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Abstract

In this paper, we will construct a weak
solution for the heat flow associated with
certain cuasiconvex functionals fiom a
Euclidean domain into a homogeneous space
with a left mvanant metnc. In particular,
p-harmonic heat flow forany p > 1.
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l. Introduction

F. Bethuel, J. M. Coron, J. M.
Ghidaglia and A. Soyeur, in [BCGS],
constructed weak solutions for the heat
flow associated with relaxed energies

for harmonic maps between B* and §°.
Y. Chenand M. Struwe, in [C1] and [CS],

studied the existence of a weak
solution for the harmonic heat flow
into any smooth compact manifold and
proved a partial regularity result (see
also [CH1]). J. Keller, J. Rubinstein
and P. Sternberg ([KRS]) also proved
the existence of a weak solution of
harmonic heat flow. For p~harmonic heat
flow with p>2, the existence of weak
solutions into spheres was proved by Y.
Chen, M. C. Hong and N. Hungerbuhler
([CHH] see also [H1] ) and by X. Cheng
([CH21). Recently, M. Li([LM2])proved
the existence of a weak solution for
p ~harmonic heat flows into
homogeneous spaces with 1<p<2,

The basic tool in [IM2] is the use
of Hardy space on R”"*' and the key
ingredient there is finding a correct
function having the weak derivative
such that this function lies in the
local Hardy space. In this paper, we
will use an elementary method, without
using Hardy space technique, to prove
the existence of a weak solution for
heat flow associated with certain class
of quasiconvex functionals into
homogeneous spaces, and this includes
the p-harmonic heat flow Vp>1 as a
special case. The proof we give here is
very close to the proof of the existence
of a harmonic flow between B and &§°,
in [BCGS]; not only the construction of
approximation solutions (cf. [HK]),



but also the wedge product method (cf.
[Cl1], [BCGS], etc.). The only
difference is that, instead of
considering the normal vectors, what we
will use is the Killing tangent vector
fields constructed by Helein (cf. [H1]).
The main idea of this method is based
on the observation that we can take
limit from (3.3). Only after we have
observed this fact, did it become
possible to say something by rewriting
the equation (3.4).

Let m, £ be the positive integers,
denoted by M™* the space of all real
mx Kmatrices, and suppose Qc R* is
a bounded open subset. Let (N, g) be an
n—dimensional smooth homogeneous space
with a left invariant metric g. We
assume that (N,g) is isometrically
embedded in R*. Let F:M™ — R be
given and consider the functional

(1.1 F(v) EJ’F(W)

for v:Q — R¥,
quasiconvex, 1f

(12)  [F(A <[ F(A+ Dy)

We say that F is

for all smooth, bounded, open domains
UcR", all matrices Ae M™*, and
all ¢e Cy(U,R*). The following
theorem 1s due to Acerbi and Fusco.

Theorem: ([AF]) Assume

F:M™ - R js continuous and

(13) 0<F(A<CU+|Al|r), Ae M™*
for some constant Cand 1 <p <e. Then
F is weakly sequentially lower
semI-continuous on the Sobolev space
W' (& R*) if and only ifF is
quasiconvex.

When 1< p <e, this theorem and an

additional coercivity assumption of
the form

(1.4 F(A)>C|A|", C>0 Ae M™*
implies the existence of at least one
minimizer of F for given Dirichlet
boundary conditions (cf. Morrey [MCB],
[E1]).

Though out this paper, we will
assume that F is quasiconvex and
(H1) C/|4|I"<F(4) <C,A+]Al"),

| DF(4) |< C(1+] 4]")
VAand p >1 and some constant
CC, C,.

’F

0T (AEess
(H2) S’ (A5“er¢e,

>y, | A" EPI S,
VA#0,V{e R", andV e R¥
for some constant y,>0and p,>1.

Since we shall study the maps into
a target manifold N, we need
a hypothesis that relates F to N:
(H3) DF(A)=f(4) VA=+0
where f :M™*\{0} > M™" is a map
such that its (i,j) component f” =0
for all i#J.

The hypothesis (H3) means that for
v:Q — N, DF(Vv) lies in the tangent
space Tan N and keeps certain
ellipticity for the equation of
critical pointsof F(#%) . Notice that we
don’ t require that f is measurable,
so 1t iseasy to find examples which are
much more general than | 4|”.

Under the hypothesis (H3), the
critical point uelW"(Q N) of F(#
1s the weak solution of
(1.5) dw(DF(Vu)) =A, (Vu, DF(Vw)),
where A 1s the second fundamental form

of ¥ and divDF(*) means Vi(gaie“)

with {¢”} denoting the standard basis




of R,

We now consider the heat flow
associated with F(#), i.e., for
u:QxR, > N, study the problem

(1.6) 20 u—dv(DF(Vu))
=A (Vu, DF(Vu)
(D wx0)=u,(x), xeQ,

(18) u(x,t) =u,(x) t>0,xe0Q,
where ueW"?(&, N) is given.

Definition 1.1 4 map u:QxR, - N
1s said to be the weak solution of
(1.6)-(1.8), if uis defined a.e. on
QxR , ue L0, <7 (Q),

oue L(QxR ,RY), such that u
satisfies (1. 6) in the weak sense and
(1.7), (1.8) In the trace sense.

The main results we obtained are:

Theorem 1.2 Assume ¥ i1s quasiconvex
satisfying Hl, H2. Then there exists a
weak solution to (1. 6)-(1.8).

Immediate consequences of this
theorem:

Theorem 1.3 Assume ¥ is quasiconvex
satisfying Hl and H2. Assume

G:M™ - Ris quasiconvex and for
l<p<p,

(19) C|A|I"<G(4) < C,(1+| A"),

(1.10) | G(A)|<C,(1+] Alf_’")

for all Ae M™* . Then there exists a

weak solution to the heat flow
associated with the energy functional

(1.11) f(v)EJ'F(Vv)+G(Vv).

We will prove Theorem 1.2 by
constructing a sequence of
approximation solutions converging to

a map which turns out to be the weak
solution of (1.6)-(1.8). The proof of
Theorem 1. 3 is the same as Theoren 1. 2,
the only care we need to take is to
consider some new terms in the
equation.

The theorem below follows
immediately from the proof of Theorem
1. 2.

Theorem 1.4 Assume {u,};, is a sequence
of weak solutions of (1.6)-(1.8) such that

du, isboundedin L*(QXR,,RX), and for
any T >0, Vu, is bounded in
LP(Qx(0,T),R*), Vi, thenthereisa
subsequence which converges to a weak
solution of (1.6)-(1.8).

2. Construction

In order to construct a weak solution to
(1.6)-(1.8), we proceed as K. Horthata, N.
Kikuchi in [HK] and F. Bethuel, J. M. Coron,
J. M. Gludaglia, A.Soyeur in [BCGS]. For
he (0,1), we define the secuence {u,} as

follows. We assume that u, |, k>1,1s

known and define u, tobe the minimizer of
the functional

- - —_— 2
QD [F(W)+] lv-w,°
Q

Q
under the constraint ve H'(, N),v =u,
on oQ.Since F is quasiconvex, u, exists

and 1s the weak solution of the equation
below:

2.2 %DHW (w, —u, ) —dvDF(u,)
=A, (Vu,DF(Vu,))
where div DF(*) means Vi(%(*)e“)

with {e“}t

o=1

the standard basis of R*,

IT is the nearest point projection from some



uniform tubular neighborhood of N onto
N,and DII, is the orthogonal projection

of R onto Tan N forany ye N.
Define 1, : Qx[0, ) — Nand

u, : Qx[0, ) —» Nby setting for

(k-Dh <t<kh:

23)  uw(xt) =u (%
Q4 u(xt) :@uk(x)
+£h_tuk_l(x)

With these notations, we can write the
equation (2.2) as
(2.5) D-(du,) —dv(DF(Vur))

= A—(Vi;, DF(9,u)).
We have the following energy mequality:

ko, _ 2
2.6) F(uk)+z|%31(uo)
/:122
hk

Q7 Faun(hk) + [ [Iom, 1< 1u,)

which mmplies
Q8 [Jlow,I’<Iu,)
0Q
29)  FQu@®) <Iw,), Vt=0.

Therefore, up to the extraction of a
subsequence, we may assume that for any
T>0, u, >u weaklyin

W' (Qx(0,T),R*), du, —du weakly
in *(Qx(0,T),RY), u, »u strongly in
L' Q@x(0,T),R),and Vu, — Vg weakly
in L7(Qx(0,T), R*) . Since

T
2.10) | [lu, —wP<n*i,),
0Q

we see that 1, — 1 strongly in
L'(Qx(0,7),R*) with g=min(p,2),
therefore Vo =Vu and u(x,f)e N ae..

We will show that u1s the weak solution of
(1.6)-(1.9).

3. Compactness

We now prove Theorem 1.2. In [H1],
Helein proved the existence of certain vector
fields on homogeneous space and use them to
rewrite the weakly harmonic map equation to
induce the regularty. In [TW], T. Toro and C.
Y. Wang used these vector fields and the
Hardy space to prove the compactness of
weakly p -harmonic maps. Helein's work
tells us that there exist d smooth tangent
vector fields Y,--,Y, and d smooth

Killing tangent vector fields X ,--, X, on
N such that for any tangent vector field
iIn TN, we have

d
Bl V=3<X, V>

=1

In particular for DF( Vi), we have
- d - -
(32) DF(Vuy) =" < DF(us), X,(us) > ¥,

/=1
We can rewrite the equation (2.5) as follows.
Forany ¢e C;(Qx(0,T),R), we have

T
2| [ D11 (9,1, X, (tun)dxd
¥
T _
=—[ [ DF(Vu,)V X dxdt
0Q

= T |div(< DF(Vu,), X, >) gixdt

Therefore, foreach [,

(3.3) div(< DF(Vu,), X,(ts) >) =
2 < DIT- (91,),%, (i) >

Let h — 0, we have

(34) dv< DF(u),X,(u)>=
2<du,X,(u)>, Vi

Thus,
(3.5) <20u—dwvDF(Vu),X,(u) >=0, VI.

This
mmples



(3.6) 20,u—(dvDF(Vw))"
=3 <200~ (@vDF(Vu)", X, > T,

1=l
=0
Therefore, ou —dwDF(Vu) 1s orthogonal
to the tangent space, and u is the weak
solution of (1.6)-(1.8) by the standard
argument. Of course, we need to check (3.5).
This can be done by using ¢Y, as the test

function in (3.4), and it follows
(3.7) dvDF(Vu) =

20 u+ < DF(Vu),X (u) > DY, (u)
which says that dvDF(Vu) has meaning
and so (3.5) follows from (3.4).

Proposition 3.1 For the map
u:QxR, — Nwith

uwe L*(0, 7' (Q N)),
oue L’(QxR_,RY), the equation (1.6),
(3.4), (3.5), (3.6) and (3.7) are equivalent.

To pass from (3.3) to (3.4), we need the
fact that Vi, — Viae.on QxR, . This is
actually proved m [HLM] for F(4) 4 4|”.
For the general quasiconvex functional F, it's
not clear whether we have this fact. However,
In our case, from the hypothesis H2 and H3,
it is still true that Vi, — Vi by a slight
modification of the proof about a
compactness assertion in [HLM] (see also

[E3], [CHN]).

Remark: From (3.3), we may also rewrite
the ecjuation as
(38) div(DF(Vi,)) =

< DF(Vu,)), X(u,) > DY () +

2 < DI1- (0,u,), X (i) > ()
and try to pass to the limit, which should be
(3.7). However, since 0, does not exist,

we can not prove the first term on the nght

hand side of (3.8) lies in the local Hardy
space. The technique used in [LM2] 1s to
prove that < DF(Vi,, X(u,) > DY (us) lies
in H (R™").
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