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We propose two-pole one-zero second-order approx-
imations for transfer function in RLC trees. The ap-
proximation matches the first three moments of the
original transfer function. Fundamental loop matrix
formulation of circuit equations allows efficient and si-
multaneous computations of moments, and thus ap-
proximations, at all the nodes. Explicit formulas for
step response parameters such as delay time, rise time,
overshoot, etc., are given. Simulations show improved
accuracy over existing second-order approximations.

I INTRODUCTION

RLC trees are useful in modelling interconnect lines in
VLSI circuits [2]. Step response parameters, such as de-
lay time, at capacitor nodes in the tree are important
for routing and wire sizing optimization. Low-order
approximation for the corresponding transfer functions
are required for estimating the parameters without solv-
ing the complete RLC tree equations.

Ismail, et.al. [2] proposed a second-order approx-
imation that matches the first two moments of the
original transfer function. The second-order transfer
function, with unit DC gain, is completely character-
ized by the damping ratio ζ and undamped natural
frequency ωn. Estimates of various step response pa-
rameters such as delay time, rise time, overshoot, etc.,
are proposed. In an effort to improve the accuracy
of the second-order approximation, we propose a more
general two-pole and one-zero second-order approxima-
tion. The three parameters of transfer function are de-
termined by matching the first three moments of the
original transfer function. Simulation results show that
the additional degree of freedom in the second-order
transfer function indeed improves the accuracy of the
approximation, in term of frequency response and step
response, and thus also improves the accuracy of esti-

mates of step response parameters.
The fundamental loop matrix formulation of circuit

equations is ideal for RLC trees [1]. The matrix for-
mulation is simple. It involves only diagonal matrices
and matrices with zeros and ones. The computation
of moment matrices of the transfer matrix from source
to all the capacitor voltage is simple and very efficient.
Since the moments for each capacitor node are com-
puted simultaneously, the proposed method constructs
approximate for every source-to-node transfer function.

The paper is organized as follows. In Section II,
we compute the transfer matrix of the RLC tree using
fundamental loop matrix. In Section III, we give a
recursive formula for computing the moment matrices
of the transfer matrix. The formula for damping ratio,
undamped natural frequency, and zero location of the
second-order approximation are given in Section IV.
Explicit formulas for delay time, rise time, overshoot
etc, are given in Section V. Simulation examples and
comparisons are given in Section VI. Finally, Section
VII is a brief conclusion.

II TRANSFER MATRIX OF RLC TREE

For an RLC tree, the tree graph is uniquely defined
and it consists of the voltage source branch and the R
and L branches. The capacitor branches are the links
that defines the fundamental loops [1]. KVL equations
of these fundamental loops and KCL equations at the
capacitor nodes completely specify the interconnection
of the tree.

To write the circuit equations, let’s consider the
simple RLC tree shown in Figure 1, where the input
voltage source is vs, the tree branch voltages are vt1 ,
vt2 , and vt3 , and the link voltages are vl1 , vl2 , and vl3 ,
respectively; the branch currents it1 , it2 , it3 , and the
link currents il1 , il2 , and il3 are defined accordingly in
associated reference directions [1]. Note that we treat
each series RL connection as a single branch. The KVL
equations for the three fundamental loops are

vt1 + vl1 = vs (loop 1)
vt1 + vt2 + vl2 = vs (loop 2)
vt1 + vt3 + vl3 = vs (loop 3)
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In matrix form, the equations become





1 0 0 1 0 0
1 1 0 0 1 0
1 0 1 0 0 1





︸ ︷︷ ︸

B

[
vt

vl

]

=





1
1
1



 vs (1)

where vt = [vt1 vt2 vt3 ]
T , vl = [vl1 vl2 vl3 ]

T , and B ∈

R3×6 is the fundamental loop matrix associated with
the tree. The matrix B is partitioned as

B =
[

F
... I

]

(2)

where F, I ∈ R3×3. The ijth entry of F are either 1 or
0 depending on whether the jth tree branch is in loop
i or not. Thus (1) becomes

Fvt + vl =





1
1
1



 vs (3)

The KCL equations at capacitor nodes are

it1 = il1 + il2 + il3
it2 = il2
it3 = il3

In matrix form, the equations become

it = F T il (4)

where it = [it1 it2 it3 ]
T and il = [il1 il2 il3 ]

T . The
branch equations for the tree branches and the link
branches are respectively

vti
= Riiti

+ Li

diti

dt
i = 1, 2, 3 (5)

and

ili = Ci

dvli

dt
i = 1, 2, 3 (6)

The equation (3), (4), (5), and (6) thus completely
describe the RLC tree in Figure 1.

For a general RLC tree with n sections, the equa-
tions are similar. The vectors it, il, vt, and vl now
all have n components; the fundamental loop matrix
B ∈ Rn×2n is partitioned similarly as

B =
[

F
... I

]

where the ikth element, fik, of F ∈ Rn×n is

fik =

{
1 if the kth tree branch is in the ith loop
0 if the kth tree branch is not in the ith loop

The KVL equations and KCL equations in matrix form
are respectively

Fvt + vl = Evs (7)

and

F T il = it (8)

where E = [1 · · · 1]T ∈ Rn×1. The branch equations
in matrix form are

vt = Rit + L
dit
dt

(9)

and

il = C
dvl

dt
(10)

where R = diag(R1, R2, · · · , Rn), L = diag(L1, L2, · · · , Ln),
and C = diag(C1, C2, · · · , Cn) are diagonal matrices
with element values on the diagonal entries.

To write the equations relating vl, the capacitor
voltage, to vs, the input voltage source, we substitute
(8) and (9) into (7) to get

F (RF T il + LF T dil
dt

) + vl = Evs (11)

and substitute (10) into (11) to get

FRF T C
dvl

dt
+ FLF T C

d2vl

dt2
+ vl = Evs (12)

Taking Laplace transform of (12) with zero initial con-
ditions to get

(FLF T Cs2 + FRF T Cs + I)Vl(s) = EVs(s)

where Vl(s) = L(vl(t)) and Vs(s) = L(vs(t)). Thus the
transfer matrix from vs to the capacitor node voltages
vl is

H(s) =
Vl(s)

Vs(s)
= (FLF T Cs2 + FRF T Cs + I)−1E

Note that H(s) is a rational matrix of dimension n×1.

III MOMENT COMPUTATION

The kth moment mk of the transfer matrix H(s) is
defined as the coefficient of the term sk in the power
series expansion, at s = 0, of H(s). Since

H(s) = H(0) + H ′(0)s +
1

2!
H ′′(0)s2 +

1

3!
H(3)(0)s3 + · · ·

the moment of H(s) are

mk =
1

k!
H(k)(0) k = 0, 1, 2, · · ·

To compute the moments mk, let’s writes

H(s) = A(s)−1E
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where A(s) = FLF T Cs2+FRF T Cs+I . Since A(0) =
I , we have m0 = H(0) = E. By computation,

dA−1

ds
|s=0 = −A

−1 dA

ds
A
−1|s=0 = −FRF

T
C

d2A−1

d2s
|s=0 = −[−2A

−1 dA

ds
A
−1 dA

ds
A
−1 +

A
−1 d2A

ds2
A
−1]|s=0

= 2FRF
T
CFRF

T
C − 2FLF

T
C

d3A−1

d3s
|s=0 = −[6A

−1 dA

ds
A
−1 dA

ds
A
−1 dA

ds
A
−1

−3A
−1 d2A

ds2
A
−1 dA

ds
A
−1

−3A
−1 dA

ds
A
−1 d2A

ds2
A
−1]|s=0

= −6FRF
T
CFRF

T
CFRF

T
C +

6FLF
T
CFRF

T
C + 6FRF

T
CFLF

T
C

Note that A(s) is a matrix of polynomials of degree 2,
therefore d3A(s)/ds3 = 0. From the above result, the
first three moment matrices are:

m1 = −FRF T Cm0 (13)

m2 = −FRF T Cm1 − FLF T Cm0 (14)

m3 = −FRF T Cm2 − FLF T Cm1 (15)

Note that the second and third moments depend on the
previous two moments. It can be shown that the recur-
sive formula holds true for other high-order moments
as well, that is, for k ≥ 2,

mk = −FRF T Cmk−1 − FLF T Cmk−2 (16)

The formula (16) computes the moments of the
transfer matrix H(s) and thus the moments of the
transfer functions from the source to all capacitor node
are simultaneously computed. It is clear that simi-
lar recursive formula for each source-to-capacitor node
transfer function can be obtained from (16). To see
this, let’s consider the simple 3-section RLC tree in
Figure 1. Let mi

j be the jth moment of the transfer
function to node i, where i, j = 1, 2, 3. The first mo-
ment is

m1 = −FRF T Cm0

= −





R1C1 + R1C2 + R1C3

R1C1 + (R1 + R2)C2 + R1C3

R1C1 + R1C2 + (R1 + R3)C3





=





m1
1

m2
1

m3
1



 (17)

where F ∈ R3×3 is defined in (2). The second moment
is

m2 = −FRF T Cm1 − FLF T Cm0

= −





R1C1m
1
1 + R1C2m

2
1 + R1C3m

3
1

R1C1m
1
1 + (R1 + R2)C2m

2
1 + R1C3m

3
1

R1C1m
1
1 + R1C2m

2
1 + (R1 + R3)C3m

3
1





−





L1C1 + L1C2 + L1C3

L1C1 + (L1 + L2)C2 + L1C3

L1C1 + L1C2 + (L1 + L3)C3





The third moment is

m3 = −FRF T Cm2 − FLF T Cm1

= −





R1C1m
1
2 + R1C2m

2
2 + R1C3m

3
2

R1C1m
1
2 + (R1 + R2)C2m

2
2 + R1C3m

3
2

R1C1m
1
2 + R1C2m

2
2 + (R1 + R3)C3m

3
2





−





L1C1m
1
2 + L1C2m

2
2 + L1C3m

3
2

L1C1m
1
2 + (L1 + L2)C2m

2
2 + L1C3m

3
2

L1C1m
1
2 + L1C2m

2
2 + (L1 + L3)C3m

3
2





From above the recursive formula, the moments of the
transfer function to each node can also be computed
recursively:

mi
1 = −

3∑

k=1

CkRik

mi
2 = −

3∑

k=1

CkRikmk
1 −

3∑

k=1

CkLik

mi
3 = −

3∑

k=1

CkRikmk
2 −

3∑

k=1

CkLikmk
1

where Rik is the sum of common resistance from the
input to node i and k and Lik is the sum of common
inductance from the input to node i and k.

It can be shown that the same formula holds for
general tree with n section and for moments of any
order. That is

mi
j = −

n∑

k=1

CkRikmk
j−1 −

n∑

k=1

CkLikmk
j−2

for i = 1, 2, · · · , n, and j ≥ 2.

IV SECOND-ORDER APPROXIMATION

We now consider matching the first three moments to
obtain a second-order approximation. The three pa-
rameters of the second-order approximation we should
determine are the damping ratio ζ, undamped natu-
ral frequency ωn, and zero location −z. We consider
scalar transfer function in this section, since an approx-
imation of a transfer matrix is obtained component by
component. Suppose the first three moments of an
RLC tree transfer function m1, m2, and m3 are given.

The transfer function of the two-pole one-zero second-
order approximation, with unit DC-gain, has the form

h(s) =
ω2

n(s + z)

z(s2 + 2ζωns + ω2
n)

=
1 + 1

z s

1 +
2ζ
ωn

s + 1
ω2

n

s2
(18)
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The power series expansion of h(s) can be obtained by
long division:

h(s) = 1 +
ωn − 2ζz

zωn

s +
4ζ2z − 2ζωn − z

zω2
n

s2

+
−ωn + 4ζz + 4ζ2ωn − 8ζ3z

zω3
n

s3 + · · ·

The moment matching equation are

m1 =
ωn − 2ζz

zωn

(19)

m2 =
4ζ2z − 2ζωn − z

zω2
n

(20)

m3 =
−ωn + 4ζz + 4ζ2ωn − 8ζ3z

zω3
n

(21)

Equations (19), (20), and (21) uniquely determine ωn,
ζ, and z. The solutions are

ωn =

√

m2
1 − m2

m2
2 − m1m3

(22)

ζ = −
1

2m1ωn

(m2ω
2
n + 1) (23)

z =
ωn

m1ωn + 2ζ
(24)

Hence given the moments m1, m2, and m3 the formulas
(22), (23), and (24) determine the undamped natural
frequency ωn , the damping ratio ζ, and zero location
−z.

V Step Response Parameters

The unit-step response of the second-order transfer func-
tion h(s), in (18), is

s(t) = 1 −
e−σt

√
1 − ζ2

[(ζ − r) sin ωdt +
√

1 − ζ2 cos ωdt] (25)

where σ = ζωn, r = ωn/z, ωd = ωn

√

1 − ζ2. The
delay time td is defined as the time it takes the signal
to rise to 50% of its final value. The rise time tr is
defined as the time it takes the signal to rise from 10%
to 90% of its final value. To simplify expressions, let
t′ = ωnt, and g(t′) = f(t), hence (25) becomes,

g(t′) = 1 −
e−ζt′

√

1 − ζ2
[(ζ − r) sin (

√

1 − ζ2t′)

+
√

1 − ζ2 cos (
√

1 − ζ2t′)] (26)

We note that (26) has two variables, ζ and r, only and
that exact explicit formulas for delay time and rise time
do not exist.

To find an approximate explicit formula for delay
time, we determined the normalized delay time t′d for
different values of ζ and r via simulations. Least squares
curve fitting is then used. First for each r we fit the

normalized delay time t′d as a function ζ by 1/(aζ + b),
where a and b depend on the value r. We then fit the
parameter a and b by second-order polynomials. The
result is

t′d(r, ζ) =
1

pd(r)ζ + qd(r)
(27)

The same curve fitting method is used in estimating
the rise time. The result is

t′r(r, ζ) =
1

pr(r)ζ + qr(r)
(28)

where pd(r) = −0.0051r2 − 0.5989r − 0.3652, qd(r) =
0.5355r2+0.9136r+0.9542, pr(r) = −0.3886r2−0.1123r−
0.6959, and qr(r) = 0.6064r2 + 0.0762r + 0.9707. Con-
sequently, the delay time, td and rise time tr are

td =
t′d
ωn

(29)

tr =
t′r
ωn

(30)

The peak time can be found by differentiating s(t)
in (25) and then set s′(t) = 0. The peak time that the
maximum overshoot occurs is

tp =
π − θ

ωd

(31)

where θ = tan−1 (r
√

1 − ζ2/1 − rζ), and ωd = ωn

√

1 − ζ2.
The maximum overshoot, Mo obtained by substituting
(31) into (25) is

Mo =
√

1 − rζ + r2e
− ζ(π−θ)√

1−ζ2 (32)

VI An Example

To examine the effectiveness of the proposed second-
order approximation, we consider the RLC tree shown
in Figure 2. The RLC tree has 6 sections and is con-
sidered in [2].

Step response of each capacitor node for the origi-
nal transfer function, the proposed approximation, and
the approximation reported in [2] are computed using
Matlab. The results are shown in Figure 3. In each
plot, the solid line is the exact response, the dot line is
the response of the proposed approximation, and the
dot-dashed line is the response of the approximation
reported in [2]. The plots show improved approxima-
tion over that reported in [2]. We also note that for
this example the proposed approximation gives step
responses very close to the original.

The delay time td and rise time tr for step response
of each node are shown in Table 1 and Table 2, respec-
tively. In general, the proposed method and the ex-
plicit formulas (29) and (30) give better estimate over
that proposed in [2]. Over all, the formula (29) gives
estimates of delay time with error less than 20%; the
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formula (30) gives estimates of rise time with error less
than 30%. Figure 4 shows the frequency magnitude re-
sponse of the approximation error transfer function at
each node. Again, the proposed approximations show
improved accuracy over [2].

Table 1. delay time, in ns

node exact proposed formula (29) [2]

node 1 0.1235 0.1470 0.1473 0.1751
node 2 0.1953 0.2111 0.2212 0.2143
node 3 0.2021 0.2065 0.2066 0.2124
node 4 0.2608 0.2647 0.2658 0.2553
node 5 0.2720 0.2705 0.2717 0.2613
node 6 0.2575 0.2612 0.2624 0.2526

Table 2. rise time, in ns

node exact proposed formula (30)

node 1 0.2561 0.2343 0.2296
node 2 0.2134 0.2608 0.2545
node 3 0.2575 0.2668 0.2601
node 4 0.1943 0.2558 0.2521
node 5 0.2385 0.2720 0.2590
node 6 0.2295 0.2633 0.2592

VII CONCLUSION

We propose a method to obtain second-order approxi-
mations for transfer functions in RLC trees. The two-
pole one-zero approximation is shown to give improved
accuracy over the existing second-order approximations
in terms of step response, frequency response, esti-
mated delay time and rise time. The results can be
used to quickly estimate signal delay and other param-
eters. In view of the accuracy obtained, the second-
order model can also be used in dynamic simulation to
replace the original tree.
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Figure 1: A simple RLC tree

Figure 2: An example of an RLC tree
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Figure 3: The step response of each node
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Figure 4: The error of the frequency response of each node
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