss, to adjust its window size, TCP Vegas [2] 
adopts a more fine-grained signal, queuing delay, to avoid 
congestion. Studies have demonstrated that Vegas outper-
forms Reno in the aspects of overall network utilization 
[2], [5], stability [6], [7], fairness [6], [7], throughput and 
packet loss [2], [3], [5], and burstiness [3], [4]. However, 
in high BDP networks, Vegas tends to prematurely stop 
the exponentially-increasing slow-start phase and enter the 
slower congestion avoidance phase until it reaches its equi-
librium congestion window size [8]. As a result, a new Ve-

gas connection may experience a very long transient period 
and thus throughput suffers. In addition, the availability of 
network resources and the number of competing users may 
vary over time unpredictably. It is sure that the available 
bandwidth is not varied linearly [10]. Since Vegas adjusts 
its congestion window linearly in the congestion avoidance 

phase, this prevents Vegas from quickly adapt to the chang-
ing environments.

In this paper, we propose an enhanced version of TCP 
Vegas called Quick Vegas for high BDP networks. Quick 
Vegas is a sender-side modification that improves the slow-
start and congestion avoidance techniques of original Vegas. 
Simulation results show that Quick Vegas significantly im-

proves the performance of connections as well as remaining 
fair when the bandwidth-delay product increases.

The rest of this paper is organized as follows. Related 
work is reviewed in Sect. 2. Section 3 describes TCP Vegas 
and explains the proposed Quick Vegas. The mathematical 
analysis is given in Sect. 4 and simulation results are pre-
sented in Sect. 5. Lastly, we conclude this work in Sect. 6.

2. Related Work

Several studies have been made to improve the connection 

performance over high-speed and long-delay links. These 
approaches can be divided into two categories. One is sim-

pler and needs only easily-deployable changes to the cur-
rent protocols, for example, LTCP [11], TCP-Westwood 
[12], CUBIC [13], TCP-Africa [14], AdaVegas [15], and 
FAST [16]. The other needs more complex changes with a 
new transport protocol, or more explicit feedback from the 
routers, examples are XCP [1] and Quick Start [17]. XCP 
and Quick Start requires all routers along the path to partici-

pate, deployment feasibility is a concern.
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A protocol that falls in the first category commonly in-

volves a subtle change in its congestion avoidance response 

function to allow connections capturing available bandwidth 

more readily and realistically at very high congestion win-

dows. However, the variants of TCP Reno [11]-[14] use 

packet loss as an indication for congestion. This causes pe-

riodic packet losses and oscillations in the congestion win-

dow size, round-trip delay, and queue length of the bottle-

neck node. These drawbacks may not be appropriate for 

emerging Internet applications [3], [4].

Ada Vegas is an adaptive congestion control mechanism 

based on TCP Vegas. Using the number of successful trans-

missions as feedback, it dynamically changes the additive 

increase parameters to decide whether to switch to a more 

aggressive strategy. The modification makes connections re-

act faster to a changing network environment.

FAST is also a variation of TCP Vegas. It incorporates 

multiplicative increase if the bottleneck buffer occupied by 

the connection is far less than a pre-defined threshold (i.e., 

a) and switch to linear increase if it is near ƒ¿. Then, FAST 

tries to maintain the buffer occupancy around ƒ¿ and reduces 

sending rate if delay is further increased. Theoretical anal-

ysis and experiments show that FAST has better properties 

than pure loss-based approaches, such as higher utilization, 

less self-induced packet losses, faster convergence speed, 

better RTT fairness and stabilization.

The two TCP Vegas variants improve the connection 

performance when it works in a network with a large amount 

of available bandwidth. However, Ada Vegas uses some con-

stant increments to increase its window size. It may be still 

too sluggish when the connection passes through a very high 

BDP path. FAST adopts a more aggressive way to update its 

window size, nevertheless, it needs a large buffer on the bot-

tleneck to prevent packet losses.

3. TCP Vegas and Proposed Mechanism

TCP Vegas features three improvements as compared with 

TCP Reno: (1) a new retransmission mechanism, (2) an im-

proved congestion avoidance mechanism, and (3) a modi-

fied slow-start mechanism. In this section, we first review 

the design principles of TCP Vegas and then describe Quick 

Vegas in detail.

3.1 TCP Vegas

Vegas adopts a more sophisticated bandwidth estimation 

scheme that tries to avoid rather than to react to conges-

tion. It uses the measured RTT to accurately calculate the 

amount of data packets that a source can send. Its window 

adjustment algorithm consists of three phases: slow-start, 

congestion avoidance, and fast retransmit and fast recovery. 

The congestion window is updated based on the currently 

executing phase.

During the congestion avoidance phase, TCP Vegas 

does not continually increase the congestion window. In-

stead, it tries to detect incipient congestion by comparing 

the actual throughput to the expected throughput. Vegas es-

timates a proper amount of extra data to be kept in the net-

work pipe and controls the congestion window size accord-

ingly. It records the RTT and sets Base RTT to the minimum 

of ever measured round-trip times. The amount of extra data 

(ƒ¢) is estimated as follows: 

ƒ¢=(Expected-Actual)•~BaseRTT, (1)

where Expected throughput is the current congestion win-

dow size (CWND) divided by Base RTT, and Actual through-

put represents the CWND divided by the newly measured 

smoothed-RTT. The CWND is kept constant when the ƒ¢ is 

between two thresholds ƒ¿ and ƒÀ. If ƒ¢ is greater than ƒÀ, it 

is taken as a sign for incipient congestion, thus the CWND 

will be reduced. On the other hand, if the ƒ¢ is smaller than ƒ¿

, the connection may be under utilizing the available band-

width. Hence, the CWND will be increased. The updating 

of CWND is per-RTT basis. The rule for congestion window 

adjustment can be expressed as follows: 

CWND={CWND+1, ifƒ¢<ƒ¿

CWND-1, ifƒ¢>ƒÀ

CWND, ifƒ¿•…ƒ¢•…ƒÀ (2)

During the slow-start phase, Vegas intends a connec-

tion to quickly ramp up to the available bandwidth. How-

ever, in order to detect and avoid congestion during slow-

start, Vegas doubles the size of its congestion window only 

every other RTT. In between, the congestion window stays 

fixed so that a valid comparison of the Expected and Ac-

tual throughput can be made. A similar congestion detection 

mechanism is applied during the slow-start to decide when 

to switch the phase. If the estimated amount of extra data 

is greater than ƒÁ, Vegas leaves the slow-start phase, reduces 

its congestion window size by 1/8 and enters the congestion 

avoidance phase.

As in Reno, a triple-duplicate acknowledgement 

(ACK) always results in packet retransmission. However, 

in order to retransmit the lost packets quickly, Vegas extends 

Reno's fast retransmission strategy. Vegas measures the RTT 

for every packet sent based on fine-grained clock values. 

Using the fine-grained RTT measurements, a timeout pe-

riod for each packet is computed. When a duplicate ACK 

is received, Vegas will check whether the timeout period of 

the oldest unacknowledgement packet is expired. If so, the 

packet is retransmitted. This modification leads to packet 

retransmission after just one or two duplicate ACKs. When 

a non-duplicate ACK that is the first or second ACK after 

a fast retransmission is received, Vegas will again check 

for the expiration of the timer and may retransmit another 

packet.

After a packet retransmission was triggered by a dupli-

cate ACK and the ACK of the lost packet is received, the 

congestion window size will be reduced to alleviate the net-

work congestion. There are two cases for Vegas to set the 

CWND. If the lost packet has been transmitted just once, the 

CWND will be three fourth of the previous congestion win-

dow size. Otherwise, it is taken as a sign for more serious
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congestion, and one half of the previous congestion window 

size will be set to CWND.

If a loss episode is severe enough that no ACKs 

are received to trigger fast retransmit algorithm, eventu-

ally, the losses will be identified by Reno-style coarse-

grained timeout. When this occurs, the slow-start thresh-

old (SSTHRESH) will be set to one half of CWND, then the 

CWND will be reset to two, and finally the connection will 

restart from slow-start.

3.2 The Proposed Mechanism

TCP sends bursts of packets during its slow-start phase due 

to the fast window increase and the ACK-clock based trans-

mission. This phenomenon causes TCP Vegas changing 

from slow-start phase to congestion avoidance phase too 

early in the large BDP links. Besides, network resources and 

competing users may vary over time unpredictably. In order 

to react faster and better to high BDP networks, the window 

adjustment algorithm of congestion avoidance phase should 

be more aggressive than it has been. The proposed Quick 

Vegas tries to address these issues.

3.2.1 Slow-Start

According to Eq. (1), Vegas calculates the extra data (ƒ¢) 

and doubles its congestion window every other RTT. When 

the amount of ƒ¢ is greater than ƒÁ (usually set to 1), Vegas 

leaves the slow-start phase. The fundamental problem is that 

when the congestion window should be doubled, a Vegas 

sender sends two packets back-to-back whenever it receives 

an ACK. This leads the doubled amount of packets being 

sent in a short interval. The burst may create a temporary 

long queue that causes ƒ¢ bias [8]. As a result, Vegas leaves 

the slow-start phase too early and performance suffers. A 

simple ns-2 [18] simulation has been made to show the phe-

nomenon. Figure 1 depicts the congestion window evolution 

of a Vegas connection in a communication path with 5Mb 

BDP (50Mb/s•~100ms). The slow-start phase stops at 1.2 

second with congestion window size 64 packets. Obviously, 

Vegas prematurely stop the exponentially-increasing slow-

start phase and enter the slower congestion avoidance phase. 

It finally reaches the equilibrium window size (630 packets) 

at 59 second.

How to smooth out the transmission of packets in a 

fluid-like manner is the key of an unbiased ƒ¢ calculation. 

Pacing is a common way to solve the burstiness problem. 

A straightforward implementation of pacing would have the 

TCP sender schedule successive packet transmissions at a 

constant time interval, obtained by dividing the congestion 

window by the current RTT. In practice, this would require 

a timer with a very high resolution when TCP transmit in a 

large bandwidth link. Using timer interrupt in such high fre-

quency may greatly increase the overhead of the operating 

system.

Two simple changes have been made in the slow-start 

mechanism of Quick Vegas. First, a sender sends out a 

extra packet whenever it receives two ACKs. Second, the 

congestion window is adjusted every RTT instead of every 

other RTT. The first modification makes the transmission 

less bursty when the congestion window should be increased 

and therefore alleviates the bias of ƒ¢ calculation. The sec-

ond modification allows a sender quickly ramping up to the 

available bandwidth. Table 1 shows the value of congestion 

window for Vegas and Quick Vegas at each RTT round if ƒ¢ 

is not greater than ƒÁ.

The simulation results of congestion window evolution 

of Vegas and Quick Vegas during slows-tart phase is shown 

in Fig. 2. For the identical ƒÁ (ƒÁ=1) setting, Quick Vegas 

increases half of CWND every RTT while Vegas doubles its 

CWND every other RTT. It is obvious that Quick Vegas has 

a higher critical window size (the congestion window size 

at upon leaving slow-start phase) as compared with that of

Fig. 1 Congestion window evolution of a Vegas connection.
Fig. 2 Congestion window evolutions of Vegas and Quick Vegas during 

slows-tart phase.

Table 1 The congestion window size for Vegas and Quick Vegas at each 
RTT round.
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Vegas. The effectiveness of the modified slow-start scheme 

will be further examined in Sect. 4.

3.2.2 Congestion Avoidance

TCP Vegas updates its congestion window linearly in the 

congestion avoidance phase, it is too sluggish for a high 

BDP network. Depending on the information given by the 

estimated extra data, it is worth to try a more aggressive 

strategy.

For the increment of congestion window, Quick Vegas 

has the history to guide the window size changes. Since 

there is no direct knowledge of current available bandwidth, 

Quick Vegas records the number of consecutive increments 

due to ƒ¢<ƒ¿ and refers to this value as succ. Whenever the 

congestion window should be increased due to ƒ¢<ƒ¿, it is 

updated as follows: 

CWND=CWND+(ƒÀ-ƒ¢)•~succ. (3)

Thus the congestion window size will be increased by (ƒÀ-ƒ¢) 

at the first estimation of ƒ¢<ƒ¿, and by (ƒÀ-ƒ¢)•~2 at the next 

consecutive estimation of ƒ¢<ƒ¿, and so on. The succ will be 

reset whenever ƒ¢•†ƒ¿. The idea is that if the increment was 

successful, it might be the case that there is enough band-

width and it is worthwhile to move to a more aggressive 

increasing strategy. However, to ensure that the congestion 

window will not be increased too fast, Quick Vegas can at 

most double the size of congestion window for every esti-

mation of ƒ¢<ƒ¿.

For the decrement of congestion window, Quick Vegas 

uses the difference of ƒ¢ and (ƒ¿+ƒÀ)/2 as the guide for every 

estimation of ƒ¢>ƒÀ/3. The decrement rule can be expressed 

as follows: 

CWND=CWND-ƒ¢-(ƒ¿+ƒÀ/2)/2}. (4)

Since the estimated amount of extra data gives us a 

good suggestion of how many extra data are beyond the 

ideal value that should be kept in the network pipe. How-

ever, when a TCP source decreases (or increases) its con-

gestion window at the ith round, the influence to the net-

work can be detected at the (i+2)th round. To prevent over 

decrease, Quick Vegas subtracts the half of excess amount 

from the congestion window each time.

In order to achieve a higher fairness between the com-

peting connections, Quick Vegas intends every connection 

to keep an equal amount, that is (ƒ¿+ƒÀ)/2, of extra data 

in the network pipe. If the estimated amount of extra data 

is between ƒ¿ and ƒÀ, Quick Vegas will adjust its congestion 

window linearly toward the ideal amount. The window ad-

justment algorithm of Quick Vegas can be presented as the 

following pseudo codes: 

if (ƒ¢>ƒÀ)

CWND=CWND-((ƒ¢-ƒ¿+ƒÀ/2)/2)

incr=0; succ=0

else if (ƒ¢<ƒ¿)

succ=succ+1

if ((ƒÀ-ƒ¢)•~succ>CWND)

incr=1

else

incr=ƒÀ-ƒ¢/CWND•~succ

else if (ƒ¢>ƒ¿+ƒÀ/2)

CWND=CWND-1; incr=0; succ=0

else if (ƒ¢<ƒ¿+ƒÀ/2)

incr=1/CWND; succ=0

else/*ƒ¢==ƒ¿+ƒÀ/2*/

incr=0; succ=0

To reduce the bursty effect of increment, the incr is 

served as the increment amount of congestion window af-

ter each ACK is received by a Quick Vegas source.

4. Numerical Analysis

In this section, we present numerical analysis of TCP Vegas 

and Quick Vegas. Throughout our analysis, we assume a 

fluid model and the source always has a packet to transmit. 

There is no congestion in ACK path and the buffer size at 

the router is large enough so that packet loss is negligible. 

We try to model the TCP congestion window with respect 

to a •ground•h [9], or equivalently, •gwindow transmission.•h 

A round starts with the transmission of W packets (back-

to-back) where W is the size of congestion window in that 

round. A round ends when the source receives the ACK 

of the first packet in that round and then the source starts 

sending a new packet of the next round.

4.1 Slow-Start

In this subsection, we want to compare the sizes of con-

gestion window that Vegas and Quick Vegas stop at upon 

leaving slow-start (critical window size). In high BDP net-

works, Vegas tends to prematurely stop the exponentially-

increasing slow-start phase and enter the slower congestion 

avoidance phase. A larger critical window size means a 

shorter time is needed to reach its equilibrium window size.

A simple case is considered when a single connection 

tries to fill up an empty network with N links connecting 

the source and the destination. Figure 3 shows the network 

topology for analysis. We denote the transmission rate of N 

links (in packets/s) as Xi, i=1, 2,•c,N, and the total round-

trip propagation delay of the route path (in seconds) as ƒÑ. 

Similar to the work in [8], we assume that there is one bot-

tleneck in the route path and X1•…X2•…•c•…XN. Since X1 

is the smallest transmission rate (i.e., link 1 behaves as the

Fig. 3 Network topology for analysis.
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bottleneck link), we let ƒÊ be equal to X1. The un-congested 

BDP of this network is then given by ƒÊd where 

d=ƒÑ+1+a/X1+•c+1+a/X

N, (5)

with a being the ACK size relative to the data packet size. 

Without loss of generality, we assume that a is much smaller 

than the data packet size, so we use 1 to approximate 1+a 

(i.e., d=ƒÑ+ƒ°Ni=11/Xi).

The critical window size of Vegas has been derived in 

[8], it is given by 

Wv=ƒÁ+•ãƒÁ2+16ƒÁƒÊd/2.  (6)

In the similar manner, we compute the critical window size 

of Quick Vegas as follows. Recall that in slow-start, Quick 

Vegas increases half of congestion window size every RTT. 

More precisely, Quick Vegas adds one extra packet in the 

sender queue each time two ACKs of previous round are 

received. Since ƒÊ is the smallest transmission rate and no 

congestion in reverse path, the spacing between each ACK 

of the previous round is 1/ƒÊ seconds. When the last two 

ACKs of the previous round are received, the sender adds 

the last one extra packet of the current round in the sender 

queue and the last packet will see W/3 packets waiting ahead 

of it in the sender queue. Thus, this last packet experiences 

the highest RTT of the round and its Base RTT and RTT are 

given by d in (5) and D respectively, where 

D=d+W/3ƒÊ. (7)

By combining (1) and (7), Quick Vegas will stop its slow-
start phase if 

By solving (8) for W, the window size that Quick Vegas 

stops its slow-start phase is given by 

Wq=ƒÁ+•ãƒÁ2+12ƒÁƒÊd/2.  (9)

The same as actual Vegas implementation, D is the average 

RTT rather than the actual RTT of a packet. Thus, D should 

be the average of the actual RTTs of all packets in the same 

round, i.e., D=d+W/6ƒÊ, rather than D=d+W/3ƒÊ, as given in 

(7). By using the average RTT, we have 

Wq=ƒÁ+•ãƒÁ2+24ƒÁƒÊd /2 (10)

Obviously, the critical window size of Quick Vegas is 

larger than that of Vegas in the same network configuration. 

For a network path with 100ms round-trip propagation de-

lay with the default ƒÁ setting (i.e., ƒÁ=1), we plot the critical 

window sizes of both Vegas and Quick Vegas in Fig. 4. The 

theoretical values of Vegas and Quick Vegas are computed 

Fig. 4 Critical window sizes for Vegas and Quick Vegas in different 
BDPs.

according to (6) and (10) respectively. The experiment val-

ues are derived from ns-2 simulations. Since the burstiness 

problem still exists in slow-start phase, the experiment val-

ues do not exact match the fluid-based theoretical values. 

However from Fig. 4 we can find that, no matter from the 

theoretical or experimental point of view, Quick Vegas al-

ways has larger critical window sizes than that of Vegas in 

different BDPs. It means that Quick Vegas needs a shorter 

time to reach equilibrium as compared with that of Vegas.

4.2 Congestion Avoidance

In this subsection, we want to analyze the number of rounds 

(or RTTs) needed for Vegas and Quick Vegas to reach a new 

equilibrium state when more bandwidth becomes available. 

Consider a simplified case that the current equilibrium win-

dow size is W and the new equilibrium window size is nW.

According to (2), Vegas linearly updates its congestion 

window size every RTT. Obviously, it needs (n-1)W RTTs 

to fully utilize the new available bandwidth. On the other 

hand, when the more available bandwidth is detected by 

Quick Vegas, the congestion window will be increased ac-

cording to (3). If Quick Vegas needs i rounds to reach its 

new equilibrium state and then we have the following equa-

tion: 

nW=W+kƒ°i=1[(ƒÀ-ƒ¢)•~i]=W+(ƒÀ-ƒ¢)•~i(i+1/2). (11)

Assume the value of each ƒ¢ calculation approximates to 

zero during the transient period. Equation (11) can be solved 

for i as

Figure 5 shows the number of RTTs needed for Vegas 
and Quick Vegas to reach its new equilibrium state when the 
available bandwidth becomes from 2 to 10 times of original 
used bandwidth (10Mbps). The experiment values are ob-
tained from ns-2 simulations and the theoretical values are 
computed according to the equations that are derived in this 
subsection.

Since the burstiness phenomenon is smoothed by the
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Fig. 5 The number of RTTs needed for Vegas and Quick Vegas reaches 

new equilibrium states.

network bottleneck when the connection enters its conges-

tion avoidance phase and Vegas update its window size lin-

early in that phase, so the burstiness problem may be greatly 

eliminated. As a result, the theoretical values and the exper-

iment values of Vegas in Fig. 5 are quite matched. On the 

other hand, Quick Vegas adopts a more aggressive way than 

that of original Vegas to adjust its window size. So it may 

create burstiness phenomenon to some extents. Therefore, 

the theoretical values and the experiment values of Quick 

Vegas are still with some deviations. Again, no matter from 

theoretical or experimental point of view, we can find that 

the RTTs needed for Quick Vegas to reach a new equilib-

rium state are much less than that of Vegas. The effective-

ness of the enhanced congestion avoidance scheme in Quick 

Vegas will be further examined in the next section.

5. Performance Evaluation

We use the network simulator ns-2 [18] to execute the per-

formance evaluation. TCP Vegas and Quick Vegas have the 

identical parameter values (i.e., ƒÁ=1, ƒ¿=2, and ƒÀ=4) 

those are the same as the study in [2]. The default parame-

ter setting of FAST is ƒ¿=100 that is also adopted in [16]. 

Unless stated otherwise, the buffer size in routers is large 

enough so that packet loss is negligible. The sizes of data 

packets and ACKs are 1 kbytes and 40 bytes respectively. 

To ease the comparison, we assume that the sources always 

have data to send.

The network configuration for the simulations is shown 

in Fig. 6. Sources, destinations, and routers are expressed 

as Si, Di, and Ri respectively. A source and a destination 

with the same subscript value represent a traffic pair. The 

bandwidth and propagation delay are 1Gb/s and 1ms for 

each full-duplex access link, and Cb and 48ms for the full-

duplex connection link between R1 and R2. The Cb is set 

based on the need of simulation scenarios.

5.1 Basic Behavior

In this subsection, we compare the basic behavior between 

Vegas, Quick Vegas, and FAST in the aspects of congestion 

window size, queue length, and throughput. The bottleneck 

capacity Cb is set at 50Mb/s. A TCP connection from S1 

Fig. 6 Network configuration for the connections with the same RTT .

Fig. 7 Basic behavior of Vegas.

Fig. 8 Basic behavior of Quick Vegas.

to D1 starts sending data at 0 second and a constant bit rate 
(CBR) traffic flow from S2 to D2 with 25Mb/s rate starts 
at 80 second and stops at 160 second. The objective of the 
simulation scenario is to explore how fast for a new connec-
tion can ramp up to equilibrium and how fast a connection 
can converge to a steady state as the available bandwidth is 
changed. Figures 7, 8, and 9 exhibit the basic behavior of 
Vegas, Quick Vegas and FAST respectively.

By observing the congestion window evolution shown 
in Fig. 7 we can find that the transient period for a new Ve-

gas connection is quite long. Vegas prematurely stop the 
exponentially-increasing slow-start phase at 1.2 second and 
enter the linearly-increasing congestion avoidance phase. It
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Fig. 9 Basic behavior of FAST.

takes 59 seconds to reach equilibrium. When the available 
bandwidth is halved at 80 seconds, Vegas takes 47.9 sec-
onds to converge to a new steady state. As the available 
bandwidth is doubled at 160 second, there is a 31.8 seconds 
transient period for Vegas.

The queue length at bottleneck shown in Fig. 7 also re-
veals that Vegas can not quickly adapt to the changed band-
width. When the available bandwidth is halved at 80 sec-
onds, the queue is built up quickly. The maximum queue 
length is 620 packets and it also takes 47.9 seconds for Ve-

gas to recover the normal queue length.
In comparison with Vegas, Quick Vegas react faster and 

better as shown in Fig. 8. The ramp up time of Quick Vegas 
is 13 seconds, and it takes 3.3 and 2.0 seconds to converge as 
the available bandwidth is halved and doubled respectively. 
Note that due to the bursty nature of a new TCP connection, 
the estimation of extra data will be disturbed [8]. The con-
secutive increment number (succ) may not be accumulated 
to a large number. Therefore, the ramp up time can not be 

greatly improved as compared with the convergence period 
of the available bandwidth is halved or doubled.

The queue length at bottleneck shown in Fig. 8 also ex-
hibits that Quick Vegas can quickly adapt to the changed 
bandwidth. When the available bandwidth is halved at 80 
seconds, the built up queue is quickly removed. The max-
imum queue length is 500 packets that is also smaller than 
that of Vegas (620 packets).

As for FAST shown in Fig. 9, we can find that the ramp 
up time is 2.6 seconds, and it takes 3.0 seconds and 1.6 
seconds to converge as the available bandwidth is halved 
and doubled respectively. Although FAST takes less time to 
reach steady state than Quick Vegas in the ramp up phase, 
the queue length at the bottleneck router of FAST is much 
longer than that of Quick Vegas.

FAST maintains 100 packets of bottleneck queue 
length during the first 80 seconds. In the next 80 seconds, 
because of the presence of CBR traffic flow, the bandwidth 
is halved and the queue length is doubled to 200 packets as 
shown in Fig. 9. According to the design principle of FAST, 

Fig. 10 Convergence time of new connections.

each connection tends to keep ƒ¿ packets in the bottleneck 

queue. Assume there are 100 FAST connections share the 

same bottleneck link, the buffer needed by these connections 

will be 10000 packets. If a CBR flow with a half of bottle-

neck transmission rate passes through this bottleneck, the 

usage of the buffer would be doubled, that is 20000 packets. 

In practical, it will be a serious problem to FAST because the 

buffer provided by router may not always be large enough to 

deal with FAST connections.

Based on the simulation results of throughput are 

shown in Figs. 7, 8, and 9, we can find Quick Vegas and 

FAST, especially for FAST, has a superior performance than 

that of Vegas. In these simulations, we define a large queue 

size at bottleneck so packet losses will not occur. In the later 

subsection, we will see more realistic scenarios. When the 

buffer size of the router is limited, FAST has a severe packet 

loss problem and thus its throughput suffers.

5.2 Convergence Time

With high BDP networks, the transient period of TCP can 

greatly affect overall performance. In this subsection, we 

use a metric •gconvergence time•h [8] to capture the transient 

performance of TCP. Convergence time indicates how many 

Base RTTs are required to reach a new stable state.

The traffic sources are the same as the previous subsec-

tion. The bottleneck capacity Cb is varied for different BDP. 

At some point of time, the CBR traffic source starts or stops 

sending packets to halve or double the available bandwidth, 

respectively.

Figure 10 presents the convergence time for a new con-

nection to reach equilibrium. Theoretically, Quick Vegas 

doubles the increment rate in congestion avoidance phase 

that results in logarithm convergence time in contrast to Ve-

gas which converges linearly. However, due to the bursty na-

ture of a new TCP connection, the succ may not be consec-

utively accumulated. The convergence time of Quick Vegas 

is about half of that of Vegas as the BDP is greater than 500

Kb. On the other hand, due to the multiplicative increase 

scheme, FAST features a less convergence time between the 

three TCP variants. However, when the BDP is small (i.e., 

100Kb), FAST becomes hard to be stable. It seems that 

FAST may not be suitable for traditional low bandwidth-
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Fig. 11 Convergence time of connections when available bandwidth is 

halved.

Fig. 12 Convergence time of connections when available bandwidth is 
doubled.

delay product networks.
Figures 11 and 12 display the convergence time as the 

available bandwidth is halved and doubled respectively. Ob-
viously, both Quick Vegas and FAST greatly improves the 
transient performance of connections in both scenarios as 
compared to Vegas. Again, FAST seems not be suitable for 
small BDP networks.

5.3 Utilization, Queue Length, and Fairness

The simulations presented in this subsection intend to 
demonstrate link utilization of the bottleneck, fairness be-
tween the connections, and queue length at the bottleneck 
buffer where connections may join and leave the network. 
The buffer size of the bottleneck router is 1500 packets.

5.3.1 Connections with the Same RTT

We use the network topology as shown in Fig. 6 to execute 
the simulations. The bottleneck capacity Cb is set at 1Gb/s. 
Connections C1-C20, C21-C40, and C41-C60 start at 0, 100, 
and 200 second respectively. Each connection with the same 
active period is 300 seconds.

Figure 13 shows the bottleneck link utilization in which 
connections of Vegas, Quick Vegas, New Reno, and FAST 
are evaluated. When Vegas connections enter the empty net-
work, it takes 65 seconds to reach equilibrium, while Quick 
Vegas takes 20 seconds. Since severe packet losses occur 
in the exponentially increasing slow-start phase, the link 

Fig. 13 Bottleneck Link Utilization for the connections with the same 

RTT.

(a) Vegas

(b) Quick Vegas

(c) New Reno

(d) FAST

Fig. 14 Queue status of the bottleneck for the connections with the same 
RTT.

utilization of New Reno during 0-20 second is quite low 

(0.316). Fast TCP is limited by the buffer size of the bottle-
neck, it suffers a serious packet losses problem so it never 
reach equilibrium and the utilization is only 0.06 in the first 
100 seconds.

As the new connections C21-C40 and C41-C60 enter the 
network at 100 and 200 second, both Vegas and Quick Ve-

gas can fully utilize the bottleneck link. By observing the 
queue status shown in Fig. 14 we can find that Quick Ve-
gas keeps a similar maximum queue length as compared 
with that of Vegas. A small maximum queue length implies 
that the congestion window update algorithms may prevent 

packet losses when the bottleneck buffer is limited. We can 
also find that the queue length of FAST oscillates between 0
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Table 2 Fairness index for the connections with the same RTT.

Fig. 15 Network configuration for the connections with different RTTs.

and 1500, and thus cause a poor bottleneck utilization, even 

New Reno outperforms FAST.

When the available bandwidth increases substantially 

due to connections C1-C20 and C21-C40 leave the network 

at 300 and 400 second, the remaining connections of Quick 

Vegas can also quickly adapt to the new available band-

width. As a result, the bottleneck link utilization of Quick 

Vegas during 300-340 and 400-440 second are higher than 

that of the other three TCP variants.

Different from Vegas or Quick Vegas, New Reno and 

FAST can not maintain a suitable queue length as shown 

in Fig. 14(c) and (d). Since New Reno needs to create 

packet losses by itself to probe the available bandwidth 

along the path and FAST needs to maintain at least 100 

packets (i.e., ƒ¿=100) at the bottleneck buffer for each con-

nection. Therefore, packet losses occur periodically and cer-

tain amount of throughput is wasted. It is obvious that New 

Reno and FAST can not reach such high link utilization like 

that of Vegas or Quick Vegas as depicted in Fig. 13.

To evaluate the fairness among connections, we use the 

fairness index proposed in [19]. Given a set of throughput 

(x1, x2,•c,xn), the fairness index of the set is defined as: 

The value of fairness index is between 0 and 1. If the 
throughput of all connections is the same, the index will take 
the value of 1.

Table 2 shows the fairness index of the four TCP vari-
ants for each 100 seconds time period. Although Quick Ve-

gas adopts a more aggressive strategy to adjust the conges-
tion window size, however, Quick Vegas keeps slightly su-

perior fairness index values in comparison with that of Ve-
gas. The simulation result suggests that Quick Vegas has a 
good characteristic of fairness when the contending connec-
tions with the same RTT.

Fig. 16 Bottleneck link utilization for the connections with different 

RTTs.

Table 3 Fairness index for the connections with different RTTs.

5.3.2 Connections with Different RTTs

In this subsection, the simulations are executed for the three 

groups of connections with different RTTs those work in the 
network as shown in Fig. 15. Latency and bandwidth of each 
access link and connection link are depicted in the figure. 
A traffic pair contains a source and a destination with the 
same subscript value. All connections have emulated a 200 
second FTP transfer between Si and Di and start at the same 
time. Routers utilize drop-tail queues with the buffer size 
being set to 1500 packets.

Figure 16 shows the link utilization of bottleneck (R3-
R4) in which connections of Vegas, Quick Vegas, New Reno 
and FAST are separately evaluated. When Vegas connec-
tions enter the empty network, they take 90 seconds to reach 
stable state and full utilize the link while Quick Vegas' take 
only 40 seconds. On the other hand, due to the limitation by 
the buffer size, the average link utilization of FAST is about 
0.15. Since the New Reno connections with the traditional 
congestion window update scheme can not quickly ramp up 
to the available bandwidth, the link utilization between 0 
and 20 seconds is quite low. In the congestion avoidance 

phase, New Reno connections cause packet losses periodi-
cally and thus the bottleneck link cannot be full utilized.
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(a) Vegas

(b) Quick Vegas

(c) New Reno

(d) FAST

Fig. 17 Queue status of the bottleneck for the connections with different 
RTTs.

With different properties, New Reno and FAST can not 
maintain a stable queue length as shown in Figs. 17(c) and 

(d). It is obvious that, again, New Reno and FAST can 
not maintain such high link utilization like that of Vegas or 

Quick Vegas.
Table 3 shows the fairness index of the four TCP vari-

ants for each 50 seconds time period. Quick Vegas always 
keeps superior fairness index values than that of Vegas and 
New Reno. Although FAST has the most higher fairness 
index values in this table. However, its bottleneck link uti-
lization is quite low.

6. Conclusions

In this research, we propose an enhanced version of TCP 
Vegas named Quick Vegas that improves the slow-start and 
congestion avoidance techniques of original Vegas. With the 
superior transient behavior, Quick Vegas outperforms Vegas 
when the connections work in high bandwidth-delay prod-
uct networks. In comparison with FAST, Quick Vegas fea-
tures a less bottleneck buffer utilization and keeps a better 
adaptability to traditional network environments.

To further advance this study, future work is needed. 
First, how to model the behavior of a Quick Vegas connec-
tion when it decreases its window size to alleviate the net-
work congestion is still unanswered in this work. In other 
words, a more complete mathematical analysis of the new 
congestion avoidance scheme should be provided. Second, 

the most important one, the slow-start mechanism of Quick 

Vegas is needed to be modified. From the simulation results 

we are sure that there is still room for further improvement.
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