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ABSTRACT Systemic analysis of subcellular protein localization (location proteomics) provides
clues for understanding gene functions and physiological condition of the cells. However, recogni-
tion of cell images of subcellular structures highly depends on experience and becomes the rate-
limiting step when classifying subcellular protein localization. Several research groups have
extracted specific numerical features for the recognition of subcellular protein localization, but
these recognition systems are restricted to images of single particular cell line acquired by one spe-
cific imaging system and not applied to recognize a range of cell image sources. In this study, we
establish a single system for automated subcellular structure recognition to identify cell images
from various sources. Two different sources of cell images, 317 Vero (http://gfp-cdna.embl.de) and
875 CHO cell images of subcellular structures, were used to train and test the system. When the
system was trained by a single source of images, the recognition rate is high and specific to the
trained source. The system trained by the CHO cell images gave high average recognition accuracy
for CHO cells of 96%, but this was reduced to 46% with Vero images. When we trained the system
using a mixture of CHO and Vero cell images, an average accuracy of recognition reached 86.6% for
both CHO and Vero cell images. The system can reject images with low confidence and identify the
cell images correctly recognized to avoid manual reconfirmation. In summary, we have established
a single system that can recognize subcellular protein localizations from two different sources for
location-proteomic studies. Microsc. Res. Tech. 71:305–314, 2008. VVC 2007 Wiley-Liss, Inc.

INTRODUCTION

The localization of a protein in the living cells is
directly related to the protein’s function(s) (Heo and
Meyer, 2003; Mochizuki et al., 2001). Miss-localization
of proteins has been correlated with several diseases
(Ameen and Salas, 2000; Neufeld, 1991). The Human
Genome Project has identified a very large number of
ESTs and genes, and therefore the analysis of the pro-
tein localization (location proteomics) of these genes
will be a tremendous job. The development of an auto-
matic large scale analysis system that is able to work
with large image datasets has thus become important
(Glory and Murphy, 2007). There are two ways of
obtaining a protein’s subcellular localization; one is
prediction based on the protein sequence and the other
is experimental. Several research groups have devel-
oped approaches that predict subcellular protein local-
ization (Chou and Shen, 2007; Eisenhaber and Bork,

1998; Nakai and Horton, 1999). These efforts are able
to correctly classify between 60% and 80% of proteins
whose locations are already known; but their major
limitation is associated with the nature of available
training data. Moreover, these predictions still need to
be confirmed experimentally.
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Advances in GFP technology have allowed protein
fluorescence to become a useful tool in the visualization
of subcellular localization in living cells. Construction
of expression vectors, transfection, and cell imaging
have been automated, which allows the large-scale
analysis of the subcellular localizations of GFP-tagged
fusion proteins to be easily accomplished. Several
groups have used cell imaging to determine subcellular
localization and have established image-based protein
localization databases that classify proteins into groups
experimentally (Bannasch et al., 2004; Glory and Mur-
phy, 2007; Habeler et al., 2002; Simpson et al., 2000).
However, classification of fluorescence cell micrographs
is still subjective, time-consuming, and experience-in-
tensive. Therefore, these datasets are highly variable
and do not provide unambiguous information on local-
ization that can be entered into other databases (Glory
and Murphy, 2007; Murphy et al., 2000).

There are a number of different ways to turn these
results into objective and numerical descriptions of
protein subcellular localization that are suitable for
databases. In tissue, cells have particular arrange-
ments, and the recognition of subcellular protein local-
ization using a tissue image can be done by simply com-
paring the test image with the model image pixel-by-
pixel in order to measure similarity between these two
images (for example, the KIND mediator; www.npa-
ci.edu/DICE/Neuro). However, such strategy cannot be
applied to cell lines due to their heterogeneity in cell
morphology and subcellular structural arrangement.
Therefore, some investigators have calculated numeri-
cal features of the images to help recognition. Exam-
ples of such are Zernik’s moment and Harlick’s texture,
which have been used to extract features from micro-
graphs of five subcellular structures, including the
Golgi apparatus, nuclei, lysosomes, the nuclear enve-
lope, and microtubules from CHO cells; these results
were then applied to the automated recognition of
CHO subcellular structures (Boland et al., 1998).

Several recognition systems have been developed for
different cell types, including Hela cells (Boland and
Murphy, 2001) and MCF7 cells (Conrad et al., 2004). All
the recognition systems described earlier are restricted
to images of a single particular cell line acquired by one
specific imaging system. Some evidence, however, does
show that such systems may be overtrained, and that
this results in them being specific to single particular
cell type. For example, CHO-specific subcellular classi-
fiers cannot be applied to the recognition of Hela cell
images because of their higher subcellular morphology
heterogeneity compared with CHO cells (Boland and
Murphy, 2001). Thus, these recognition systems cannot
be applied by other investigators who use a different cell
type and a different cell imaging systems. In this paper,
we used cell images of two different cell lines acquired
by different imaging systems to establish a single auto-
mated recognition system that is able to recognize a
range of structures from cell image sources that were
acquired by different imaging systems.

MATERIALS AND METHODS
Plasmids and Fluorescence Dye

pEYFP-Actin, pECFP-Peroxi, pEYFP-ER, pEYFP-
Tub, pEYFP-Golgi, and pDsRed-Mito were used for

labeling of the subcellular proteins in CHO cells and
purchased from DB Biosciences (Clontech, BD Bio-
sciences, NJ). Hoechst 33342 stain was from Sigma
(St. Louis) and was used to visualize nuclei. The plas-
mids used to label subcellular proteins of Vero cells
have been described earlier (Simpson et al., 2000). All
chemicals for cell culture were obtained from Gibco-
Invitrogen.

Cell Culture

CHO cells were grown on tissue culture plates in
Mc5A supplemented with 10% fetal calf serum plus
penicillin and streptomycin in a 10% CO2 atmosphere
at 378C and split 1–10 every 2 days. Vero cells were cul-
tured in MEM supplemented with 10% fetal calf serum
plus penicillin and streptomycin in a 10% CO2 atmo-
sphere at 378C.

Transfection

For Vero cells, the day prior to transfection, the cells
were plated into 35-mm glass-bottomed dishes (Mat
Tek Corp., MA) at a density of 20%. On the day of
transfection, 1 lg of each DNA was used with 3 lL of
FuGENE6 (Roche, Mannheim, Germany) to transfect
the cells according to the manufacturer’s instructions.
For CHO cells, the day prior to transfection, cells were
plated into dishes at a density of 50%. On the day of
transfection, 1 lg of each DNA was used with 3 lL of
Lipofectamine 2000 to transfect the cells according to
the manufacturer’s instructions. Cells were trypsinized
to become a suspension and plated into dishes contain-
ing a poly-l-lysine-coated coverslip at a density of 10%.
When cells were attached to the coverslip, they were
prepared for imaging (Simpson et al., 2000).

Cell Imaging

Vero cells were imaged at 16, 24, and 40 h after
transfection in carbonate-free culture medium equili-
brated with 10 mM HEPES on a Leica DM/IBRE
microscope with a 633 NA 1.4PL Apo objective, using
custom-designed CFP or YFP filters. Images were cap-
tured with a Hammatsu CCD camera (ORCA 1) using
Openlab 2.0 software (Improvision, Coventry, UK).
Images were analyzed using Adobe Photoshop 5.0
(Simpson et al., 2000).

CHO cells were imaged at 48 h after transfection in
carbonate-free culture medium equilibrated with 10
mM HEPES on a Zeiss Axiovert 25CF microscope with
a 1003 NA 1.3 oil EC Plan-Neofluar1 objective using a
DAPI, a custom-designed CFP or an YFP filter. Images
were captured with an Axiocam CCD camera (color)
using Axiovision software (Zeiss, Jena, Germany).

Feature Generation and Classification

The raw cell images are passed through a series of
processes before feature extraction (Fig. 1). The image
size is first normalized to 500 3 500 by bilinear rescal-
ing. The R-G-B color spaces of the image are separated,
and the brightest color space is used for gray level con-
version. A nonlinear sigmoid function is applied to
adjust the contrast of the gray level image (Wen et al.,
2001). This nonlinear transformation limits each pix-
el’s value from 0 to 1. A searching algorithm is then
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used to find and remove fragmented cells on edges of
the image. Once there is only one cell preserved on the
image, an automatic region-of-interest (ROI) selection
procedure is exploited. Each row of pixel values is accu-
mulated to delineate a vertical gray level profile. Like-
wise, each column of pixel values is accumulated to
delineate a horizontal gray level profile. By setting an
appropriate threshold for the profile, the boundary of a
rectangle ROI can be defined (Fig. 2A). Top-hat and
bottom-hat morphological filters are utilized to reduce
the large and high gray level clusters and to enhance
the edges of subcellular structures (Movafeghi et al.,
2004; Fig. 2B). Figure 2B shows that the image after
such morphological filtering and the processing yields
better edge contrast and unambiguous subcellular
architecture.

In order to represent progressive visual perception,
the images before the morphological filters are converted
to bilevel images with 0.1, 0.3, 0.5, and 0.7—four thresh-
olds. Also, after the applying morphological filters, the
images are converted to bilevel images with 0.2, 0.4, 0.6,
and 0.8 thresholds. These eight bileveled images were
subjected to a feature-extraction process (Fig. 2C).

Both geometric and texture features were used to
identify the subcellular vesicles. The geometric fea-
tures consisting of

– The number of objects
– The size of the largest object
– The number of objects which are bigger than 1/2 of
the largest object size

– The number of objects which are bigger than 1/10 of
the largest object size

– The perimeter of the vesicle
– The average object size
– The difference between the largest and average
object size

– The largest and smallest circularities

– The difference between the largest and smallest cir-
cularities

– Compactness
– Euler number
– The ratio of hole size and vesicle size
– The minimum and maximum radiuses
– The ratio of the maximum and minimum radiuses
– Eccentricity

The texture feature extraction is based on the gray
level co-occurrence matrix (GLCM) method proposed
by Harlick (1979). Twelve GLCMs with distances of
1, 2, and 10 and angles of 08, 458, 908, and 1358 are
applied to the bileveled images. Then, various co-occur-
rence quantities including entropy, energy, contrast,
homogeneity, and correlation can be evaluated from
the co-occurrence matrix to produce the feature set.
These features are defined as
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Training of an accurate classification system was
greatly corrupted by atypical or wrong images such as
dead or abnormal cells. Therefore, the images used for
training were inspected and selected based on the
following individual subcellular features. First, that
the nuclei were oval in shape. Second, that the fluores-
cence cell images of nucleoli showed labeling mostly in
the nucleolus with only minor labeling in nucleus, with
there being only one or two nucleoli present in each nu-
cleus. Third, that the peroxisomes were round in shape
and were fewer and bigger in younger cells. Fourth,
that most ER was connected to the nuclear envelope
with the network spreading throughout the entire cyto-
sol. Fifth, that the mitochondria were in threads that
reached from the perinuclear regions to edges of cells.
Sixth, that the Golgi apparatus was in the form of
punctuated shapes and surrounded the nucleus. Sev-
enth, that the actin filaments consisted of straight
fibers in the cytosol. Finally, that the microtubules
were curved fibers with the microtubule organization
extending from the cell center to the cytosol. Based on
these criteria, 317 Vero cell (selected from 4,439 cell
images in gfp-cdna) and 815 CHO cell images were
used to build an automated classification system that
could identify eight different classes of subcellular
localizations. Typical images of the subcellular classes
are shown in Figure 3. These cells were applied to the
feature extraction process. In total, 155 geometric fea-
tures and 500 texture features were derived, and only

Fig. 1. Flowchart of feature extraction.
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Fig. 2. Image processing for feature
extraction. The cell images are framed
to remove any useless area (A). The
framed images were enhanced either
linearly or by morphological filters,
top-hat and bottom-hat (B). Enhanced
images are bileveled at various thresh-
olds (C). [Color figure can be viewed in
the online issue, which is available at
www.interscience.wiley.com.]
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134 significant features were left for further protein
subcellular localization after backward stepwise dis-
criminant analysis.

RESULTS
Accuracy of the Recognition Systems Trained

by Cell Images From a Single Source

The system trained by CHO cell images can recog-
nize CHO subcellular structures with a high accuracy,
96% on average (Table 1A). However, using this sys-
tem, the average recognition accuracy for Vero cell
images is only 46% (Table 1B). It is possible that many
subcellular features of the system are CHO-specific
instead of subcellular structure-specific. Interestingly,
the system is able to recognize Vero ER structure fairly
well at 68%, possibly due to the fact that CHO ER
structure tends to be more heterogeneous than that
found in Vero cells.

The system trained by Vero cell images only is able
to recognize Vero cell images quite well at 85% on aver-
age (Table 2A). The accuarcy is a little lower than for
CHO cell images using the system trained by CHO
cells. Possible reasons for this include the fact that the
number of Vero cell images is smaller and that the com-
plexity of the Vero subcellular structures is higher. In a
similar manner, this system cannot correctly recognize
CHO cell images and has an accuracy of only 50%
(Table 2B). Some of CHO subcellular structures (actin,
Golgi apparatus and nucleus) are recognized by this
system fairly well (69–73%) and the morphology of
these Vero subcellular structures are more heterogene-
ous than those of the CHO cells.

Accuracy of the Recognition Systems Trained
by Two Sources of Cell Images

Based on these findings, it would seem that the sys-
tems trained by a single source of cell images are spe-

cific to that cell type and that a mixture of images from
various cell image sources may help the system to
extract more general subcellular cell features and
allow the recognition of a wider range of cell images
from various sources. The 815 CHO and 317 Vero cell
images were pooled and 9/10 of the images were used
as the training group and the remaining images were
used as the test group during system training. After
cross validation, all the pooled images were used to test
the performance of the system. The new system was
able to recognize structures in Vero and CHO cells
quite well at 84% and 89% on average, respectively,

Fig. 3. Typical cell images of subcellular localizations used for
training the system. The cells had expressed FP (fluorescence pro-
tein)-tagged marker proteins at subcellular structures for 2 days and
the images were acquired by epi-fluorescence microscopy as described

in the ‘‘Materials and Methods.’’ Represented cell images of the sub-
cellular structures are shown in A (CHO cell images) and B (Vero cell
images from gfp-cdna). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Fig. 4. Relationship between the accurate classification rate and
the data rejection rate in GMM using a mixture of Vero and CHO cells.
Features used in decision tree were further fed into the Gaussian mix-
ture model (GMM) to measure the probabilities of an input pattern
belonged to each class. Rejection rate (red) and accuracy of recognition
(blue) at various confidence values is shown. This is plotted to set up a
confidence level to filter out patterns that show a low probability of
recognition into one of the eight classes. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

Microscopy Research and Technique

309RECOGNIZING SUBCELLULAR STRUCTURES IN TWO CELL TYPES



only slightly lower than when the system is trained by
single sources of cell images and the system is tested
on that specific cell type (Table 3). The system can rec-
ognize mitochondria with very high accuracy in both
cell types. When recognizing peroxisomes and mito-
chondria in Vero cells, this system has a higher accu-
racy rate than the system using Vero cells alone. In
contrast, the accuracy rate of this system when recog-

nizing CHO peroxisomes is much lower at 39% com-
pared to the CHO cell system. When we used 1,488
Vero cell images from gfp-cdna, which were classified
in eight subcellular classes, as a test, the accuracy was
reduced to 61% on average (Table 4). Images of actin
and the nucleolus have a lower accuracy, possibly due
to too few Vero cell images (namely 17 and 15) being
used for training the system. The subcellular struc-

TABLE 2. Recognition of Vero and CHO cell images by the system trained by Vero cell images

Output of decision tree

True classification

Actin ER Golgi Peroxisome Mitochondria Microtubule Nucleus Nucleolus

A. Trained by Vero cell images/tested Vero cell images
Actin 15 0 0 0 0 1 0 0
ER 1 33 0 0 1 3 0 0
Golgi 0 1 45 2 0 1 1 0
Peroxisome 0 0 0 11 0 0 2 0
Mitochondria 0 1 1 0 62 1 0 0
Microtubule 0 0 0 0 1 41 0 0
Nucleus 0 1 3 1 0 0 49 1
Nucleolus 0 0 0 0 0 0 1 14
Error 2 7 12 3 6 10 6 1
Total images 17 40 57 14 68 51 55 15
Rate (%) 88.2 82.5 78.9 78.6 91.2 80.4 89.1 93.3

B. Trained by 317 Vero cell images/tested CHO cell images
Actin 218 32 1 4 0 12 0 ND
ER 21 38 0 0 0 19 0 ND
Golgi 1 2 88 35 17 4 0 ND
Peroxisome 8 13 5 3 0 0 3 ND
Mitochondria 20 23 0 17 30 11 0 ND
Microtubule 29 12 0 0 4 10 0 ND
Nucleus 1 0 15 3 0 0 22 ND
Nucleolus 0 0 0 0 0 0 0 ND
Error 97 127 35 63 24 52 8 ND
Total images 315 165 123 66 54 62 30 ND
Rate (%) 69.2 23.0 71.5 4.5 55.6 16.1 73.3 ND

Overall, to train the system, 9/10 of 317 Vero images were used as the training group and the remaining images were used as the test group. After crossvalidation, all
CHO and Vero cell images were used for testing the performance of the system. The accuracy of recognition for individual subcellular structures of Vero and CHO cells
is shown in A and B.

TABLE 1. Recognition of Vero and CHO cell images by the system trained by CHO cell images

Output of decision tree

True classification

Actin ER Golgi Peroxisome Mitochondria Microtubule Nucleus Nucleolus

A. Trained by 815 CHO cell images/tested CHO cell images
Actin 303 6 0 1 0 3 0 ND
ER 6 157 0 0 3 3 0 ND
Golgi 2 0 121 2 1 0 0 ND
Peroxisome 1 1 1 63 1 0 0 ND
Mitochondria 2 0 1 0 49 0 0 ND
Microtubule 1 1 0 0 0 56 0 ND
Nucleus 0 0 0 0 0 0 30 ND
Nucleolus 0 0 0 0 0 0 0 ND
Error 12 8 2 3 5 6 0 ND
Total images 315 165 123 66 54 62 30 ND
Rate (%) 96.2 95.2 98.4 95.5 90.7 90.3 100.0 ND

B. Trained by 815 CHO cell images/tested Vero cell images
Actin 6 4 4 3 1 21 1 ND
ER 6 27 7 1 17 15 0 ND
Golgi 0 0 27 7 0 0 18 ND
Peroxisome 0 3 13 3 12 0 8 ND
Mitochondria 0 0 2 0 37 2 0 ND
Microtubule 5 6 4 0 1 13 7 ND
Nucleus 0 0 0 0 0 0 18 ND
Nucleolus 0 0 0 0 0 0 3 ND
Error 11 13 30 11 31 38 37 ND
Total images 17 40 57 14 68 51 55 ND
Rate (%) 35.3 67.5 47.4 21.4 54.4 25.5 32.7 ND

Overall, to train the system, 9/10 of the 815 CHO images were used as the training group and the remaining 10% images were used as the test group. After crossvali-
dation, all CHO and Vero cell images were used for testing the performance of the system. The accuracy of recognition for individual subcellular structures of CHO
and Vero cells is shown in A and B. The column of a particular entry indicates the true classification of those images, while the row represents the class to which those
images were assigned by the decision tree. Average recognition rate is calculated as the percentage of correctly recognized images.
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tures, ER, Golgi apparatus, and the nucleus, that have
a larger Vero cell image numbers for training still only
gave an accuracy of 61–68%. In such classes, the test
images are much greater in number by (3- to 10-fold
and the subcellular features may not be sufficiently
extracted from the training images.

Rejection of Miss-Recognized Cell Images

It is necessary to establish a method to reject the
images that are missed recognized so that no manual
re-examination is necessary. Here we adopted the
same 134 features used in decision tree and fed these
into the Gaussian mixture model (GMM), which pro-
vided us with the probabilities of an input pattern
belonged to each class. Hence, we were able to properly
set up a confidence level to filter patterns with lower
probabilities of recognizing a specific class. As shown
in Figure 4, GMM was then used in the recognition of a
mixture of Vero and CHO cell images to decide the

proper confidence criterion by observing the relation-
ships between the accurate classification rate and the
data rejection rate. If a confidence level of 0.85 is cho-
sen, then 25% of the input patterns are viewed as noisy
data and removed; the average accuracy of our system
now increases to 90% (Fig. 4). If a confidence level of
0.7 is chosen, 15% of the data is noisy and removed,
giving an average accuracy of 87%. For our experi-
ments, we chose a confidence level of 0.85, and when
used with Vero and CHO cells, this gave an improved
accuracy of 89% and 91% with 33% and 23% removal of
noisy data, respectively. The recognition results for
individual subcellular structure in Vero and CHO cells
are shown in Table 5. In addition, we have also exam-
ined the rejected images. As expected, the characteris-
tics of some images are not clear enough, so they may
be easily classified into the wrong class. We need to
fully review the image processing, including image
segmentation and image enhancement of these miss-
classified images, to find whether new solutions help

TABLE 4. Recognition of 1,488 Vero cell images by the system trained by a mixture of Vero and CHO cell images

Output of decision tree

True classification

Actin ER Golgi Microtubule Mitochondria Nucleolus Nucleus Peroxisome

Actin 26 23 5 11 5 0 3 0
ER 25 245 23 7 26 0 8 7
Golgi 4 19 107 1 5 40 82 0
Microtubule 11 47 2 76 7 0 5 0
Mitochondria 3 34 9 3 131 0 7 4
Nucleolus 0 0 0 1 0 52 42 0
Nucleus 0 7 4 0 1 10 272 1
Peroxisome 3 5 8 0 4 10 27 30
Error 46 135 51 23 48 60 174 12
Correct 26 245 107 76 131 52 272 30
Total 72 380 158 99 179 112 446 42

In total, 1488 images of Vero cells made up of eight subcellular categories using gfp-cdna were tested by the system as described in Table 3. The accuracy of recognition
for each category is summarized in this table.

TABLE 3. Recognition of Vero and CHO cell images by the system trained by Vero and CHO cell images

Output of decision tree

True classification

Actin ER Golgi Peroxisome Mitochondria Microtubule Nucleus Nucleolus

A. Trained by 815 CHO cell images and 317 Vero cell images/tested CHO cell images
Actin 304 9 2 0 0 1 2 ND
ER 6 144 3 2 6 3 1 ND
Golgi 1 3 115 14 0 0 0 ND
Peroxisome 0 0 3 37 0 0 0 ND
Mitochondria 0 2 0 11 41 2 0 ND
Microtubule 3 7 0 2 7 56 0 ND
Nucleus 1 0 0 0 0 0 27 ND
Nucleolus 0 0 0 0 0 0 0 ND
Error 11 21 8 29 13 6 3 ND
Total images 315 165 123 66 54 62 30 ND
Rate (%) 96.5 87.3 93.5 56.1 75.9 90.3 90.0 ND

B. Trained by 815 CHO cell images and 317 Vero cell images/tested Vero cell images
Actin 12 0 0 0 0 2 0 0
ER 2 31 6 1 3 3 4 0
Golgi 1 1 48 0 0 0 1 2
Peroxisome 0 0 0 13 0 0 5 1
Mitochondria 1 7 3 0 64 3 0 0
Microtubule 1 1 0 0 1 43 0 0
Nucleus 0 0 0 0 0 0 43 0
Nucleolus 0 0 0 0 0 0 2 12
Error 5 9 9 1 4 8 12 4
Total images 17 40 57 14 68 51 55 15
Rate (%) 70.6 77.5 82.2 92.9 94.1 84.3 78.2 80.0

Overall, to train the system, a 9/10 mixture of 815 CHO and 317 Vero cell images were used as the training group and the remaining images were used as the test
group. After crossvalidation, all CHO and Vero cell images were used for testing the performance of the system. The accuracy of recognition for individual subcellular
structures of CHO and Vero cells are shown in A and B.
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recognize these images correctly or just think these
images as artifacts.

DISCUSSION

Clearly, in this study, we have shown that it is possi-
ble for cell images of subcellular structures from vari-
ous sources to be recognized by a single system at an
accuracy of about 86%. Our system is able to reject
miss-recognized images and identify correctly recog-
nized images with an average accuracy of more than
90% correctly recognized; this will save time during
re-examination.

The system has lower accuracy when recognizing
1,488 Vero cell images, even when they are from the
same source as the Vero cell images used for training.
There are a number of possible reasons for this low
accuracy of recognition. First, subcellular classes with

low recognition accuracy, such as actin, the nucleolus,
the ER, the Golgi apparatus, and the nucleus, may
have too few training images and this reduces the
extraction of enough subcellular features for recogni-
tion. Second, images of some subcellular classes have
variable morphological properties. For example, cen-
tromeric proteins are dotted in nucleus but proteins on
chromatin fill the nucleus, but both localizations are
categorized in nucleus group. A similar situation hap-
pens with Vero actin, microtubules, mitochondria, and
peroxisomes, and this may result in low recognition
specificity (Fig. 5). Third, some proteins have dynamic
localizations, such as membrane proteins localizing to
the ER, to vesicles, to Golgi apparatus, and to the
plasma membrane during protein export. Some pro-
teins may have several functions and localize in two or
more subcellular compartments (Fig. 6A). In such

TABLE 5. Recognition results of Vero and CHO cell images after rejection of images with low confidence of recognition

Results

Actin ER Golgi Microtubule Mitochondria Nucleolus Nucleus Peroxisome

CHO cells
Accuracy rate (%) 96.8 88.0 88.2 81.8 100 No 100 81.8
Rejection rate (%) 20.0 26.4 12.8 31.2 45.4 No 25.0 15.3

Vero cells
Accuracy rate (%) 75.0 94.1 71.4 88.8 87.8 85.7 93.9 80.0
Rejection rate (%) 46.6 26.8 63.1 62.5 23.2 22.2 26.1 28.5

The threshold of confidence value for rejection was set at 0.85 based on Figure 4. In total, 317 images of CHO cells and 1,488 images of Vero cells were applied to test
for improvement in the recognition rate after rejection of images as described in Figure 4.

Fig. 5. Heterogeneity of subcellular structures of Vero cells. Heterogeneity of nucleus, actin, peroxi-
some, microtubule, and mitochondria is high in Vero cells, and four represented images of each subcellu-
lar structure are shown in this figure.
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cases, the images consist of two or more subcellular
features, and this results in recognition being difficult.
Fourth, some images contain two or more cells that
cannot be segmented, and this will change their geo-
metric properties reducing recognition accuracy. Fifth,
every Vero image represents subcellular protein local-
ization of one gene, but the properties for one particu-
lar subcellular protein localization within a cell popula-
tion may be heterogeneous and the system may not
have sufficient specific features for recognition to occur
accurately. Sixth, some images will have similar sub-
cellular features after processing, and this will result
in miss-recognition. One example is where some nuclei
show homogeneous strong fluorescence, but also has a
low heterogeneous fluorescence background, which is
easily recognized as ER. When we examined the path
of decision tree of nuclei with these features after
enhancement by the morphological filter, it was clear
that the morphological filter recognizes the nuclear
area with homogenous fluorescence as background and
enhances the heterogeneous cytosolic fluorescence as a
network of structures. In such circumstances, the
enhanced nucleus images are very dark in nuclear
region, and there is a strong network structure in cyto-
sol that is very similar to ER (Fig. 6B).

We need to examine the earlier possibilities, and to
do this we will increase the number of images including
various proteins with similar localizations. We will
then use other methods of feature selection to train the
system to discover whether more images and other
ways of selecting features may be able to extract more
specific features for recognition. To increase the variety
of images in every subcellular class, these images will
be manually grouped into new subclasses to improve
the system. To study cell images with several subcellu-
lar structures, the cells will be stained by several
fluorescence probes or there will be overexpression of
several subcellular structure specific fluorescence pro-
teins; the result will be labeling of several subcellular
compartments. Furthermore, subcellular morphologies
will be merged in a single image to build cell images

with several structures to know whether these cell
images are difficult to be recognized. Since an auto-
mated cell image acquisition system cannot capture
fields that contain only one cell, images containing
several cells frequently occur. The efficiency of the seg-
mentation method is very dependent on the images
and some images are very difficult to be resolved into
single cell. To help this, we will increase the subcellular
features that are independent of size and number such
as texture features, and this ought to improve the accu-
racy of recognition.

In this study, we have shown that recognition of the
subcellular structures from various sources of cells is
possible in this case by the use of two different sources
of cells. This approach should be applicable to other
investigators when they use images of subcellular
structures to obtain more information about the sub-
cellular localizations of novel proteins. Besides, the
approach described here will be particularly useful if
applied to high throughput screening of chemical com-
pounds and drugs that affect subcellular localization of
particular proteins involved in important cell proc-
esses. The use of two cell lines increases the reliability
of such an assay and this system, particularly because
of the rejection of unreliable images, will limit the need
for human input into such a large-scale screen.
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